mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-12 18:34:36 +08:00
fdf2dbda3f
The array containment operators now behave per mathematical expectation for empty arrays (ie, an empty array is contained in anything). Both these operators and the query_int operators now work as expected in GiST and GIN index searches, rather than having corner cases where the index searches gave different answers. Also, fix unexpected failures where the operators would claim that an array contained nulls, when in fact there was no longer any null present (similar to bug #5784). The restriction to not have nulls is still there, as removing it would take a lot of added code complexity and probably slow things down significantly. Also, remove the arbitrary restriction to 1-D arrays; unlike the other restriction, this was buying us nothing performance-wise. Assorted cosmetic improvements and marginal performance improvements, too.
559 lines
13 KiB
C
559 lines
13 KiB
C
/*
|
|
* contrib/intarray/_int_gist.c
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/gist.h"
|
|
#include "access/skey.h"
|
|
|
|
#include "_int.h"
|
|
|
|
#define GETENTRY(vec,pos) ((ArrayType *) DatumGetPointer((vec)->vector[(pos)].key))
|
|
|
|
/*
|
|
** GiST support methods
|
|
*/
|
|
PG_FUNCTION_INFO_V1(g_int_consistent);
|
|
PG_FUNCTION_INFO_V1(g_int_compress);
|
|
PG_FUNCTION_INFO_V1(g_int_decompress);
|
|
PG_FUNCTION_INFO_V1(g_int_penalty);
|
|
PG_FUNCTION_INFO_V1(g_int_picksplit);
|
|
PG_FUNCTION_INFO_V1(g_int_union);
|
|
PG_FUNCTION_INFO_V1(g_int_same);
|
|
|
|
Datum g_int_consistent(PG_FUNCTION_ARGS);
|
|
Datum g_int_compress(PG_FUNCTION_ARGS);
|
|
Datum g_int_decompress(PG_FUNCTION_ARGS);
|
|
Datum g_int_penalty(PG_FUNCTION_ARGS);
|
|
Datum g_int_picksplit(PG_FUNCTION_ARGS);
|
|
Datum g_int_union(PG_FUNCTION_ARGS);
|
|
Datum g_int_same(PG_FUNCTION_ARGS);
|
|
|
|
|
|
/*
|
|
** The GiST Consistent method for _intments
|
|
** Should return false if for all data items x below entry,
|
|
** the predicate x op query == FALSE, where op is the oper
|
|
** corresponding to strategy in the pg_amop table.
|
|
*/
|
|
Datum
|
|
g_int_consistent(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
ArrayType *query = PG_GETARG_ARRAYTYPE_P_COPY(1);
|
|
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
|
|
|
|
/* Oid subtype = PG_GETARG_OID(3); */
|
|
bool *recheck = (bool *) PG_GETARG_POINTER(4);
|
|
bool retval;
|
|
|
|
/* this is exact except for RTSameStrategyNumber */
|
|
*recheck = (strategy == RTSameStrategyNumber);
|
|
|
|
if (strategy == BooleanSearchStrategy)
|
|
{
|
|
retval = execconsistent((QUERYTYPE *) query,
|
|
(ArrayType *) DatumGetPointer(entry->key),
|
|
GIST_LEAF(entry));
|
|
|
|
pfree(query);
|
|
PG_RETURN_BOOL(retval);
|
|
}
|
|
|
|
/* sort query for fast search, key is already sorted */
|
|
CHECKARRVALID(query);
|
|
PREPAREARR(query);
|
|
|
|
switch (strategy)
|
|
{
|
|
case RTOverlapStrategyNumber:
|
|
retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
|
|
query);
|
|
break;
|
|
case RTSameStrategyNumber:
|
|
if (GIST_LEAF(entry))
|
|
DirectFunctionCall3(g_int_same,
|
|
entry->key,
|
|
PointerGetDatum(query),
|
|
PointerGetDatum(&retval));
|
|
else
|
|
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
|
|
query);
|
|
break;
|
|
case RTContainsStrategyNumber:
|
|
case RTOldContainsStrategyNumber:
|
|
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
|
|
query);
|
|
break;
|
|
case RTContainedByStrategyNumber:
|
|
case RTOldContainedByStrategyNumber:
|
|
if (GIST_LEAF(entry))
|
|
retval = inner_int_contains(query,
|
|
(ArrayType *) DatumGetPointer(entry->key));
|
|
else
|
|
retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
|
|
query);
|
|
break;
|
|
default:
|
|
retval = FALSE;
|
|
}
|
|
pfree(query);
|
|
PG_RETURN_BOOL(retval);
|
|
}
|
|
|
|
Datum
|
|
