mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-12-15 08:20:16 +08:00
775 lines
19 KiB
C
775 lines
19 KiB
C
/*
|
|
* FreeSec: libcrypt for NetBSD
|
|
*
|
|
* contrib/pgcrypto/crypt-des.c
|
|
*
|
|
* Copyright (c) 1994 David Burren
|
|
* All rights reserved.
|
|
*
|
|
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
|
|
* this file should now *only* export crypt(), in order to make
|
|
* binaries of libcrypt exportable from the USA
|
|
*
|
|
* Adapted for FreeBSD-4.0 by Mark R V Murray
|
|
* this file should now *only* export crypt_des(), in order to make
|
|
* a module that can be optionally included in libcrypt.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of other contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
|
|
*
|
|
* This is an original implementation of the DES and the crypt(3) interfaces
|
|
* by David Burren <davidb@werj.com.au>.
|
|
*
|
|
* An excellent reference on the underlying algorithm (and related
|
|
* algorithms) is:
|
|
*
|
|
* B. Schneier, Applied Cryptography: protocols, algorithms,
|
|
* and source code in C, John Wiley & Sons, 1994.
|
|
*
|
|
* Note that in that book's description of DES the lookups for the initial,
|
|
* pbox, and final permutations are inverted (this has been brought to the
|
|
* attention of the author). A list of errata for this book has been
|
|
* posted to the sci.crypt newsgroup by the author and is available for FTP.
|
|
*
|
|
* ARCHITECTURE ASSUMPTIONS:
|
|
* It is assumed that the 8-byte arrays passed by reference can be
|
|
* addressed as arrays of uint32's (ie. the CPU is not picky about
|
|
* alignment).
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "px.h"
|
|
#include "px-crypt.h"
|
|
|
|
/* for ntohl/htonl */
|
|
#include <netinet/in.h>
|
|
#include <arpa/inet.h>
|
|
|
|
#define _PASSWORD_EFMT1 '_'
|
|
|
|
static const char _crypt_a64[] =
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
static uint8 IP[64] = {
|
|
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
|
|
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
|
|
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
|
|
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
|
|
};
|
|
|
|
static uint8 inv_key_perm[64];
|
|
static uint8 u_key_perm[56];
|
|
static uint8 key_perm[56] = {
|
|
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
|
};
|
|
|
|
static uint8 key_shifts[16] = {
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
};
|
|
|
|
static uint8 inv_comp_perm[56];
|
|
static uint8 comp_perm[48] = {
|
|
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
|
};
|
|
|
|
/*
|
|
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
|
|
*/
|
|
|
|
static uint8 u_sbox[8][64];
|
|
static uint8 sbox[8][64] = {
|
|
{
|
|
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
|
|
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
|
|
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
|
|
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
|
|
},
|
|
{
|
|
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
|
|
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
|
|
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
|
|
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
|
|
},
|
|
{
|
|
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
|
|
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
|
|
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
|
|
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
|
|
},
|
|
{
|
|
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
|
|
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
|
|
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
|
|
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
|
|
},
|
|
{
|
|
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
|
|
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
|
|
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
|
|
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
|
|
},
|
|
{
|
|
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
|
|
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
|
|
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
|
|
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
|
|
},
|
|
{
|
|
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
|
|
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
|
|
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
|
|
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
|
|
},
|
|
{
|
|
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
|
|
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
|
|
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
|
|
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
|
|
}
|
|
};
|
|
|
|
static uint8 un_pbox[32];
|
|
static uint8 pbox[32] = {
|
|
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
|
};
|
|
|
|
static uint32 _crypt_bits32[32] =
|
|
{
|
|
0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
|
};
|
|
|
|
static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
|
|
|
static uint32 saltbits;
|
|
static long old_salt;
|
|
static uint32 *bits28,
|
|
*bits24;
|
|
static uint8 init_perm[64],
|
|
final_perm[64];
|
|
static uint32 en_keysl[16],
|
|
en_keysr[16];
|
|
static uint32 de_keysl[16],
|
|
de_keysr[16];
|
|
static int des_initialised = 0;
|
|
static uint8 m_sbox[4][4096];
|
|
static uint32 psbox[4][256];
|
|
static uint32 ip_maskl[8][256],
|
|
ip_maskr[8][256];
|
|
static uint32 fp_maskl[8][256],
|
|
fp_maskr[8][256];
|
|
static uint32 key_perm_maskl[8][128],
|
|
key_perm_maskr[8][128];
|
|
static uint32 comp_maskl[8][128],
|
|
comp_maskr[8][128];
|
|
static uint32 old_rawkey0,
|
|
old_rawkey1;
|
|
|
|
static inline int
|
|
ascii_to_bin(char ch)
|
|
{
|
|
if (ch > 'z')
|
|
return (0);
|
|
if (ch >= 'a')
|
|
return (ch - 'a' + 38);
|
|
if (ch > 'Z')
|
|
return (0);
|
|
if (ch >= 'A')
|
|
return (ch - 'A' + 12);
|
|
if (ch > '9')
|
|
return (0);
|
|
if (ch >= '.')
