postgresql/contrib/cube/sql/cube.sql
Tom Lane 629b3af27d Convert contrib modules to use the extension facility.
This isn't fully tested as yet, in particular I'm not sure that the
"foo--unpackaged--1.0.sql" scripts are OK.  But it's time to get some
buildfarm cycles on it.

sepgsql is not converted to an extension, mainly because it seems to
require a very nonstandard installation process.

Dimitri Fontaine and Tom Lane
2011-02-13 22:54:49 -05:00

280 lines
11 KiB
SQL

--
-- Test cube datatype
--
CREATE EXTENSION cube;
--
-- testing the input and output functions
--
-- Any number (a one-dimensional point)
SELECT '1'::cube AS cube;
SELECT '-1'::cube AS cube;
SELECT '1.'::cube AS cube;
SELECT '-1.'::cube AS cube;
SELECT '.1'::cube AS cube;
SELECT '-.1'::cube AS cube;
SELECT '1.0'::cube AS cube;
SELECT '-1.0'::cube AS cube;
SELECT '1e27'::cube AS cube;
SELECT '-1e27'::cube AS cube;
SELECT '1.0e27'::cube AS cube;
SELECT '-1.0e27'::cube AS cube;
SELECT '1e+27'::cube AS cube;
SELECT '-1e+27'::cube AS cube;
SELECT '1.0e+27'::cube AS cube;
SELECT '-1.0e+27'::cube AS cube;
SELECT '1e-7'::cube AS cube;
SELECT '-1e-7'::cube AS cube;
SELECT '1.0e-7'::cube AS cube;
SELECT '-1.0e-7'::cube AS cube;
SELECT '1e-700'::cube AS cube;
SELECT '-1e-700'::cube AS cube;
SELECT '1234567890123456'::cube AS cube;
SELECT '+1234567890123456'::cube AS cube;
SELECT '-1234567890123456'::cube AS cube;
SELECT '.1234567890123456'::cube AS cube;
SELECT '+.1234567890123456'::cube AS cube;
SELECT '-.1234567890123456'::cube AS cube;
-- simple lists (points)
SELECT '1,2'::cube AS cube;
SELECT '(1,2)'::cube AS cube;
SELECT '1,2,3,4,5'::cube AS cube;
SELECT '(1,2,3,4,5)'::cube AS cube;
-- double lists (cubes)
SELECT '(0),(0)'::cube AS cube;
SELECT '(0),(1)'::cube AS cube;
SELECT '[(0),(0)]'::cube AS cube;
SELECT '[(0),(1)]'::cube AS cube;
SELECT '(0,0,0,0),(0,0,0,0)'::cube AS cube;
SELECT '(0,0,0,0),(1,0,0,0)'::cube AS cube;
SELECT '[(0,0,0,0),(0,0,0,0)]'::cube AS cube;
SELECT '[(0,0,0,0),(1,0,0,0)]'::cube AS cube;
-- invalid input: parse errors
SELECT ''::cube AS cube;
SELECT 'ABC'::cube AS cube;
SELECT '()'::cube AS cube;
SELECT '[]'::cube AS cube;
SELECT '[()]'::cube AS cube;
SELECT '[(1)]'::cube AS cube;
SELECT '[(1),]'::cube AS cube;
SELECT '[(1),2]'::cube AS cube;
SELECT '[(1),(2),(3)]'::cube AS cube;
SELECT '1,'::cube AS cube;
SELECT '1,2,'::cube AS cube;
SELECT '1,,2'::cube AS cube;
SELECT '(1,)'::cube AS cube;
SELECT '(1,2,)'::cube AS cube;
SELECT '(1,,2)'::cube AS cube;
-- invalid input: semantic errors and trailing garbage
SELECT '[(1),(2)],'::cube AS cube; -- 0
SELECT '[(1,2,3),(2,3)]'::cube AS cube; -- 1
SELECT '[(1,2),(1,2,3)]'::cube AS cube; -- 1
SELECT '(1),(2),'::cube AS cube; -- 2
SELECT '(1,2,3),(2,3)'::cube AS cube; -- 3
SELECT '(1,2),(1,2,3)'::cube AS cube; -- 3
SELECT '(1,2,3)ab'::cube AS cube; -- 4
SELECT '(1,2,3)a'::cube AS cube; -- 5
SELECT '(1,2)('::cube AS cube; -- 5
SELECT '1,2ab'::cube AS cube; -- 6
SELECT '1 e7'::cube AS cube; -- 6
SELECT '1,2a'::cube AS cube; -- 7
SELECT '1..2'::cube AS cube; -- 7
--
-- Testing building cubes from float8 values
--
SELECT cube(0::float8);
SELECT cube(1::float8);
SELECT cube(1,2);
SELECT cube(cube(1,2),3);
SELECT cube(cube(1,2),3,4);
SELECT cube(cube(cube(1,2),3,4),5);
SELECT cube(cube(cube(1,2),3,4),5,6);
--
-- Test that the text -> cube cast was installed.