g_int_union(PG_FUNCTION_ARGS)
|
|
{
|
|
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
|
|
int *size = (int *) PG_GETARG_POINTER(1);
|
|
int4 i,
|
|
*ptr;
|
|
ArrayType *res;
|
|
int totlen = 0;
|
|
|
|
for (i = 0; i < entryvec->n; i++)
|
|
{
|
|
ArrayType *ent = GETENTRY(entryvec, i);
|
|
|
|
CHECKARRVALID(ent);
|
|
totlen += ARRNELEMS(ent);
|
|
}
|
|
|
|
res = new_intArrayType(totlen);
|
|
ptr = ARRPTR(res);
|
|
|
|
for (i = 0; i < entryvec->n; i++)
|
|
{
|
|
ArrayType *ent = GETENTRY(entryvec, i);
|
|
int nel;
|
|
|
|
nel = ARRNELEMS(ent);
|
|
memcpy(ptr, ARRPTR(ent), nel * sizeof(int4));
|
|
ptr += nel;
|
|
}
|
|
|
|
QSORT(res, 1);
|
|
res = _int_unique(res);
|
|
*size = VARSIZE(res);
|
|
PG_RETURN_POINTER(res);
|
|
}
|
|
|
|
/*
|
|
** GiST Compress and Decompress methods
|
|
*/
|
|
Datum
|
|
g_int_compress(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
GISTENTRY *retval;
|
|
ArrayType *r;
|
|
int len;
|
|
int *dr;
|
|
int i,
|
|
min,
|
|
cand;
|
|
|
|
if (entry->leafkey)
|
|
{
|
|
r = DatumGetArrayTypePCopy(entry->key);
|
|
CHECKARRVALID(r);
|
|
PREPAREARR(r);
|
|
|
|
if (ARRNELEMS(r) >= 2 * MAXNUMRANGE)
|
|
elog(NOTICE, "input array is too big (%d maximum allowed, %d current), use gist__intbig_ops opclass instead",
|
|
2 * MAXNUMRANGE - 1, ARRNELEMS(r));
|
|
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(r),
|
|
entry->rel, entry->page, entry->offset, FALSE);
|
|
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
|
|
/*
|
|
* leaf entries never compress one more time, only when entry->leafkey
|
|
* ==true, so now we work only with internal keys
|
|
*/
|
|
|
|
r = DatumGetArrayTypeP(entry->key);
|
|
CHECKARRVALID(r);
|
|
if (ARRISEMPTY(r))
|
|
{
|
|
if (r != (ArrayType *) DatumGetPointer(entry->key))
|
|
pfree(r);
|
|
PG_RETURN_POINTER(entry);
|
|
}
|
|
|
|
if ((len = ARRNELEMS(r)) >= 2 * MAXNUMRANGE)
|
|
{ /* compress */
|
|
if (r == (ArrayType *) DatumGetPointer(entry->key))
|
|
r = DatumGetArrayTypePCopy(entry->key);
|
|
r = resize_intArrayType(r, 2 * (len));
|
|
|
|
dr = ARRPTR(r);
|
|
|
|
for (i = len - 1; i >= 0; i--)
|
|
dr[2 * i] = dr[2 * i + 1] = dr[i];
|
|
|
|
len *= 2;
|
|
cand = 1;
|
|
while (len > MAXNUMRANGE * 2)
|
|
{
|
|
min = 0x7fffffff;
|
|
for (i = 2; i < len; i += 2)
|
|
if (min > (dr[i] - dr[i - 1]))
|
|
{
|
|
min = (dr[i] - dr[i - 1]);
|
|
cand = i;
|
|
}
|
|
memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int32));
|
|
len -= 2;
|
|
}
|
|
r = resize_intArrayType(r, len);
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(r),
|
|
entry->rel, entry->page, entry->offset, FALSE);
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
else
|
|
PG_RETURN_POINTER(entry);
|
|
|
|
PG_RETURN_POINTER(entry);
|
|
}
|
|
|
|
Datum
|
|
g_int_decompress(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
GISTENTRY *retval;
|
|
ArrayType *r;
|
|
int *dr,
|
|
lenr;
|
|
ArrayType *in;
|
|
int lenin;
|
|
int *din;
|
|
int i,
|
|
j;
|
|
|
|
in = DatumGetArrayTypeP(entry->key);
|
|
|
|
CHECKARRVALID(in);
|
|
if (ARRISEMPTY(in))
|
|
{
|
|
if (in != (ArrayType *) DatumGetPointer(entry->key))
|
|
{
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(in),
|
|
entry->rel, entry->page, entry->offset, FALSE);
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
|
|
PG_RETURN_POINTER(entry);
|
|
}
|
|
|
|
lenin = ARRNELEMS(in);
|
|
|
|
if (lenin < 2 * MAXNUMRANGE)
|
|
{ /* not compressed value */
|
|
if (in != (ArrayType *) DatumGetPointer(entry->key))
|
|
{
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(in),
|
|
entry->rel, entry->page, entry->offset, FALSE);
|
|
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
PG_RETURN_POINTER(entry);
|
|
}
|
|
|
|
din = ARRPTR(in);
|
|
lenr = internal_size(din, lenin);
|
|
|
|
r = new_intArrayType(lenr);
|
|
dr = ARRPTR(r);
|
|
|
|
for (i = 0; i < lenin; i += 2)
|
|