|
|
return (ch - '.');
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
des_init(void)
|
|
{
|
|
int i,
|
|
j,
|
|
b,
|
|
k,
|
|
inbit,
|
|
obit;
|
|
uint32 *p,
|
|
*il,
|
|
*ir,
|
|
*fl,
|
|
*fr;
|
|
|
|
old_rawkey0 = old_rawkey1 = 0L;
|
|
saltbits = 0L;
|
|
old_salt = 0L;
|
|
bits24 = (bits28 = _crypt_bits32 + 4) + 4;
|
|
|
|
/*
|
|
* Invert the S-boxes, reordering the input bits.
|
|
*/
|
|
for (i = 0; i < 8; i++)
|
|
for (j = 0; j < 64; j++)
|
|
{
|
|
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
|
|
u_sbox[i][j] = sbox[i][b];
|
|
}
|
|
|
|
/*
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle
|
|
* 12 bits of the S-box input.
|
|
*/
|
|
for (b = 0; b < 4; b++)
|
|
for (i = 0; i < 64; i++)
|
|
for (j = 0; j < 64; j++)
|
|
m_sbox[b][(i << 6) | j] =
|
|
(u_sbox[(b << 1)][i] << 4) |
|
|
u_sbox[(b << 1) + 1][j];
|
|
|
|
/*
|
|
* Set up the initial & final permutations into a useful form, and
|
|
* initialise the inverted key permutation.
|
|
*/
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
init_perm[final_perm[i] = IP[i] - 1] = i;
|
|
inv_key_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key permutation and initialise the inverted key compression
|
|
* permutation.
|
|
*/
|
|
for (i = 0; i < 56; i++)
|
|
{
|
|
u_key_perm[i] = key_perm[i] - 1;
|
|
inv_key_perm[key_perm[i] - 1] = i;
|
|
inv_comp_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key compression permutation.
|
|
*/
|
|
for (i = 0; i < 48; i++)
|
|
inv_comp_perm[comp_perm[i] - 1] = i;
|
|
|
|
/*
|
|
* Set up the OR-mask arrays for the initial and final permutations, and
|
|
* for the key initial and compression permutations.
|
|
*/
|
|
for (k = 0; k < 8; k++)
|
|
{
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
*(il = &ip_maskl[k][i]) = 0L;
|
|
*(ir = &ip_maskr[k][i]) = 0L;
|
|
*(fl = &fp_maskl[k][i]) = 0L;
|
|
*(fr = &fp_maskr[k][i]) = 0L;
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
inbit = 8 * k + j;
|
|
if (i & _crypt_bits8[j])
|
|
{
|
|
if ((obit = init_perm[inbit]) < 32)
|
|
*il |= _crypt_bits32[obit];
|
|
else
|
|
*ir |= _crypt_bits32[obit - 32];
|
|
if ((obit = final_perm[inbit]) < 32)
|
|
*fl |= _crypt_bits32[obit];
|
|
else
|
|
*fr |= _crypt_bits32[obit - 32];
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < 128; i++)
|
|
{
|
|
*(il = &key_perm_maskl[k][i]) = 0L;
|
|
*(ir = &key_perm_maskr[k][i]) = 0L;
|
|
for (j = 0; j < 7; j++)
|
|
{
|
|
inbit = 8 * k + j;
|
|
if (i & _crypt_bits8[j + 1])
|
|
{
|
|
if ((obit = inv_key_perm[inbit]) == 255)
|
|
continue;
|
|
if (obit < 28)
|
|
*il |= bits28[obit];
|
|
else
|
|
*ir |= bits28[obit - 28];
|
|
}
|
|
}
|
|
*(il = &comp_maskl[k][i]) = 0L;
|
|
*(ir = &comp_maskr[k][i]) = 0L;
|
|
for (j = 0; j < 7; j++)
|
|
{
|
|
inbit = 7 * k + j;
|
|
if (i & _crypt_bits8[j + 1])
|
|
{
|
|
if ((obit = inv_comp_perm[inbit]) == 255)
|
|
continue;
|
|
if (obit < 24)
|
|
*il |= bits24[obit];
|
|
else
|
|
*ir |= bits24[obit - 24];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invert the P-box permutation, and convert into OR-masks for handling
|
|
* the output of the S-box arrays setup above.
