postgresql/contrib/cube/cube.c
Bruce Momjian e57ab04565 This is a comprehensive set of diffs (versus current CVS) that replaces those
attached to the same message with the Earth Distance patches.
Recent changes include changing the subscript in one place I forgot
in the previous bugfix patch. A couple of added regression tests, which
should help catch this mistake if it reappears.
I also put in a limit of 100 dimensions in cube_large and cube_in to
prevent making it easy to create very large cubes. Changing one define
in cubedata.h will raise the limit if some needs more dimensions.

Bruno Wolff III
2002-09-12 00:26:00 +00:00

1222 lines
26 KiB
C

/******************************************************************************
This file contains routines that can be bound to a Postgres backend and
called by the backend in the process of processing queries. The calling
format for these routines is dictated by Postgres architecture.
******************************************************************************/
#include "postgres.h"
#include <math.h>
#include "access/gist.h"
#include "access/rtree.h"
#include "lib/stringinfo.h"
#include "utils/elog.h"
#include "utils/palloc.h"
#include "utils/builtins.h"
#include "cubedata.h"
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define abs(a) ((a) < (0) ? (-a) : (a))
extern void set_parse_buffer(char *str);
extern int cube_yyparse();
/*
** Input/Output routines
*/
NDBOX *cube_in(char *str);
NDBOX *cube(text *str);
char *cube_out(NDBOX * cube);
/*
** GiST support methods
*/
bool g_cube_consistent(GISTENTRY *entry, NDBOX * query, StrategyNumber strategy);
GISTENTRY *g_cube_compress(GISTENTRY *entry);
GISTENTRY *g_cube_decompress(GISTENTRY *entry);
float *g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
GIST_SPLITVEC *g_cube_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
bool g_cube_leaf_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
bool g_cube_internal_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
NDBOX *g_cube_union(bytea *entryvec, int *sizep);
NDBOX *g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep);
bool *g_cube_same(NDBOX * b1, NDBOX * b2, bool *result);
/*
** R-tree support functions
*/
bool cube_same(NDBOX * a, NDBOX * b);
bool cube_different(NDBOX * a, NDBOX * b);
bool cube_contains(NDBOX * a, NDBOX * b);
bool cube_contained(NDBOX * a, NDBOX * b);
bool cube_overlap(NDBOX * a, NDBOX * b);
NDBOX *cube_union(NDBOX * a, NDBOX * b);
NDBOX *cube_inter(NDBOX * a, NDBOX * b);
double *cube_size(NDBOX * a);
void rt_cube_size(NDBOX * a, double *sz);
/*
** These make no sense for this type, but R-tree wants them
*/
bool cube_over_left(NDBOX * a, NDBOX * b);
bool cube_over_right(NDBOX * a, NDBOX * b);
bool cube_left(NDBOX * a, NDBOX * b);
bool cube_right(NDBOX * a, NDBOX * b);
/*
** miscellaneous
*/
bool cube_lt(NDBOX * a, NDBOX * b);
bool cube_gt(NDBOX * a, NDBOX * b);
double *cube_distance(NDBOX * a, NDBOX * b);
int4 cube_dim(NDBOX * a);
double *cube_ll_coord(NDBOX * a, int4 n);
double *cube_ur_coord(NDBOX * a, int4 n);
bool cube_is_point(NDBOX * a);
NDBOX *cube_enlarge(NDBOX * a, double *r, int4 n);
/*
** Auxiliary funxtions
*/
static double distance_1D(double a1, double a2, double b1, double b2);
/*****************************************************************************
* Input/Output functions
*****************************************************************************/
/* NdBox = [(lowerleft),(upperright)] */
/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
NDBOX *
cube_in(char *str)
{
void *result;
set_parse_buffer(str);
if (cube_yyparse(&result) != 0)
return NULL;
return ((NDBOX *) result);
}
/* Allow conversion from text to cube to allow input of computed strings */
/* There may be issues with toasted data here. I don't know enough to be sure.*/
NDBOX *
cube(text *str)
{
return cube_in(DatumGetCString(DirectFunctionCall1(textout,
PointerGetDatum(str))));
}
char *
cube_out(NDBOX * cube)
{
StringInfoData buf;
bool equal = true;
int dim = cube->dim;
int i;
initStringInfo(&buf);
/*
* while printing the first (LL) corner, check if it is equal to the
* second one
*/
appendStringInfoChar(&buf, '(');
for (i = 0; i < dim; i++)
{
if (i > 0)
appendStringInfo(&buf, ", ");
appendStringInfo(&buf, "%.16g", cube->x[i]);
if (cube->x[i] != cube->x[i + dim])
equal = false;
}
appendStringInfoChar(&buf, ')');
if (!equal)
{
appendStringInfo(&buf, ",(");
for (i = 0; i < dim; i++)
{
if (i > 0)
appendStringInfo(&buf, ", ");
appendStringInfo(&buf, "%.16g", cube->x[i + dim]);
}
appendStringInfoChar(&buf, ')');
}
return buf.data;