--
SELECT '(0)'::text::cube;
--
-- Test the float[] -> cube cast
--
SELECT cube('{0,1,2}'::float[], '{3,4,5}'::float[]);
SELECT cube('{0,1,2}'::float[], '{3}'::float[]);
SELECT cube(NULL::float[], '{3}'::float[]);
SELECT cube('{0,1,2}'::float[]);
SELECT cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1]);
SELECT cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[4,0]);
--
-- Testing limit of CUBE_MAX_DIM dimensions check in cube_in.
--
select '(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)'::cube;
select '(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)'::cube;
--
-- testing the operators
--
-- equality/inequality:
--
SELECT '24, 33.20'::cube = '24, 33.20'::cube AS bool;
SELECT '24, 33.20'::cube != '24, 33.20'::cube AS bool;
SELECT '24, 33.20'::cube = '24, 33.21'::cube AS bool;
SELECT '24, 33.20'::cube != '24, 33.21'::cube AS bool;
SELECT '(2,0),(3,1)'::cube = '(2,0,0,0,0),(3,1,0,0,0)'::cube AS bool;
SELECT '(2,0),(3,1)'::cube = '(2,0,0,0,0),(3,1,0,0,1)'::cube AS bool;
-- "lower than" / "greater than"
-- (these operators are not useful for anything but ordering)
--
SELECT '1'::cube > '2'::cube AS bool;
SELECT '1'::cube < '2'::cube AS bool;
SELECT '1,1'::cube > '1,2'::cube AS bool;
SELECT '1,1'::cube < '1,2'::cube AS bool;
SELECT '(2,0),(3,1)'::cube > '(2,0,0,0,0),(3,1,0,0,1)'::cube AS bool;
SELECT '(2,0),(3,1)'::cube < '(2,0,0,0,0),(3,1,0,0,1)'::cube AS bool;
SELECT '(2,0),(3,1)'::cube > '(2,0,0,0,1),(3,1,0,0,0)'::cube AS bool;
SELECT '(2,0),(3,1)'::cube < '(2,0,0,0,1),(3,1,0,0,0)'::cube AS bool;
SELECT '(2,0),(3,1)'::cube > '(2,0,0,0,0),(3,1,0,0,0)'::cube AS bool;
SELECT '(2,0),(3,1)'::cube < '(2,0,0,0,0),(3,1,0,0,0)'::cube AS bool;
SELECT '(2,0,0,0,0),(3,1,0,0,1)'::cube > '(2,0),(3,1)'::cube AS bool;
SELECT '(2,0,0,0,0),(3,1,0,0,1)'::cube < '(2,0),(3,1)'::cube AS bool;
SELECT '(2,0,0,0,1),(3,1,0,0,0)'::cube > '(2,0),(3,1)'::cube AS bool;
SELECT '(2,0,0,0,1),(3,1,0,0,0)'::cube < '(2,0),(3,1)'::cube AS bool;
SELECT '(2,0,0,0,0),(3,1,0,0,0)'::cube > '(2,0),(3,1)'::cube AS bool;
SELECT '(2,0,0,0,0),(3,1,0,0,0)'::cube < '(2,0),(3,1)'::cube AS bool;
-- "overlap"
--
SELECT '1'::cube && '1'::cube AS bool;
SELECT '1'::cube && '2'::cube AS bool;
