mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-18 18:44:06 +08:00
1db943b3ca
regression tests for the GiST changes ... this should be integrated into the regular regression tests similar to Vadim's SPI contrib stuff ...
843 lines
20 KiB
C
843 lines
20 KiB
C
/******************************************************************************
|
|
This file contains routines that can be bound to a Postgres backend and
|
|
called by the backend in the process of processing queries. The calling
|
|
format for these routines is dictated by Postgres architecture.
|
|
******************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <float.h>
|
|
#include <string.h>
|
|
|
|
#include "postgres.h"
|
|
#include "access/gist.h"
|
|
#include "access/itup.h"
|
|
#include "access/rtree.h"
|
|
#include "utils/elog.h"
|
|
#include "utils/palloc.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
#include "storage/bufpage.h"
|
|
|
|
#define MAXNUMRANGE 100
|
|
|
|
#define max(a,b) ((a) > (b) ? (a) : (b))
|
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define abs(a) ((a) < (0) ? (-a) : (a))
|
|
|
|
#define ARRPTR(x) ( (int4 *) ARR_DATA_PTR(x) )
|
|
#ifdef PGSQL71
|
|
#define ARRSIZE(x) ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x))
|
|
#else
|
|
#define ARRSIZE(x) getNitems( ARR_NDIM(x), ARR_DIMS(x))
|
|
#endif
|
|
|
|
#define NDIM 1
|
|
#define ARRISNULL(x) ( (x) ? ( ( ARR_NDIM(x) == NDIM ) ? ( ( ARRSIZE( x ) ) ? 0 : 1 ) : 1 ) : 1 )
|
|
#define SORT(x) if ( ARRSIZE( x ) > 1 ) isort( (void*)ARRPTR( x ), ARRSIZE( x ) );
|
|
#define PREPAREARR(x) \
|
|
if ( ARRSIZE( x ) > 1 ) {\
|
|
if ( isort( (void*)ARRPTR( x ), ARRSIZE( x ) ) )\
|
|
x = _int_unique( x );\
|
|
}
|
|
/*
|
|
#define GIST_DEBUG
|
|
#define GIST_QUERY_DEBUG
|
|
*/
|
|
#ifdef GIST_DEBUG
|
|
static void printarr ( ArrayType * a, int num ) {
|
|
char bbb[16384];
|
|
char *cur;
|
|
int l;
|
|
int *d;
|
|
d = ARRPTR( a );
|
|
*bbb = '\0';
|
|
cur = bbb;
|
|
for(l=0; l<min( num, ARRSIZE( a ));l++) {
|
|
sprintf(cur,"%d ", d[l] );
|
|
cur = strchr( cur, '\0' ) ;
|
|
}
|
|
elog(NOTICE, "\t\t%s", bbb);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** usefull function
|
|
*/
|
|
bool isort( int *a, const int len );
|
|
ArrayType * new_intArrayType( int num );
|
|
ArrayType * copy_intArrayType( ArrayType * a );
|
|
ArrayType * resize_intArrayType( ArrayType * a, int num );
|
|
int internal_size( int *a, int len );
|
|
ArrayType * _int_unique( ArrayType * a );
|
|
|
|
/*
|
|
** GiST support methods
|
|
*/
|
|
bool g_int_consistent(GISTENTRY *entry, ArrayType *query, StrategyNumber strategy);
|
|
GISTENTRY * g_int_compress(GISTENTRY *entry);
|
|
GISTENTRY * g_int_decompress(GISTENTRY *entry);
|
|
float * g_int_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
|
|
GIST_SPLITVEC * g_int_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
|
|
bool g_int_internal_consistent(ArrayType *key, ArrayType *query, StrategyNumber strategy);
|
|
ArrayType * g_int_union(bytea *entryvec, int *sizep);
|
|
bool * g_int_same(ArrayType *b1, ArrayType *b2, bool *result);
|
|
|
|
|
|
/*
|
|
** R-tree suport functions
|
|
*/
|
|
bool inner_int_contains(ArrayType *a, ArrayType *b);
|
|
bool inner_int_overlap(ArrayType *a, ArrayType *b);
|
|
ArrayType * inner_int_union(ArrayType *a, ArrayType *b);
|
|
ArrayType * inner_int_inter(ArrayType *a, ArrayType *b);
|
|
|
|
bool _int_different(ArrayType *a, ArrayType *b);
|
|
bool _int_same(ArrayType *a, ArrayType *b);
|
|
bool _int_contains(ArrayType *a, ArrayType *b);
|
|
bool _int_contained(ArrayType *a, ArrayType *b);
|
|
bool _int_overlap(ArrayType *a, ArrayType *b);
|
|
ArrayType * _int_union(ArrayType *a, ArrayType *b);
|
|
ArrayType * _int_inter(ArrayType *a, ArrayType *b);
|
|
void rt__int_size(ArrayType *a, float* sz);
