For variadic functions (other than VARIADIC ANY), the syntaxes foo(x,y,...)
and foo(VARIADIC ARRAY[x,y,...]) should be considered equivalent, since the
former is converted to the latter at parse time. They have indeed been
equivalent, in all releases before 9.3. However, commit 75b39e790 made an
ill-considered decision to record which syntax had been used in FuncExpr
nodes, and then to make equal() test that in checking node equality ---
which caused the syntaxes to not be seen as equivalent by the planner.
This is the underlying cause of bug #9817 from Dmitry Ryabov.
It might seem that a quick fix would be to make equal() disregard
FuncExpr.funcvariadic, but the same commit made that untenable, because
the field actually *is* semantically significant for some VARIADIC ANY
functions. This patch instead adopts the approach of redefining
funcvariadic (and aggvariadic, in HEAD) as meaning that the last argument
is a variadic array, whether it got that way by parser intervention or was
supplied explicitly by the user. Therefore the value will always be true
for non-ANY variadic functions, restoring the principle of equivalence.
(However, the planner will continue to consider use of VARIADIC as a
meaningful difference for VARIADIC ANY functions, even though some such
functions might disregard it.)
In HEAD, this change lets us simplify the decompilation logic in
ruleutils.c, since the funcvariadic/aggvariadic flag tells directly whether
to print VARIADIC. However, in 9.3 we have to continue to cope with
existing stored rules/views that might contain the previous definition.
Fortunately, this just means no change in ruleutils.c, since its existing
behavior effectively ignores funcvariadic for all cases other than VARIADIC
ANY functions.
In HEAD, bump catversion to reflect the fact that FuncExpr.funcvariadic
changed meanings; this is sort of pro forma, since I don't believe any
built-in views are affected.
Unfortunately, this patch doesn't magically fix everything for affected
9.3 users. After installing 9.3.5, they might need to recreate their
rules/views/indexes containing variadic function calls in order to get
everything consistent with the new definition. As in the cited bug,
the symptom of a problem would be failure to use a nominally matching
index that has a variadic function call in its definition. We'll need
to mention this in the 9.3.5 release notes.
The PostgreSQL contrib tree
---------------------------
This subtree contains porting tools, analysis utilities, and plug-in
features that are not part of the core PostgreSQL system, mainly
because they address a limited audience or are too experimental to be
part of the main source tree. This does not preclude their
usefulness.
User documentation for each module appears in the main SGML
documentation.
When building from the source distribution, these modules are not
built automatically, unless you build the "world" target. You can
also build and install them all by running "make all" and "make
install" in this directory; or to build and install just one selected
module, do the same in that module's subdirectory.
Some directories supply new user-defined functions, operators, or
types. To make use of one of these modules, after you have installed
the code you need to register the new SQL objects in the database
system by executing a CREATE EXTENSION command. In a fresh database,
you can simply do
CREATE EXTENSION module_name;
See the PostgreSQL documentation for more information about this
procedure.