for (j = din[i]; j <= din[i + 1]; j++)
|
|
if ((!i) || *(dr - 1) != j)
|
|
*dr++ = j;
|
|
|
|
if (in != (ArrayType *) DatumGetPointer(entry->key))
|
|
pfree(in);
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
gistentryinit(*retval, PointerGetDatum(r),
|
|
entry->rel, entry->page, entry->offset, FALSE);
|
|
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
|
|
/*
|
|
** The GiST Penalty method for _intments
|
|
*/
|
|
Datum
|
|
g_int_penalty(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
|
|
float *result = (float *) PG_GETARG_POINTER(2);
|
|
ArrayType *ud;
|
|
float tmp1,
|
|
tmp2;
|
|
|
|
ud = inner_int_union((ArrayType *) DatumGetPointer(origentry->key),
|
|
(ArrayType *) DatumGetPointer(newentry->key));
|
|
rt__int_size(ud, &tmp1);
|
|
rt__int_size((ArrayType *) DatumGetPointer(origentry->key), &tmp2);
|
|
*result = tmp1 - tmp2;
|
|
pfree(ud);
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
|
|
|
|
Datum
|
|
g_int_same(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *a = PG_GETARG_ARRAYTYPE_P(0);
|
|
ArrayType *b = PG_GETARG_ARRAYTYPE_P(1);
|
|
bool *result = (bool *) PG_GETARG_POINTER(2);
|
|
int4 n = ARRNELEMS(a);
|
|
int4 *da,
|
|
*db;
|
|
|
|
CHECKARRVALID(a);
|
|
CHECKARRVALID(b);
|
|
|
|
if (n != ARRNELEMS(b))
|
|
{
|
|
*result = false;
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
*result = TRUE;
|
|
da = ARRPTR(a);
|
|
db = ARRPTR(b);
|
|
while (n--)
|
|
{
|
|
if (*da++ != *db++)
|
|
{
|
|
*result = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
/*****************************************************************
|
|
** Common GiST Method
|
|
*****************************************************************/
|
|
|
|
typedef struct
|
|
{
|
|
OffsetNumber pos;
|
|
float cost;
|
|
} SPLITCOST;
|
|
|
|
static int
|
|
comparecost(const void *a, const void *b)
|
|
{
|
|
if (((SPLITCOST *) a)->cost == ((SPLITCOST *) b)->cost)
|
|
return 0;
|
|
else
|
|
return (((SPLITCOST *) a)->cost > ((SPLITCOST *) b)->cost) ? 1 : -1;
|
|
}
|
|
|
|
/*
|
|
** The GiST PickSplit method for _intments
|
|
** We use Guttman's poly time split algorithm
|
|
*/
|
|
Datum
|
|
g_int_picksplit(PG_FUNCTION_ARGS)
|
|
{
|
|
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
|
|
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
|
|
OffsetNumber i,
|
|
j;
|
|
ArrayType *datum_alpha,
|
|
*datum_beta;
|
|
ArrayType *datum_l,
|
|
*datum_r;
|
|
ArrayType *union_d,
|
|
*union_dl,
|
|
*union_dr;
|
|
ArrayType *inter_d;
|
|
bool firsttime;
|
|
float size_alpha,
|
|
size_beta,
|
|
size_union,
|
|
size_inter;
|
|
float size_waste,
|
|
waste;
|
|
float size_l,
|
|
size_r;
|
|
int nbytes;
|
|
OffsetNumber seed_1 = 0,
|
|
seed_2 = 0;
|
|
OffsetNumber *left,
|
|
*right;
|
|
OffsetNumber maxoff;
|
|
SPLITCOST *costvector;
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(DEBUG3, "--------picksplit %d", entryvec->n);
|
|
#endif
|
|
|
|
maxoff = entryvec->n - 2;
|
|
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
|
|
v->spl_left = (OffsetNumber *) palloc(nbytes);
|
|
v->spl_right = (OffsetNumber *) palloc(nbytes);
|
|
|
|
firsttime = true;
|
|
waste = 0.0;
|
|
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
|
|
{
|
|
datum_alpha = GETENTRY(entryvec, i);
|
|
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
|
|
{
|
|
datum_beta = GETENTRY(entryvec, j);
|
|
|
|
/* compute the wasted space by unioning these guys */
|
|
/* size_waste = size_union - size_inter; */
|
|
union_d = inner_int_union(datum_alpha, datum_beta);
|
|
rt__int_size(union_d, &size_union);
|
|
inter_d = inner_int_inter(datum_alpha, datum_beta);
|
|
rt__int_size(inter_d, &size_inter);
|
|
size_waste = size_union - size_inter;
|
|
|
|
pfree(union_d);
|
|
|
|
if (inter_d != (ArrayType *) NULL)
|
|
pfree(inter_d);
|
|
|
|
/*
|
|
* are these a more promising split that what we've already seen?
