mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-12 18:34:36 +08:00
911e702077
PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
411 lines
6.6 KiB
C
411 lines
6.6 KiB
C
/*
|
|
* contrib/intarray/_int_tool.c
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <limits.h>
|
|
|
|
#include "_int.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "lib/qunique.h"
|
|
|
|
/* arguments are assumed sorted & unique-ified */
|
|
bool
|
|
inner_int_contains(ArrayType *a, ArrayType *b)
|
|
{
|
|
int na,
|
|
nb;
|
|
int i,
|
|
j,
|
|
n;
|
|
int *da,
|
|
*db;
|
|
|
|
na = ARRNELEMS(a);
|
|
nb = ARRNELEMS(b);
|
|
da = ARRPTR(a);
|
|
db = ARRPTR(b);
|
|
|
|
i = j = n = 0;
|
|
while (i < na && j < nb)
|
|
{
|
|
if (da[i] < db[j])
|
|
i++;
|
|
else if (da[i] == db[j])
|
|
{
|
|
n++;
|
|
i++;
|
|
j++;
|
|
}
|
|
else
|
|
break; /* db[j] is not in da */
|
|
}
|
|
|
|
return (n == nb) ? true : false;
|
|
}
|
|
|
|
/* arguments are assumed sorted */
|
|
bool
|
|
inner_int_overlap(ArrayType *a, ArrayType *b)
|
|
{
|
|
int na,
|
|
nb;
|
|
int i,
|
|
j;
|
|
int *da,
|
|
*db;
|
|
|
|
na = ARRNELEMS(a);
|
|
nb = ARRNELEMS(b);
|
|
da = ARRPTR(a);
|
|
db = ARRPTR(b);
|
|
|
|
i = j = 0;
|
|
while (i < na && j < nb)
|
|
{
|
|
if (da[i] < db[j])
|
|
i++;
|
|
else if (da[i] == db[j])
|
|
return true;
|
|
else
|
|
j++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ArrayType *
|
|
inner_int_union(ArrayType *a, ArrayType *b)
|
|
{
|
|
ArrayType *r = NULL;
|
|
|
|
CHECKARRVALID(a);
|
|
CHECKARRVALID(b);
|
|
|
|
if (ARRISEMPTY(a) && ARRISEMPTY(b))
|
|
return new_intArrayType(0);
|
|
if (ARRISEMPTY(a))
|
|
r = copy_intArrayType(b);
|
|
if (ARRISEMPTY(b))
|
|
r = copy_intArrayType(a);
|
|
|
|
if (!r)
|
|
{
|
|
int na = ARRNELEMS(a),
|
|
nb = ARRNELEMS(b);
|
|
int *da = ARRPTR(a),
|
|
*db = ARRPTR(b);
|
|
int i,
|
|
j,
|
|
*dr;
|
|
|
|
r = new_intArrayType(na + nb);
|
|
dr = ARRPTR(r);
|
|
|
|
/* union */
|
|
i = j = 0;
|
|
while (i < na && j < nb)
|
|
{
|
|
if (da[i] == db[j])
|
|
{
|
|
*dr++ = da[i++];
|
|
j++;
|
|
}
|
|
else if (da[i] < db[j])
|
|
*dr++ = da[i++];
|
|
else
|
|
*dr++ = db[j++];
|
|
}
|
|
|
|
while (i < na)
|
|
*dr++ = da[i++];
|
|
while (j < nb)
|
|
*dr++ = db[j++];
|
|
|
|
r = resize_intArrayType(r, dr - ARRPTR(r));
|
|
}
|
|
|
|
if (ARRNELEMS(r) > 1)
|
|
r = _int_unique(r);
|
|
|
|
return r;
|
|
}
|
|
|
|
ArrayType *
|
|
inner_int_inter(ArrayType *a, ArrayType *b)
|
|
{
|
|
ArrayType *r;
|
|
int na,
|
|
nb;
|
|
int *da,
|
|
*db,
|
|
*dr;
|
|
int i,
|
|
j,
|
|
k;
|
|
|
|
if (ARRISEMPTY(a) || ARRISEMPTY(b))
|
|
return new_intArrayType(0);
|
|
|
|
na = ARRNELEMS(a);
|
|
nb = ARRNELEMS(b);
|
|
da = ARRPTR(a);
|
|
db = ARRPTR(b);
|
|