|
|
*/
|
|
for (i = 0; i < 32; i++)
|
|
un_pbox[pbox[i] - 1] = i;
|
|
|
|
for (b = 0; b < 4; b++)
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
*(p = &psbox[b][i]) = 0L;
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
if (i & _crypt_bits8[j])
|
|
*p |= _crypt_bits32[un_pbox[8 * b + j]];
|
|
}
|
|
}
|
|
|
|
des_initialised = 1;
|
|
}
|
|
|
|
static void
|
|
setup_salt(long salt)
|
|
{
|
|
uint32 obit,
|
|
saltbit;
|
|
int i;
|
|
|
|
if (salt == old_salt)
|
|
return;
|
|
old_salt = salt;
|
|
|
|
saltbits = 0L;
|
|
saltbit = 1;
|
|
obit = 0x800000;
|
|
for (i = 0; i < 24; i++)
|
|
{
|
|
if (salt & saltbit)
|
|
saltbits |= obit;
|
|
saltbit <<= 1;
|
|
obit >>= 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
des_setkey(const char *key)
|
|
{
|
|
uint32 k0,
|
|
k1,
|
|
rawkey0,
|
|
rawkey1;
|
|
int shifts,
|
|
round;
|
|
|
|
if (!des_initialised)
|
|
des_init();
|
|
|
|
rawkey0 = ntohl(*(uint32 *) key);
|
|
rawkey1 = ntohl(*(uint32 *) (key + 4));
|
|
|
|
if ((rawkey0 | rawkey1)
|
|
&& rawkey0 == old_rawkey0
|
|
&& rawkey1 == old_rawkey1)
|
|
{
|
|
/*
|
|
* Already setup for this key. This optimisation fails on a zero key
|
|
* (which is weak and has bad parity anyway) in order to simplify the
|
|
* starting conditions.
|
|
*/
|
|
return (0);
|
|
}
|
|
old_rawkey0 = rawkey0;
|
|
old_rawkey1 = rawkey1;
|
|
|
|
/*
|
|
* Do key permutation and split into two 28-bit subkeys.
|
|
*/
|
|
k0 = key_perm_maskl[0][rawkey0 >> 25]
|
|
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
|
|
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
|
|
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
|
|
| key_perm_maskl[4][rawkey1 >> 25]
|
|
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
|
|
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
|
|
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
k1 = key_perm_maskr[0][rawkey0 >> 25]
|
|
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
|
|
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
|
|
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
|
|
| key_perm_maskr[4][rawkey1 >> 25]
|
|
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
|
|
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
|
|
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
|
|
|
/*
|
|
* Rotate subkeys and do compression permutation.
|
|
*/
|
|
shifts = 0;
|
|
for (round = 0; round < 16; round++)
|
|
{
|
|
uint32 t0,
|
|
t1;
|
|
|
|
shifts += key_shifts[round];
|
|
|
|
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
|
de_keysl[15 - round] =
|
|
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
|
|
| comp_maskl[1][(t0 >> 14) & 0x7f]
|
|
| comp_maskl[2][(t0 >> 7) & 0x7f]
|
|
| comp_maskl[3][t0 & 0x7f]
|
|
| comp_maskl[4][(t1 >> 21) & 0x7f]
|
|
| comp_maskl[5][(t1 >> 14) & 0x7f]
|
|
| comp_maskl[6][(t1 >> 7) & 0x7f]
|
|
| comp_maskl[7][t1 & 0x7f];
|
|
|
|
de_keysr[15 - round] =
|
|
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
|
|
| comp_maskr[1][(t0 >> 14) & 0x7f]
|
|
| comp_maskr[2][(t0 >> 7) & 0x7f]
|
|
| comp_maskr[3][t0 & 0x7f]
|
|
| comp_maskr[4][(t1 >> 21) & 0x7f]
|
|
| comp_maskr[5][(t1 >> 14) & 0x7f]
|
|
| comp_maskr[6][(t1 >> 7) & 0x7f]
|
|
| comp_maskr[7][t1 & 0x7f];
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count)
|
|
{
|
|
/*
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
|
*/
|
|
uint32 l,
|
|
r,
|
|
*kl,
|
|
*kr,
|
|
*kl1,
|
|
*kr1;
|
|
uint32 f,
|
|
r48l,
|
|
r48r;
|
|
int round;
|
|
|
|
if (count == 0)
|
|
return (1);
|
|
else if (count > 0)
|
|
{
|
|
/*
|
|
* Encrypting
|
|
*/
|
|
kl1 = en_keysl;
|
|
kr1 = en_keysr;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Decrypting
|
|
*/
|
|
count = -count;
|
|
kl1 = de_keysl;
|
|
kr1 = de_keysr;
|
|
}
|
|
|
|
/*
|
|
* Do initial permutation (IP).