}
/*****************************************************************************
* GiST functions
*****************************************************************************/
/*
** The GiST Consistent method for boxes
** Should return false if for all data items x below entry,
** the predicate x op query == FALSE, where op is the oper
** corresponding to strategy in the pg_amop table.
*/
bool
g_cube_consistent(GISTENTRY *entry,
NDBOX * query,
StrategyNumber strategy)
{
/*
* if entry is not leaf, use g_cube_internal_consistent, else use
* g_cube_leaf_consistent
*/
if (GIST_LEAF(entry))
return g_cube_leaf_consistent((NDBOX *) DatumGetPointer(entry->key),
query, strategy);
else
return g_cube_internal_consistent((NDBOX *) DatumGetPointer(entry->key),
query, strategy);
}
/*
** The GiST Union method for boxes
** returns the minimal bounding box that encloses all the entries in entryvec
*/
NDBOX *
g_cube_union(bytea *entryvec, int *sizep)
{
int numranges,
i;
NDBOX *out = (NDBOX *) NULL;
NDBOX *tmp;
/*
* fprintf(stderr, "union\n");
*/
numranges = (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY);
tmp = (NDBOX *) DatumGetPointer((((GISTENTRY *) (VARDATA(entryvec)))[0]).key);
/*
* sizep = sizeof(NDBOX); -- NDBOX has variable size
*/
*sizep = tmp->size;
for (i = 1; i < numranges; i++)
{
out = g_cube_binary_union(tmp, (NDBOX *)
DatumGetPointer((((GISTENTRY *) (VARDATA(entryvec)))[i]).key),
sizep);
if (i > 1)
pfree(tmp);
tmp = out;
}
return (out);
}
/*
** GiST Compress and Decompress methods for boxes
** do not do anything.
*/
GISTENTRY *
g_cube_compress(GISTENTRY *entry)
{
return (entry);
}
GISTENTRY *
g_cube_decompress(GISTENTRY *entry)
{
return (entry);
}
/*
** The GiST Penalty method for boxes
** As in the R-tree paper, we use change in area as our penalty metric
*/
float *
g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
{
NDBOX *ud;
double tmp1,
tmp2;
ud = cube_union((NDBOX *) DatumGetPointer(origentry->key),
(NDBOX *) DatumGetPointer(newentry->key));
rt_cube_size(ud, &tmp1);
rt_cube_size((NDBOX *) DatumGetPointer(origentry->key), &tmp2);
*result = (float) (tmp1 - tmp2);
pfree(ud);
/*
* fprintf(stderr, "penalty\n"); fprintf(stderr, "\t%g\n", *result);
*/
return (result);
}
/*
** The GiST PickSplit method for boxes
** We use Guttman's poly time split algorithm
*/
GIST_SPLITVEC *
g_cube_picksplit(bytea *entryvec,
GIST_SPLITVEC *v)
{
OffsetNumber i,
j;
NDBOX *datum_alpha,
*datum_beta;
NDBOX *datum_l,
*datum_r;
NDBOX *union_d,
*union_dl,
*union_dr;
NDBOX *inter_d;
bool firsttime;
double size_alpha,
size_beta,
size_union,
size_inter;
double size_waste,
waste;
double size_l,
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
OffsetNumber maxoff;
/*
* fprintf(stderr, "picksplit\n");
*/
maxoff = ((VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY)) - 2;
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
datum_alpha = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[i].key);
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
datum_beta = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[j].key);
/* compute the wasted space by unioning these guys */