|
|
|
|
|
|
/*****************************************************************************
|
|
* GiST functions
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
** The GiST Consistent method for _intments
|
|
** Should return false if for all data items x below entry,
|
|
** the predicate x op query == FALSE, where op is the oper
|
|
** corresponding to strategy in the pg_amop table.
|
|
*/
|
|
bool
|
|
g_int_consistent(GISTENTRY *entry,
|
|
ArrayType *query,
|
|
StrategyNumber strategy)
|
|
{
|
|
|
|
/* sort query for fast search, key is already sorted */
|
|
if ( ARRISNULL( query ) ) return FALSE;
|
|
PREPAREARR( query );
|
|
/*
|
|
** if entry is not leaf, use g_int_internal_consistent,
|
|
** else use g_int_leaf_consistent
|
|
*/
|
|
return(g_int_internal_consistent((ArrayType *)(entry->pred), query, strategy));
|
|
}
|
|
|
|
/*
|
|
** The GiST Union method for _intments
|
|
** returns the minimal set that encloses all the entries in entryvec
|
|
*/
|
|
ArrayType *
|
|
g_int_union(bytea *entryvec, int *sizep)
|
|
{
|
|
int numranges, i;
|
|
ArrayType *out = (ArrayType *)NULL;
|
|
ArrayType *tmp;
|
|
|
|
numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY);
|
|
tmp = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "union %d", numranges);
|
|
#endif
|
|
|
|
for (i = 1; i < numranges; i++) {
|
|
out = inner_int_union(tmp, (ArrayType *)
|
|
(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred);
|
|
if (i > 1 && tmp) pfree(tmp);
|
|
tmp = out;
|
|
}
|
|
|
|
*sizep = VARSIZE( out );
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "\t ENDunion %d %d", *sizep, ARRSIZE( out ) );
|
|
#endif
|
|
if ( *sizep == 0 ) {
|
|
pfree( out );
|
|
return NULL;
|
|
}
|
|
return(out);
|
|
}
|
|
|
|
/*
|
|
** GiST Compress and Decompress methods
|
|
*/
|
|
GISTENTRY *
|
|
g_int_compress(GISTENTRY *entry)
|
|
{
|
|
GISTENTRY *retval;
|
|
ArrayType * r;
|
|
int len;
|
|
int *dr;
|
|
int i,min,cand;
|
|
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
if ( ! retval )
|
|
elog(ERROR,"Can't allocate memory for compression");
|
|
|
|
if ( ARRISNULL( (ArrayType *) entry->pred ) ) {
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE,"COMP IN: NULL");
|
|
#endif
|
|
gistentryinit(*retval, (char *)NULL, entry->rel, entry->page, entry->offset,
|
|
0, FALSE);
|
|
return( retval );
|
|
}
|
|
|
|
r = copy_intArrayType( (ArrayType *) entry->pred );
|
|
if ( entry->leafkey ) PREPAREARR( r );
|
|
len = ARRSIZE( r );
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "COMP IN: %d leaf; %d rel; %d page; %d offset; %d bytes; %d elems", entry->leafkey, (int)entry->rel, (int)entry->page, (int)entry->offset, (int)entry->bytes, len);
|
|
//printarr( r, len );
|
|
#endif
|
|
|
|
if ( len >= 2*MAXNUMRANGE ) { /*compress*/
|
|
r = resize_intArrayType( r, 2*( len ) );
|
|
|
|
dr = ARRPTR( r );
|
|
|
|
for(i=len-1; i>=0;i--)
|
|
dr[2*i] = dr[2*i+1] = dr[i];
|
|
|
|
len *= 2;
|
|
cand = 1;
|
|
while( len > MAXNUMRANGE * 2 ) {
|
|
min = 0x7fffffff;
|
|
for( i=2; i<len;i+=2 )
|
|
if ( min > (dr[i] - dr[i-1]) ) {
|
|
min = (dr[i] - dr[i-1]);
|
|
cand = i;
|
|
}
|
|
memmove( (void*)&dr[cand-1], (void*)&dr[cand+1], (len - cand - 1)*sizeof(int) );
|
|
len -= 2;
|
|
}
|
|
r = resize_intArrayType(r, len );
|
|
}
|
|
|
|
gistentryinit(*retval, (char *)r, entry->rel, entry->page, entry->offset, VARSIZE( r ), FALSE);
|
|
|
|
return(retval);
|
|
}
|
|
|
|
GISTENTRY *
|
|
g_int_decompress(GISTENTRY *entry)
|
|
{
|
|
GISTENTRY *retval;
|
|
ArrayType * r;
|
|
int *dr, lenr;
|
|
ArrayType * in;
|
|
int lenin;
|
|
int *din;
|
|
int i,j;
|
|
|
|