|
|
*/
|
|
l = ip_maskl[0][l_in >> 24]
|
|
| ip_maskl[1][(l_in >> 16) & 0xff]
|
|
| ip_maskl[2][(l_in >> 8) & 0xff]
|
|
| ip_maskl[3][l_in & 0xff]
|
|
| ip_maskl[4][r_in >> 24]
|
|
| ip_maskl[5][(r_in >> 16) & 0xff]
|
|
| ip_maskl[6][(r_in >> 8) & 0xff]
|
|
| ip_maskl[7][r_in & 0xff];
|
|
r = ip_maskr[0][l_in >> 24]
|
|
| ip_maskr[1][(l_in >> 16) & 0xff]
|
|
| ip_maskr[2][(l_in >> 8) & 0xff]
|
|
| ip_maskr[3][l_in & 0xff]
|
|
| ip_maskr[4][r_in >> 24]
|
|
| ip_maskr[5][(r_in >> 16) & 0xff]
|
|
| ip_maskr[6][(r_in >> 8) & 0xff]
|
|
| ip_maskr[7][r_in & 0xff];
|
|
|
|
while (count--)
|
|
{
|
|
/*
|
|
* Do each round.
|
|
*/
|
|
kl = kl1;
|
|
kr = kr1;
|
|
round = 16;
|
|
while (round--)
|
|
{
|
|
/*
|
|
* Expand R to 48 bits (simulate the E-box).
|
|
*/
|
|
r48l = ((r & 0x00000001) << 23)
|
|
| ((r & 0xf8000000) >> 9)
|
|
| ((r & 0x1f800000) >> 11)
|
|
| ((r & 0x01f80000) >> 13)
|
|
| ((r & 0x001f8000) >> 15);
|
|
|
|
r48r = ((r & 0x0001f800) << 7)
|
|
| ((r & 0x00001f80) << 5)
|
|
| ((r & 0x000001f8) << 3)
|
|
| ((r & 0x0000001f) << 1)
|
|
| ((r & 0x80000000) >> 31);
|
|
|
|
/*
|
|
* Do salting for crypt() and friends, and XOR with the permuted
|
|
* key.
|
|
*/
|
|
f = (r48l ^ r48r) & saltbits;
|
|
r48l ^= f ^ *kl++;
|
|
r48r ^= f ^ *kr++;
|
|
|
|
/*
|
|
* Do sbox lookups (which shrink it back to 32 bits) and do the
|
|
* pbox permutation at the same time.
|
|
*/
|
|
f = psbox[0][m_sbox[0][r48l >> 12]]
|
|
| psbox[1][m_sbox[1][r48l & 0xfff]]
|
|
| psbox[2][m_sbox[2][r48r >> 12]]
|
|
| psbox[3][m_sbox[3][r48r & 0xfff]];
|
|
|
|
/*
|
|
* Now that we've permuted things, complete f().
|
|
*/
|
|
f ^= l;
|
|
l = r;
|
|
r = f;
|
|
}
|
|
r = l;
|
|
l = f;
|
|
}
|
|
|
|
/*
|
|
* Do final permutation (inverse of IP).