/* size_waste = size_union - size_inter; */
union_d = cube_union(datum_alpha, datum_beta);
rt_cube_size(union_d, &size_union);
inter_d = cube_inter(datum_alpha, datum_beta);
rt_cube_size(inter_d, &size_inter);
size_waste = size_union - size_inter;
pfree(union_d);
if (inter_d != (NDBOX *) NULL)
pfree(inter_d);
/*
* are these a more promising split than what we've already
* seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
datum_alpha = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[seed_1].key);
datum_l = cube_union(datum_alpha, datum_alpha);
rt_cube_size(datum_l, &size_l);
datum_beta = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[seed_2].key);
datum_r = cube_union(datum_beta, datum_beta);
rt_cube_size(datum_r, &size_r);
/*
* Now split up the regions between the two seeds. An important
* property of this split algorithm is that the split vector v has the
* indices of items to be split in order in its left and right
* vectors. We exploit this property by doing a merge in the code
* that actually splits the page.
*
* For efficiency, we also place the new index tuple in this loop. This
* is handled at the very end, when we have placed all the existing
* tuples and i == maxoff + 1.
*/
maxoff = OffsetNumberNext(maxoff);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
/*
* If we've already decided where to place this item, just put it
* on the right list. Otherwise, we need to figure out which page
* needs the least enlargement in order to store the item.
*/
if (i == seed_1)
{
*left++ = i;
v->spl_nleft++;
continue;
}
else if (i == seed_2)
{
*right++ = i;
v->spl_nright++;
continue;
}
/* okay, which page needs least enlargement? */
datum_alpha = (NDBOX *) DatumGetPointer(((GISTENTRY *) (VARDATA(entryvec)))[i].key);
union_dl = cube_union(datum_l, datum_alpha);
union_dr = cube_union(datum_r, datum_alpha);
rt_cube_size(union_dl, &size_alpha);
rt_cube_size(union_dr, &size_beta);
/* pick which page to add it to */
if (size_alpha - size_l < size_beta - size_r)
{
pfree(datum_l);
pfree(union_dr);
datum_l = union_dl;
size_l = size_alpha;
*left++ = i;
v->spl_nleft++;
}
else
{
pfree(datum_r);
pfree(union_dl);
datum_r = union_dr;
size_r = size_alpha;
*right++ = i;
v->spl_nright++;
}
}
*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
v->spl_ldatum = PointerGetDatum(datum_l);
v->spl_rdatum = PointerGetDatum(datum_r);
return v;
}
/*
** Equality method
*/
bool *
g_cube_same(NDBOX * b1, NDBOX * b2, bool *result)
{
if (cube_same(b1, b2))
*result = TRUE;
else
*result = FALSE;
/*
* fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
*/
return (result);
}
/*
** SUPPORT ROUTINES
*/
bool
g_cube_leaf_consistent(NDBOX * key,
NDBOX * query,
StrategyNumber strategy)
{
bool retval;
/*
* fprintf(stderr, "leaf_consistent, %d\n", strategy);
*/
switch (strategy)
{
case RTLeftStrategyNumber:
retval = (bool) cube_left(key, query);
break;
case RTOverLeftStrategyNumber:
retval = (bool) cube_over_left(key, query);
break;
case RTOverlapStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
case RTOverRightStrategyNumber:
retval = (bool) cube_over_right(key, query);
break;
case RTRightStrategyNumber:
retval = (bool) cube_right(key, query);
break;
case RTSameStrategyNumber:
retval = (bool) cube_same(key, query);
break;
case RTContainsStrategyNumber:
retval = (bool) cube_contains(key, query);
break;
case RTContainedByStrategyNumber:
retval = (bool) cube_contained(key, query);
break;
default:
retval = FALSE;
}
return (retval);
}
bool
g_cube_internal_consistent(NDBOX * key,
NDBOX * query,
StrategyNumber strategy)
{
bool retval;
/*
* fprintf(stderr, "internal_consistent, %d\n", strategy);
*/
switch (strategy)
{
case RTLeftStrategyNumber:
case RTOverLeftStrategyNumber:
retval = (bool) cube_over_left(key, query);
break;
case RTOverlapStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
case RTOverRightStrategyNumber:
case RTRightStrategyNumber:
retval = (bool) cube_right(key, query);
break;
case RTSameStrategyNumber:
case RTContainsStrategyNumber:
retval = (bool) cube_contains(key, query);
break;
case RTContainedByStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
default:
retval = FALSE;
}
return (retval);
}
NDBOX *
g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep)
{
NDBOX *retval;
retval = cube_union(r1, r2);
*sizep = retval->size;
return (retval);
}
/* cube_union */
NDBOX *
cube_union(NDBOX * a, NDBOX * b)
{
int i;
NDBOX *result;
if (a->dim >= b->dim)
{
result = palloc(a->size);
memset(result, 0, a->size);
result->size = a->size;
result->dim = a->dim;
}
else
{
result = palloc(b->size);
memset(result, 0, b->size);
result->size = b->size;
result->dim = b->dim;
}
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/*
* use the potentially smaller of the two boxes (b) to fill in the
* result, padding absent dimensions with zeroes
*/
for (i = 0; i < b->dim; i++)
{
result->x[i] = min(b->x[i], b->x[i + b->dim]);
result->x[i + a->dim] = max(b->x[i], b->x[i + b->dim]);
}
for (i = b->dim; i < a->dim; i++)
{
result->x[i] = 0;
result->x[i + a->dim] = 0;
}
/* compute the union */
for (i = 0; i < a->dim; i++)
{
result->x[i] =
min(min(a->x[i], a->x[i + a->dim]), result->x[i]);
result->x[i + a->dim] = max(max(a->x[i],
a->x[i + a->dim]), result->x[i + a->dim]);
}
return (result);
}
/* cube_inter */
NDBOX *
cube_inter(NDBOX * a, NDBOX * b)
{
int i;
NDBOX *result;
if (a->dim >= b->dim)
{
result = palloc(a->size);
memset(result, 0, a->size);
result->size = a->size;
result->dim = a->dim;
}
else
{
result = palloc(b->size);
memset(result, 0, b->size);
result->size = b->size;
result->dim = b->dim;
}
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/*
* use the potentially smaller of the two boxes (b) to fill in the
* result, padding absent dimensions with zeroes
*/
for (i = 0; i < b->dim; i++)
{
result->x[i] = min(b->x[i], b->x[i + b->dim]);
result->x[i + a->dim] = max(b->x[i], b->x[i + b->dim]);
}
for (i = b->dim; i < a->dim; i++)
{
result->x[i] = 0;
result->x[i + a->dim] = 0;
}
/* compute the intersection */
for (i = 0; i < a->dim; i++)
{
result->x[i] =
max(min(a->x[i], a->x[i + a->dim]), result->x[i]);
result->x[i + a->dim] = min(max(a->x[i],
a->x[i + a->dim]), result->x[i + a->dim]);
}
/*
* Is it OK to return a non-null intersection for non-overlapping
* boxes?