r = new_intArrayType(Min(na, nb));
|
|
dr = ARRPTR(r);
|
|
|
|
i = j = k = 0;
|
|
while (i < na && j < nb)
|
|
{
|
|
if (da[i] < db[j])
|
|
i++;
|
|
else if (da[i] == db[j])
|
|
{
|
|
if (k == 0 || dr[k - 1] != db[j])
|
|
dr[k++] = db[j];
|
|
i++;
|
|
j++;
|
|
}
|
|
else
|
|
j++;
|
|
}
|
|
|
|
if (k == 0)
|
|
{
|
|
pfree(r);
|
|
return new_intArrayType(0);
|
|
}
|
|
else
|
|
return resize_intArrayType(r, k);
|
|
}
|
|
|
|
void
|
|
rt__int_size(ArrayType *a, float *size)
|
|
{
|
|
*size = (float) ARRNELEMS(a);
|
|
}
|
|
|
|
/* qsort_arg comparison function for isort() */
|
|
static int
|
|
isort_cmp(const void *a, const void *b, void *arg)
|
|
{
|
|
int32 aval = *((const int32 *) a);
|
|
int32 bval = *((const int32 *) b);
|
|
|
|
if (aval < bval)
|
|
return -1;
|
|
if (aval > bval)
|
|
return 1;
|
|
|
|
/*
|
|
* Report if we have any duplicates. If there are equal keys, qsort must
|
|
* compare them at some point, else it wouldn't know whether one should go
|
|
* before or after the other.
|
|
*/
|
|
*((bool *) arg) = true;
|
|
return 0;
|
|
}
|
|
|
|
/* Sort the given data (len >= 2). Return true if any duplicates found */
|
|
bool
|
|
isort(int32 *a, int len)
|
|
{
|
|
bool r = false;
|
|
|
|
qsort_arg(a, len, sizeof(int32), isort_cmp, (void *) &r);
|
|
return r;
|
|
}
|
|
|
|
/* Create a new int array with room for "num" elements */
|
|
ArrayType *
|
|
new_intArrayType(int num)
|
|
{
|
|
ArrayType *r;
|
|
int nbytes;
|
|
|
|
/* if no elements, return a zero-dimensional array */
|
|
if (num <= 0)
|
|
{
|
|
Assert(num == 0);
|
|
r = construct_empty_array(INT4OID);
|
|
return r;
|
|
}
|
|
|
|
nbytes = ARR_OVERHEAD_NONULLS(1) + sizeof(int) * num;
|
|
|
|
r = (ArrayType *) palloc0(nbytes);
|
|
|
|
SET_VARSIZE(r, nbytes);
|
|
ARR_NDIM(r) = 1;
|
|
r->dataoffset = 0; /* marker for no null bitmap */
|
|
ARR_ELEMTYPE(r) = INT4OID;
|
|
ARR_DIMS(r)[0] = num;
|
|
ARR_LBOUND(r)[0] = 1;
|
|
|
|
return r;
|
|
}
|
|
|
|
ArrayType *
|
|
resize_intArrayType(ArrayType *a, int num)
|
|
{
|
|
int nbytes;
|
|
int i;
|
|
|
|
/* if no elements, return a zero-dimensional array */
|
|
if (num <= 0)
|
|
{
|
|
Assert(num == 0);
|
|
a = construct_empty_array(INT4OID);
|
|
return a;
|
|
}
|
|
|
|
if (num == ARRNELEMS(a))
|
|
return a;
|
|
|
|
nbytes = ARR_DATA_OFFSET(a) + sizeof(int) * num;
|
|
|
|
a = (ArrayType *) repalloc(a, nbytes);
|
|
|
|
SET_VARSIZE(a, nbytes);
|
|
/* usually the array should be 1-D already, but just in case ... */
|
|
for (i = 0; i < ARR_NDIM(a); i++)
|
|
{
|
|
ARR_DIMS(a)[i] = num;
|
|
num = 1;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
ArrayType *
|
|
copy_intArrayType(ArrayType *a)
|
|
{
|
|
ArrayType *r;
|
|
int n = ARRNELEMS(a);
|
|
|
|