SELECT '[(-1,-1,-1),(1,1,1)]'::cube && '0'::cube AS bool;
SELECT '[(-1,-1,-1),(1,1,1)]'::cube && '1'::cube AS bool;
SELECT '[(-1,-1,-1),(1,1,1)]'::cube && '1,1,1'::cube AS bool;
SELECT '[(-1,-1,-1),(1,1,1)]'::cube && '[(1,1,1),(2,2,2)]'::cube AS bool;
SELECT '[(-1,-1,-1),(1,1,1)]'::cube && '[(1,1),(2,2)]'::cube AS bool;
SELECT '[(-1,-1,-1),(1,1,1)]'::cube && '[(2,1,1),(2,2,2)]'::cube AS bool;
-- "contained in" (the left operand is the cube entirely enclosed by
-- the right operand):
--
SELECT '0'::cube <@ '0'::cube AS bool;
SELECT '0,0,0'::cube <@ '0,0,0'::cube AS bool;
SELECT '0,0'::cube <@ '0,0,1'::cube AS bool;
SELECT '0,0,0'::cube <@ '0,0,1'::cube AS bool;
SELECT '1,0,0'::cube <@ '0,0,1'::cube AS bool;
SELECT '(1,0,0),(0,0,1)'::cube <@ '(1,0,0),(0,0,1)'::cube AS bool;
SELECT '(1,0,0),(0,0,1)'::cube <@ '(-1,-1,-1),(1,1,1)'::cube AS bool;
SELECT '(1,0,0),(0,0,1)'::cube <@ '(-1,-1,-1,-1),(1,1,1,1)'::cube AS bool;
SELECT '0'::cube <@ '(-1),(1)'::cube AS bool;
SELECT '1'::cube <@ '(-1),(1)'::cube AS bool;
SELECT '-1'::cube <@ '(-1),(1)'::cube AS bool;
SELECT '(-1),(1)'::cube <@ '(-1),(1)'::cube AS bool;
SELECT '(-1),(1)'::cube <@ '(-1,-1),(1,1)'::cube AS bool;
SELECT '(-2),(1)'::cube <@ '(-1),(1)'::cube AS bool;
SELECT '(-2),(1)'::cube <@ '(-1,-1),(1,1)'::cube AS bool;
-- "contains" (the left operand is the cube that entirely encloses the
-- right operand)
--
SELECT '0'::cube @> '0'::cube AS bool;
SELECT '0,0,0'::cube @> '0,0,0'::cube AS bool;
SELECT '0,0,1'::cube @> '0,0'::cube AS bool;
SELECT '0,0,1'::cube @> '0,0,0'::cube AS bool;
SELECT '0,0,1'::cube @> '1,0,0'::cube AS bool;
SELECT '(1,0,0),(0,0,1)'::cube @> '(1,0,0),(0,0,1)'::cube AS bool;
SELECT '(-1,-1,-1),(1,1,1)'::cube @> '(1,0,0),(0,0,1)'::cube AS bool;
SELECT '(-1,-1,-1,-1),(1,1,1,1)'::cube @> '(1,0,0),(0,0,1)'::cube AS bool;
SELECT '(-1),(1)'::cube @> '0'::cube AS bool;
SELECT '(-1),(1)'::cube @> '1'::cube AS bool;
SELECT '(-1),(1)'::cube @> '-1'::cube AS bool;
SELECT '(-1),(1)'::cube @> '(-1),(1)'::cube AS bool;
SELECT '(-1,-1),(1,1)'::cube @> '(-1),(1)'::cube AS bool;
SELECT '(-1),(1)'::cube @> '(-2),(1)'::cube AS bool;
SELECT '(-1,-1),(1,1)'::cube @> '(-2),(1)'::cube AS bool;
-- Test of distance function
--
SELECT cube_distance('(0)'::cube,'(2,2,2,2)'::cube);