*/
return (result);
}
/* cube_size */
double *
cube_size(NDBOX * a)
{
int i,
j;
double *result;
result = (double *) palloc(sizeof(double));
*result = 1.0;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
*result = (*result) * abs((a->x[j] - a->x[i]));
return (result);
}
void
rt_cube_size(NDBOX * a, double *size)
{
int i,
j;
if (a == (NDBOX *) NULL)
*size = 0.0;
else
{
*size = 1.0;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
*size = (*size) * abs((a->x[j] - a->x[i]));
}
return;
}
/* The following four methods compare the projections of the boxes
onto the 0-th coordinate axis. These methods are useless for dimensions
larger than 2, but it seems that R-tree requires all its strategies
map to real functions that return something */
/* is the right edge of (a) located to the left of
the right edge of (b)? */
bool
cube_over_left(NDBOX * a, NDBOX * b)
{
if ((a == NULL) || (b == NULL))
return (FALSE);
return (min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) <=
min(b->x[b->dim - 1], b->x[2 * b->dim - 1]) &&
!cube_left(a, b) && !cube_right(a, b));
}
/* is the left edge of (a) located to the right of
the left edge of (b)? */
bool
cube_over_right(NDBOX * a, NDBOX * b)
{
if ((a == NULL) || (b == NULL))
return (FALSE);
return (min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) >=
min(b->x[b->dim - 1], b->x[2 * b->dim - 1]) &&
!cube_left(a, b) && !cube_right(a, b));
}
/* return 'true' if the projection of 'a' is
entirely on the left of the projection of 'b' */
bool
cube_left(NDBOX * a, NDBOX * b)
{
if ((a == NULL) || (b == NULL))
return (FALSE);
return (min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) <
min(b->x[0], b->x[b->dim]));
}
/* return 'true' if the projection of 'a' is
entirely on the right of the projection of 'b' */
bool
cube_right(NDBOX * a, NDBOX * b)
{
if ((a == NULL) || (b == NULL))
return (FALSE);
return (min(a->x[0], a->x[a->dim]) >
min(b->x[b->dim - 1], b->x[2 * b->dim - 1]));
}
/* make up a metric in which one box will be 'lower' than the other
-- this can be useful for sorting and to determine uniqueness */
bool
cube_lt(NDBOX * a, NDBOX * b)
{
int i;
int dim;
if ((a == NULL) || (b == NULL))
return (FALSE);
dim = min(a->dim, b->dim);
/* compare the common dimensions */
for (i = 0; i < dim; i++)
{
if (min(a->x[i], a->x[a->dim + i]) >
min(b->x[i], b->x[b->dim + i]))
return (FALSE);
if (min(a->x[i], a->x[a->dim + i]) <
min(b->x[i], b->x[b->dim + i]))
return (TRUE);
}
for (i = 0; i < dim; i++)
{
if (max(a->x[i], a->x[a->dim + i]) >
max(b->x[i], b->x[b->dim + i]))
return (FALSE);
if (max(a->x[i], a->x[a->dim + i]) <
max(b->x[i], b->x[b->dim + i]))
return (TRUE);
}
/* compare extra dimensions to zero */
if (a->dim > b->dim)
{
for (i = dim; i < a->dim; i++)
{
if (min(a->x[i], a->x[a->dim + i]) > 0)
return (FALSE);
if (min(a->x[i], a->x[a->dim + i]) < 0)
return (TRUE);
}
for (i = dim; i < a->dim; i++)
{
if (max(a->x[i], a->x[a->dim + i]) > 0)
return (FALSE);
if (max(a->x[i], a->x[a->dim + i]) < 0)
return (TRUE);
}
/*
* if all common dimensions are equal, the cube with more
* dimensions wins
*/
return (FALSE);
}
if (a->dim < b->dim)
