postgresql/contrib/pg_prewarm/pg_prewarm.c
Peter Eisentraut 611806cd72 Add trailing commas to enum definitions
Since C99, there can be a trailing comma after the last value in an
enum definition.  A lot of new code has been introducing this style on
the fly.  Some new patches are now taking an inconsistent approach to
this.  Some add the last comma on the fly if they add a new last
value, some are trying to preserve the existing style in each place,
some are even dropping the last comma if there was one.  We could
nudge this all in a consistent direction if we just add the trailing
commas everywhere once.

I omitted a few places where there was a fixed "last" value that will
always stay last.  I also skipped the header files of libpq and ecpg,
in case people want to use those with older compilers.  There were
also a small number of cases where the enum type wasn't used anywhere
(but the enum values were), which ended up confusing pgindent a bit,
so I left those alone.

Discussion: https://www.postgresql.org/message-id/flat/386f8c45-c8ac-4681-8add-e3b0852c1620%40eisentraut.org
2023-10-26 09:20:54 +02:00

205 lines
5.6 KiB
C

/*-------------------------------------------------------------------------
*
* pg_prewarm.c
* prewarming utilities
*
* Copyright (c) 2010-2023, PostgreSQL Global Development Group
*
* IDENTIFICATION
* contrib/pg_prewarm/pg_prewarm.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <sys/stat.h>
#include <unistd.h>
#include "access/relation.h"
#include "fmgr.h"
#include "miscadmin.h"
#include "storage/bufmgr.h"
#include "storage/smgr.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(pg_prewarm);
typedef enum
{
PREWARM_PREFETCH,
PREWARM_READ,
PREWARM_BUFFER,
} PrewarmType;
static PGIOAlignedBlock blockbuffer;
/*
* pg_prewarm(regclass, mode text, fork text,
* first_block int8, last_block int8)
*
* The first argument is the relation to be prewarmed; the second controls
* how prewarming is done; legal options are 'prefetch', 'read', and 'buffer'.
* The third is the name of the relation fork to be prewarmed. The fourth
* and fifth arguments specify the first and last block to be prewarmed.
* If the fourth argument is NULL, it will be taken as 0; if the fifth argument
* is NULL, it will be taken as the number of blocks in the relation. The
* return value is the number of blocks successfully prewarmed.
*/
Datum
pg_prewarm(PG_FUNCTION_ARGS)
{
Oid relOid;
text *forkName;
text *type;
int64 first_block;
int64 last_block;
int64 nblocks;
int64 blocks_done = 0;
int64 block;
Relation rel;
ForkNumber forkNumber;
char *forkString;
char *ttype;
PrewarmType ptype;
AclResult aclresult;
/* Basic sanity checking. */
if (PG_ARGISNULL(0))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("relation cannot be null")));
relOid = PG_GETARG_OID(0);
if (PG_ARGISNULL(1))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("prewarm type cannot be null")));
type = PG_GETARG_TEXT_PP(1);
ttype = text_to_cstring(type);
if (strcmp(ttype, "prefetch") == 0)
ptype = PREWARM_PREFETCH;
else if (strcmp(ttype, "read") == 0)
ptype = PREWARM_READ;
else if (strcmp(ttype, "buffer") == 0)
ptype = PREWARM_BUFFER;
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid prewarm type"),
errhint("Valid prewarm types are \"prefetch\", \"read\", and \"buffer\".")));
PG_RETURN_INT64(0); /* Placate compiler. */
}
if (PG_ARGISNULL(2))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("relation fork cannot be null")));
forkName = PG_GETARG_TEXT_PP(2);
forkString = text_to_cstring(forkName);
forkNumber = forkname_to_number(forkString);
/* Open relation and check privileges. */
rel = relation_open(relOid, AccessShareLock);
aclresult = pg_class_aclcheck(relOid, GetUserId(), ACL_SELECT);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, get_relkind_objtype(rel->rd_rel->relkind), get_rel_name(relOid));
/* Check that the fork exists. */
if (!smgrexists(RelationGetSmgr(rel), forkNumber))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("fork \"%s\" does not exist for this relation",
forkString)));
/* Validate block numbers, or handle nulls. */
nblocks = RelationGetNumberOfBlocksInFork(rel, forkNumber);
if (PG_ARGISNULL(3))
first_block = 0;
else
{
first_block = PG_GETARG_INT64(3);
if (first_block < 0 || first_block >= nblocks)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("starting block number must be between 0 and %lld",
(long long) (nblocks - 1))));
}
if (PG_ARGISNULL(4))
last_block = nblocks - 1;
else
{
last_block = PG_GETARG_INT64(4);
if (last_block < 0 || last_block >= nblocks)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("ending block number must be between 0 and %lld",
(long long) (nblocks - 1))));
}
/* Now we're ready to do the real work. */
if (ptype == PREWARM_PREFETCH)
{
#ifdef USE_PREFETCH
/*
* In prefetch mode, we just hint the OS to read the blocks, but we
* don't know whether it really does it, and we don't wait for it to
* finish.
*
* It would probably be better to pass our prefetch requests in chunks
* of a megabyte or maybe even a whole segment at a time, but there's
* no practical way to do that at present without a gross modularity
* violation, so we just do this.
*/
for (block = first_block; block <= last_block; ++block)
{
CHECK_FOR_INTERRUPTS();
PrefetchBuffer(rel, forkNumber, block);
++blocks_done;
}
#else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("prefetch is not supported by this build")));
#endif
}
else if (ptype == PREWARM_READ)
{
/*
* In read mode, we actually read the blocks, but not into shared
* buffers. This is more portable than prefetch mode (it works
* everywhere) and is synchronous.
*/
for (block = first_block; block <= last_block; ++block)
{
CHECK_FOR_INTERRUPTS();
smgrread(RelationGetSmgr(rel), forkNumber, block, blockbuffer.data);
++blocks_done;
}
}
else if (ptype == PREWARM_BUFFER)
{
/*
* In buffer mode, we actually pull the data into shared_buffers.
*/
for (block = first_block; block <= last_block; ++block)
{
Buffer buf;
CHECK_FOR_INTERRUPTS();
buf = ReadBufferExtended(rel, forkNumber, block, RBM_NORMAL, NULL);
ReleaseBuffer(buf);
++blocks_done;
}
}
/* Close relation, release lock. */
relation_close(rel, AccessShareLock);
PG_RETURN_INT64(blocks_done);
}