r = new_intArrayType(n);
|
|
memcpy(ARRPTR(r), ARRPTR(a), n * sizeof(int32));
|
|
return r;
|
|
}
|
|
|
|
/* num for compressed key */
|
|
int
|
|
internal_size(int *a, int len)
|
|
{
|
|
int i;
|
|
int64 size = 0;
|
|
|
|
for (i = 0; i < len; i += 2)
|
|
{
|
|
if (!i || a[i] != a[i - 1]) /* do not count repeated range */
|
|
size += (int64) (a[i + 1]) - (int64) (a[i]) + 1;
|
|
}
|
|
|
|
if (size > (int64) INT_MAX || size < (int64) INT_MIN)
|
|
return -1; /* overflow */
|
|
return (int) size;
|
|
}
|
|
|
|
/* unique-ify elements of r in-place ... r must be sorted already */
|
|
ArrayType *
|
|
_int_unique(ArrayType *r)
|
|
{
|
|
int num = ARRNELEMS(r);
|
|
bool duplicates_found; /* not used */
|
|
|
|
num = qunique_arg(ARRPTR(r), num, sizeof(int), isort_cmp,
|
|
&duplicates_found);
|
|
|
|
return resize_intArrayType(r, num);
|
|
}
|
|
|
|
void
|
|
gensign(BITVECP sign, int *a, int len, int siglen)
|
|
{
|
|
int i;
|
|
|
|
/* we assume that the sign vector is previously zeroed */
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
HASH(sign, *a, siglen);
|
|
a++;
|
|
}
|
|
}
|
|
|
|
int32
|
|
intarray_match_first(ArrayType *a, int32 elem)
|
|
{
|
|
int32 *aa,
|
|
c,
|
|
i;
|
|
|
|
CHECKARRVALID(a);
|
|
c = ARRNELEMS(a);
|
|
aa = ARRPTR(a);
|
|
for (i = 0; i < c; i++)
|
|
if (aa[i] == elem)
|
|
return (i + 1);
|
|
return 0;
|
|
}
|
|
|
|
ArrayType *
|
|
intarray_add_elem(ArrayType *a, int32 elem)
|
|
{
|
|
ArrayType *result;
|
|
int32 *r;
|
|
int32 c;
|
|
|
|
CHECKARRVALID(a);
|
|
c = ARRNELEMS(a);
|
|
result = new_intArrayType(c + 1);
|
|
r = ARRPTR(result);
|
|
if (c > 0)
|
|
memcpy(r, ARRPTR(a), c * sizeof(int32));
|
|
r[c] = elem;
|
|
return result;
|
|
}
|
|
|
|
ArrayType *
|
|
intarray_concat_arrays(ArrayType *a, ArrayType *b)
|
|
{
|
|
ArrayType *result;
|
|
int32 ac = ARRNELEMS(a);
|
|
int32 bc = ARRNELEMS(b);
|
|
|
|
CHECKARRVALID(a);
|
|
CHECKARRVALID(b);
|
|
result = new_intArrayType(ac + bc);
|
|
if (ac)
|
|
memcpy(ARRPTR(result), ARRPTR(a), ac * sizeof(int32));
|
|
if (bc)
|
|
memcpy(ARRPTR(result) + ac, ARRPTR(b), bc * sizeof(int32));
|
|
return result;
|
|
}
|
|
|
|
ArrayType *
|
|
int_to_intset(int32 n)
|
|
{
|
|
ArrayType *result;
|
|
int32 *aa;
|
|
|
|
result = new_intArrayType(1);
|
|
aa = ARRPTR(result);
|
|
aa[0] = n;
|
|
return result;
|
|
}
|
|
|
|
int
|
|
compASC(const void *a, const void *b)
|
|
{
|
|
if (*(const int32 *) a == *(const int32 *) b)
|
|
return 0;
|
|
return (*(const int32 *) a > *(const int32 *) b) ? 1 : -1;
|
|
}
|
|
|
|
int
|
|
compDESC(const void *a, const void *b)
|
|
{
|
|
if (*(const int32 *) a == *(const int32 *) b)
|
|
return 0;
|
|
return (*(const int32 *) a < *(const int32 *) b) ? 1 : -1;
|
|
}
|