{
for (i = dim; i < b->dim; i++)
{
if (min(b->x[i], b->x[b->dim + i]) > 0)
return (TRUE);
if (min(b->x[i], b->x[b->dim + i]) < 0)
return (FALSE);
}
for (i = dim; i < b->dim; i++)
{
if (max(b->x[i], b->x[b->dim + i]) > 0)
return (TRUE);
if (max(b->x[i], b->x[b->dim + i]) < 0)
return (FALSE);
}
/*
* if all common dimensions are equal, the cube with more
* dimensions wins
*/
return (TRUE);
}
return (FALSE);
}
bool
cube_gt(NDBOX * a, NDBOX * b)
{
int i;
int dim;
if ((a == NULL) || (b == NULL))
return (FALSE);
dim = min(a->dim, b->dim);
/* compare the common dimensions */
for (i = 0; i < dim; i++)
{
if (min(a->x[i], a->x[a->dim + i]) <
min(b->x[i], b->x[b->dim + i]))
return (FALSE);
if (min(a->x[i], a->x[a->dim + i]) >
min(b->x[i], b->x[b->dim + i]))
return (TRUE);
}
for (i = 0; i < dim; i++)
{
if (max(a->x[i], a->x[a->dim + i]) <
max(b->x[i], b->x[b->dim + i]))
return (FALSE);
if (max(a->x[i], a->x[a->dim + i]) >
max(b->x[i], b->x[b->dim + i]))
return (TRUE);
}
/* compare extra dimensions to zero */
if (a->dim > b->dim)
{
for (i = dim; i < a->dim; i++)
{
if (min(a->x[i], a->x[a->dim + i]) < 0)
return (FALSE);
if (min(a->x[i], a->x[a->dim + i]) > 0)
return (TRUE);
}
for (i = dim; i < a->dim; i++)
{
if (max(a->x[i], a->x[a->dim + i]) < 0)
return (FALSE);
if (max(a->x[i], a->x[a->dim + i]) > 0)
return (TRUE);
}
/*
* if all common dimensions are equal, the cube with more
* dimensions wins
*/
return (TRUE);
}
if (a->dim < b->dim)
{
for (i = dim; i < b->dim; i++)
{
if (min(b->x[i], b->x[b->dim + i]) < 0)
return (TRUE);
if (min(b->x[i], b->x[b->dim + i]) > 0)
return (FALSE);
}
for (i = dim; i < b->dim; i++)
{
if (max(b->x[i], b->x[b->dim + i]) < 0)
return (TRUE);
if (max(b->x[i], b->x[b->dim + i]) > 0)
return (FALSE);
}
/*
* if all common dimensions are equal, the cube with more
* dimensions wins
*/
return (FALSE);
}
return (FALSE);
}
/* Equal */
bool
cube_same(NDBOX * a, NDBOX * b)
{
int i;
if ((a == NULL) || (b == NULL))
return (FALSE);
/* swap the box pointers if necessary */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
for (i = 0; i < b->dim; i++)
{
if (min(a->x[i], a->x[a->dim + i]) !=
min(b->x[i], b->x[b->dim + i]))
return (FALSE);
if (max(a->x[i], a->x[a->dim + i]) !=
max(b->x[i], b->x[b->dim + i]))
return (FALSE);
}
/*
* all dimensions of (b) are compared to those of (a); instead of
* those in (a) absent in (b), compare (a) to zero Since both LL and
* UR coordinates are compared to zero, we can just check them all
* without worrying about which is which.
*/
for (i = b->dim; i < a->dim; i++)
{
if (a->x[i] != 0)
return (FALSE);
if (a->x[i + a->dim] != 0)
return (FALSE);
}
return (TRUE);
}
/* Different */
bool
cube_different(NDBOX * a, NDBOX * b)
{
return (!cube_same(a, b));
}
/* Contains */
/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
bool
cube_contains(NDBOX * a, NDBOX * b)
{
int i;
if ((a == NULL) || (b == NULL))
return (FALSE);
if (a->dim < b->dim)
{
/*
* the further comparisons will make sense if the excess
* dimensions of (b) were zeroes Since both UL and UR coordinates
* must be zero, we can check them all without worrying about
* which is which.