|
|
*/
|
|
|
|
if (size_waste > waste || firsttime)
|
|
{
|
|
waste = size_waste;
|
|
seed_1 = i;
|
|
seed_2 = j;
|
|
firsttime = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
left = v->spl_left;
|
|
v->spl_nleft = 0;
|
|
right = v->spl_right;
|
|
v->spl_nright = 0;
|
|
if (seed_1 == 0 || seed_2 == 0)
|
|
{
|
|
seed_1 = 1;
|
|
seed_2 = 2;
|
|
}
|
|
|
|
datum_alpha = GETENTRY(entryvec, seed_1);
|
|
datum_l = copy_intArrayType(datum_alpha);
|
|
rt__int_size(datum_l, &size_l);
|
|
datum_beta = GETENTRY(entryvec, seed_2);
|
|
datum_r = copy_intArrayType(datum_beta);
|
|
rt__int_size(datum_r, &size_r);
|
|
|
|
maxoff = OffsetNumberNext(maxoff);
|
|
|
|
/*
|
|
* sort entries
|
|
*/
|
|
costvector = (SPLITCOST *) palloc(sizeof(SPLITCOST) * maxoff);
|
|
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
|
|
{
|
|
costvector[i - 1].pos = i;
|
|
datum_alpha = GETENTRY(entryvec, i);
|
|
union_d = inner_int_union(datum_l, datum_alpha);
|
|
rt__int_size(union_d, &size_alpha);
|
|
pfree(union_d);
|
|
union_d = inner_int_union(datum_r, datum_alpha);
|
|
rt__int_size(union_d, &size_beta);
|
|
pfree(union_d);
|
|
costvector[i - 1].cost = Abs((size_alpha - size_l) - (size_beta - size_r));
|
|
}
|
|
qsort((void *) costvector, maxoff, sizeof(SPLITCOST), comparecost);
|
|
|
|
/*
|
|
* Now split up the regions between the two seeds. An important property
|
|
* of this split algorithm is that the split vector v has the indices of
|
|
* items to be split in order in its left and right vectors. We exploit
|
|
* this property by doing a merge in the code that actually splits the
|
|
* page.
|
|
*
|
|
* For efficiency, we also place the new index tuple in this loop. This is
|
|
* handled at the very end, when we have placed all the existing tuples
|
|
* and i == maxoff + 1.
|
|
*/
|
|
|
|
|
|
for (j = 0; j < maxoff; j++)
|
|
{
|
|
i = costvector[j].pos;
|
|
|
|
/*
|
|
* If we've already decided where to place this item, just put it on
|
|
* the right list. Otherwise, we need to figure out which page needs
|
|
* the least enlargement in order to store the item.
|
|
*/
|
|
|
|
if (i == seed_1)
|
|
{
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
continue;
|
|
}
|
|
else if (i == seed_2)
|
|
{
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
continue;
|
|
}
|
|
|
|
/* okay, which page needs least enlargement? */
|
|
datum_alpha = GETENTRY(entryvec, i);
|
|
union_dl = inner_int_union(datum_l, datum_alpha);
|
|
union_dr = inner_int_union(datum_r, datum_alpha);
|
|
rt__int_size(union_dl, &size_alpha);
|
|
rt__int_size(union_dr, &size_beta);
|
|
|
|
/* pick which page to add it to */
|
|
if (size_alpha - size_l < size_beta - size_r + WISH_F(v->spl_nleft, v->spl_nright, 0.01))
|
|
{
|
|
if (datum_l)
|
|
pfree(datum_l);
|
|
if (union_dr)
|
|
pfree(union_dr);
|
|
datum_l = union_dl;
|
|
size_l = size_alpha;
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
}
|
|
else
|
|
{
|
|
if (datum_r)
|
|
pfree(datum_r);
|
|
if (union_dl)
|
|
pfree(union_dl);
|
|
datum_r = union_dr;
|
|
size_r = size_beta;
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
}
|
|
}
|
|
pfree(costvector);
|
|
*right = *left = FirstOffsetNumber;
|
|
|
|
v->spl_ldatum = PointerGetDatum(datum_l);
|
|
v->spl_rdatum = PointerGetDatum(datum_r);
|
|
|
|
PG_RETURN_POINTER(v);
|
|
}
|