SELECT cube_distance('(0)'::cube,'(.3,.4)'::cube);
-- Test of cube function (text to cube)
--
SELECT cube('(1,1.2)'::text);
SELECT cube(NULL);
-- Test of cube_dim function (dimensions stored in cube)
--
SELECT cube_dim('(0)'::cube);
SELECT cube_dim('(0,0)'::cube);
SELECT cube_dim('(0,0,0)'::cube);
-- Test of cube_ll_coord function (retrieves LL coodinate values)
--
SELECT cube_ll_coord('(-1,1),(2,-2)'::cube, 1);
SELECT cube_ll_coord('(-1,1),(2,-2)'::cube, 2);
SELECT cube_ll_coord('(-1,1),(2,-2)'::cube, 3);
-- Test of cube_ur_coord function (retrieves UR coodinate values)
--
SELECT cube_ur_coord('(-1,1),(2,-2)'::cube, 1);
SELECT cube_ur_coord('(-1,1),(2,-2)'::cube, 2);
SELECT cube_ur_coord('(-1,1),(2,-2)'::cube, 3);
-- Test of cube_is_point
--
SELECT cube_is_point('(0)'::cube);
SELECT cube_is_point('(0,1,2)'::cube);
SELECT cube_is_point('(0,1,2),(0,1,2)'::cube);
SELECT cube_is_point('(0,1,2),(-1,1,2)'::cube);
SELECT cube_is_point('(0,1,2),(0,-1,2)'::cube);
SELECT cube_is_point('(0,1,2),(0,1,-2)'::cube);
-- Test of cube_enlarge (enlarging and shrinking cubes)
--
SELECT cube_enlarge('(0)'::cube, 0, 0);
SELECT cube_enlarge('(0)'::cube, 0, 1);
SELECT cube_enlarge('(0)'::cube, 0, 2);
SELECT cube_enlarge('(2),(-2)'::cube, 0, 4);
SELECT cube_enlarge('(0)'::cube, 1, 0);
SELECT cube_enlarge('(0)'::cube, 1, 1);
SELECT cube_enlarge('(0)'::cube, 1, 2);
SELECT cube_enlarge('(2),(-2)'::cube, 1, 4);
SELECT cube_enlarge('(0)'::cube, -1, 0);
SELECT cube_enlarge('(0)'::cube, -1, 1);
SELECT cube_enlarge('(0)'::cube, -1, 2);
SELECT cube_enlarge('(2),(-2)'::cube, -1, 4);
SELECT cube_enlarge('(0,0,0)'::cube, 1, 0);
SELECT cube_enlarge('(0,0,0)'::cube, 1, 2);
SELECT cube_enlarge('(2,-2),(-3,7)'::cube, 1, 2);
SELECT cube_enlarge('(2,-2),(-3,7)'::cube, 3, 2);
SELECT cube_enlarge('(2,-2),(-3,7)'::cube, -1, 2);
SELECT cube_enlarge('(2,-2),(-3,7)'::cube, -3, 2);
-- Load some example data and build the index
--
CREATE TABLE test_cube (c cube);
\copy test_cube from 'data/test_cube.data'
CREATE INDEX test_cube_ix ON test_cube USING gist (c);
SELECT * FROM test_cube WHERE c && '(3000,1000),(0,0)' ORDER BY c;
-- Test sorting
SELECT * FROM test_cube WHERE c && '(3000,1000),(0,0)' GROUP BY c ORDER BY c;