*/
for (i = a->dim; i < b->dim; i++)
{
if (b->x[i] != 0)
return (FALSE);
if (b->x[i + b->dim] != 0)
return (FALSE);
}
}
/* Can't care less about the excess dimensions of (a), if any */
for (i = 0; i < min(a->dim, b->dim); i++)
{
if (min(a->x[i], a->x[a->dim + i]) >
min(b->x[i], b->x[b->dim + i]))
return (FALSE);
if (max(a->x[i], a->x[a->dim + i]) <
max(b->x[i], b->x[b->dim + i]))
return (FALSE);
}
return (TRUE);
}
/* Contained */
/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
bool
cube_contained(NDBOX * a, NDBOX * b)
{
if (cube_contains(b, a) == TRUE)
return (TRUE);
else
return (FALSE);
}
/* Overlap */
/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
bool
cube_overlap(NDBOX * a, NDBOX * b)
{
int i;
/*
* This *very bad* error was found in the source: if ( (a==NULL) ||
* (b=NULL) ) return(FALSE);
*/
if ((a == NULL) || (b == NULL))
return (FALSE);
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/* compare within the dimensions of (b) */
for (i = 0; i < b->dim; i++)
{
if (min(a->x[i], a->x[a->dim + i]) >
max(b->x[i], b->x[b->dim + i]))
return (FALSE);
if (max(a->x[i], a->x[a->dim + i]) <
min(b->x[i], b->x[b->dim + i]))
return (FALSE);
}
/* compare to zero those dimensions in (a) absent in (b) */
for (i = b->dim; i < a->dim; i++)
{
if (min(a->x[i], a->x[a->dim + i]) > 0)
return (FALSE);
if (max(a->x[i], a->x[a->dim + i]) < 0)
return (FALSE);
}
return (TRUE);
}
/* Distance */
/* The distance is computed as a per axis sum of the squared distances
between 1D projections of the boxes onto Cartesian axes. Assuming zero
distance between overlapping projections, this metric coincides with the
"common sense" geometric distance */
double *
cube_distance(NDBOX * a, NDBOX * b)
{
int i;
double d,
distance;
double *result;
result = (double *) palloc(sizeof(double));
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
distance = 0.0;
/* compute within the dimensions of (b) */
for (i = 0; i < b->dim; i++)
{
d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
distance += d * d;
}
/* compute distance to zero for those dimensions in (a) absent in (b) */
for (i = b->dim; i < a->dim; i++)
{
d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
distance += d * d;
}
*result = (double) sqrt(distance);
return (result);
}
static double
distance_1D(double a1, double a2, double b1, double b2)
{
/* interval (a) is entirely on the left of (b) */
if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2))
return (min(b1, b2) - max(a1, a2));
/* interval (a) is entirely on the right of (b) */
if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2))
return (min(a1, a2) - max(b1, b2));
/* the rest are all sorts of intersections */
return (0.0);
}
/* Test if a box is also a point */
bool
cube_is_point(NDBOX * a)
{
int i,
j;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
{
if (a->x[i] != a->x[j])
return FALSE;
}
return TRUE;
}
/* Return dimensions in use in the data structure */
int4
cube_dim(NDBOX * a)
{
/* Other things will break before unsigned int doesn't fit. */
return a->dim;
}
/* Return a specific normalized LL coordinate */
double *
cube_ll_coord(NDBOX * a, int4 n)
{
double *result;
result = (double *) palloc(sizeof(double));
*result = 0;
if (a->dim >= n && n > 0)
*result = min(a->x[n - 1], a->x[a->dim + n - 1]);
return result;
}
/* Return a specific normalized UR coordinate */
double *
cube_ur_coord(NDBOX * a, int4 n)
{
double *result;
result = (double *) palloc(sizeof(double));
*result = 0;
if (a->dim >= n && n > 0)
*result = max(a->x[n - 1], a->x[a->dim + n - 1]);
return result;
}
/* Increase or decrease box size by a radius in at least n dimensions. */
NDBOX *
cube_enlarge(NDBOX * a, double *r, int4 n)
{
NDBOX *result;
int dim = 0;
int size;
int i,
j,
k;
if (n > CUBE_MAX_DIM) n = CUBE_MAX_DIM;
if (*r > 0 && n > 0)
dim = n;
if (a->dim > dim)
dim = a->dim;
size = offsetof(NDBOX, x[0]) + sizeof(double) * dim * 2;
result = (NDBOX *) palloc(size);
memset(result, 0, size);
result->size = size;
result->dim = dim;
for (i = 0, j = dim, k = a->dim; i < a->dim; i++, j++, k++)
{
if (a->x[i] >= a->x[k])
{
result->x[i] = a->x[k] - *r;
result->x[j] = a->x[i] + *r;
}
else
{
result->x[i] = a->x[i] - *r;
result->x[j] = a->x[k] + *r;
}
if (result->x[i] > result->x[j])
{
result->x[i] = (result->x[i] + result->x[j]) / 2;
result->x[j] = result->x[i];
}
}
/* dim > a->dim only if r > 0 */
for (; i < dim; i++, j++)
{
result->x[i] = -*r;
result->x[j] = *r;
}
return result;
}