|
|
*/
|
|
*l_out = fp_maskl[0][l >> 24]
|
|
| fp_maskl[1][(l >> 16) & 0xff]
|
|
| fp_maskl[2][(l >> 8) & 0xff]
|
|
| fp_maskl[3][l & 0xff]
|
|
| fp_maskl[4][r >> 24]
|
|
| fp_maskl[5][(r >> 16) & 0xff]
|
|
| fp_maskl[6][(r >> 8) & 0xff]
|
|
| fp_maskl[7][r & 0xff];
|
|
*r_out = fp_maskr[0][l >> 24]
|
|
| fp_maskr[1][(l >> 16) & 0xff]
|
|
| fp_maskr[2][(l >> 8) & 0xff]
|
|
| fp_maskr[3][l & 0xff]
|
|
| fp_maskr[4][r >> 24]
|
|
| fp_maskr[5][(r >> 16) & 0xff]
|
|
| fp_maskr[6][(r >> 8) & 0xff]
|
|
| fp_maskr[7][r & 0xff];
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
des_cipher(const char *in, char *out, long salt, int count)
|
|
{
|
|
uint32 buffer[2];
|
|
uint32 l_out,
|
|
r_out,
|
|
rawl,
|
|
rawr;
|
|
int retval;
|
|
|
|
if (!des_initialised)
|
|
des_init();
|
|
|
|
setup_salt(salt);
|
|
|
|
/* copy data to avoid assuming input is word-aligned */
|
|
memcpy(buffer, in, sizeof(buffer));
|
|
|
|
rawl = ntohl(buffer[0]);
|
|
rawr = ntohl(buffer[1]);
|
|
|
|
retval = do_des(rawl, rawr, &l_out, &r_out, count);
|
|
|
|
buffer[0] = htonl(l_out);
|
|
buffer[1] = htonl(r_out);
|
|
|
|
/* copy data to avoid assuming output is word-aligned */
|
|
memcpy(out, buffer, sizeof(buffer));
|
|
|
|
return (retval);
|
|
}
|
|
|
|
char *
|
|
px_crypt_des(const char *key, const char *setting)
|
|
{
|
|
int i;
|
|
uint32 count,
|
|
salt,
|
|
l,
|
|
r0,
|
|
r1,
|
|
keybuf[2];
|
|
char *p;
|
|
uint8 *q;
|
|
static char output[21];
|
|
|
|
if (!des_initialised)
|
|
des_init();
|
|
|
|
|
|
/*
|
|
* Copy the key, shifting each character up by one bit and padding with
|
|
* zeros.
|
|
*/
|
|
q = (uint8 *) keybuf;
|
|
while (q - (uint8 *) keybuf - 8)
|
|
{
|
|
if ((*q++ = *key << 1))
|
|
key++;
|
|
}
|
|
if (des_setkey((char *) keybuf))
|
|
return (NULL);
|
|
|
|
#ifndef DISABLE_XDES
|
|
if (*setting == _PASSWORD_EFMT1)
|
|
{
|
|
/*
|
|
* "new"-style: setting - underscore, 4 bytes of count, 4 bytes of
|
|
* salt key - unlimited characters
|
|
*/
|
|
for (i = 1, count = 0L; i < 5; i++)
|
|
count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
|
|
|
|
for (i = 5, salt = 0L; i < 9; i++)
|
|
salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
|
|
|
|
while (*key)
|
|
{
|
|
/*
|
|
* Encrypt the key with itself.
|
|
*/
|
|
if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1))
|
|
return (NULL);
|
|
|
|
/*
|
|
* And XOR with the next 8 characters of the key.
|
|
*/
|
|
q = (uint8 *) keybuf;
|
|
while (q - (uint8 *) keybuf - 8 && *key)
|
|
*q++ ^= *key++ << 1;
|
|
|
|
if (des_setkey((char *) keybuf))
|
|
return (NULL);
|
|
}
|
|
strncpy(output, setting, 9);
|
|
|
|
/*
|
|
* Double check that we weren't given a short setting. If we were, the
|
|
* above code will probably have created wierd values for count and
|
|
* salt, but we don't really care. Just make sure the output string
|
|
* doesn't have an extra NUL in it.
|
|
*/
|
|
output[9] = '\0';
|
|
p = output + strlen(output);
|
|
}
|
|
else
|
|
#endif /* !DISABLE_XDES */
|
|
{
|
|
/*
|
|
* "old"-style: setting - 2 bytes of salt key - up to 8 characters
|
|
*/
|
|
count = 25;
|
|
|
|
salt = (ascii_to_bin(setting[1]) << 6)
|
|
| ascii_to_bin(setting[0]);
|
|
|
|
output[0] = setting[0];
|
|
|
|
/*
|
|
* If the encrypted password that the salt was extracted from is only
|
|
* 1 character long, the salt will be corrupted. We need to ensure
|
|
* that the output string doesn't have an extra NUL in it!
|
|
*/
|
|
output[1] = setting[1] ? setting[1] : output[0];
|
|
|
|
p = output + 2;
|
|
}
|
|
setup_salt(salt);
|
|
|
|
/*
|
|
* Do it.
|
|
*/
|
|
if (do_des(0L, 0L, &r0, &r1, count))
|
|
return (NULL);
|
|
|
|
/*
|
|
* Now encode the result...
|
|
*/
|
|
l = (r0 >> 8);
|
|
*p++ = _crypt_a64[(l >> 18) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
|
|
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
|
|
*p++ = _crypt_a64[(l >> 18) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
|
|
l = r1 << 2;
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
*p = 0;
|
|
|
|
return (output);
|
|
}
|