if ( entry->bytes < ARR_OVERHEAD( NDIM ) || ARRISNULL( (ArrayType *) entry->pred ) ) {
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
if ( ! retval )
|
|
elog(ERROR,"Can't allocate memory for decompression");
|
|
gistentryinit(*retval, (char *)NULL, entry->rel, entry->page, entry->offset, 0, FALSE);
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE,"DECOMP IN: NULL");
|
|
#endif
|
|
return( retval );
|
|
}
|
|
|
|
|
|
in = (ArrayType *) entry->pred;
|
|
lenin = ARRSIZE(in);
|
|
din = ARRPTR(in);
|
|
|
|
if ( lenin < 2*MAXNUMRANGE ) { /*not comressed value*/
|
|
/* sometimes strange bytesize */
|
|
gistentryinit(*entry, (char *)in, entry->rel, entry->page, entry->offset, VARSIZE( in ), FALSE);
|
|
return (entry);
|
|
}
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "DECOMP IN: %d leaf; %d rel; %d page; %d offset; %d bytes; %d elems", entry->leafkey, (int)entry->rel, (int)entry->page, (int)entry->offset, (int)entry->bytes, lenin);
|
|
//printarr( in, lenin );
|
|
#endif
|
|
|
|
lenr = internal_size(din, lenin);
|
|
|
|
r = new_intArrayType( lenr );
|
|
dr = ARRPTR( r );
|
|
|
|
for(i=0;i<lenin;i+=2)
|
|
for(j=din[i]; j<=din[i+1]; j++)
|
|
if ( (!i) || *(dr-1) != j )
|
|
*dr++ = j;
|
|
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
if ( ! retval )
|
|
elog(ERROR,"Can't allocate memory for decompression");
|
|
gistentryinit(*retval, (char *)r, entry->rel, entry->page, entry->offset, VARSIZE( r ), FALSE);
|
|
|
|
return(retval);
|
|
}
|
|
|
|
/*
|
|
** The GiST Penalty method for _intments
|
|
*/
|
|
float *
|
|
g_int_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
|
|
{
|
|
Datum ud;
|
|
float tmp1, tmp2;
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "penalty");
|
|
#endif
|
|
ud = (Datum)inner_int_union((ArrayType *)(origentry->pred), (ArrayType *)(newentry->pred));
|
|
rt__int_size((ArrayType *)ud, &tmp1);
|
|
rt__int_size((ArrayType *)(origentry->pred), &tmp2);
|
|
*result = tmp1 - tmp2;
|
|
pfree((char *)ud);
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "--penalty\t%g", *result);
|
|
#endif
|
|
|
|
return(result);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** The GiST PickSplit method for _intments
|
|
** We use Guttman's poly time split algorithm
|
|
*/
|
|
GIST_SPLITVEC *
|
|
g_int_picksplit(bytea *entryvec,
|
|
GIST_SPLITVEC *v)
|
|
{
|
|
OffsetNumber i, j;
|
|
ArrayType *datum_alpha, *datum_beta;
|
|
ArrayType *datum_l, *datum_r;
|
|
ArrayType *union_d, *union_dl, *union_dr;
|
|
ArrayType *inter_d;
|
|
bool firsttime;
|
|
float size_alpha, size_beta, size_union, size_inter;
|
|
float size_waste, waste;
|
|
float size_l, size_r;
|
|
int nbytes;
|
|
OffsetNumber seed_1 = 0, seed_2 = 0;
|
|
OffsetNumber *left, *right;
|
|
OffsetNumber maxoff;
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "--------picksplit %d",(VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY));
|
|
#endif
|
|
|
|
maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
|
|
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
|
|
v->spl_left = (OffsetNumber *) palloc(nbytes);
|
|
v->spl_right = (OffsetNumber *) palloc(nbytes);
|
|
|
|
firsttime = true;
|
|
waste = 0.0;
|
|
|
|
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
|
|
datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
|
|
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
|
|
datum_beta = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
|
|
|
|
/* compute the wasted space by unioning these guys */
|
|
/* size_waste = size_union - size_inter; */
|
|
union_d = (ArrayType *)inner_int_union(datum_alpha, datum_beta);
|
|
rt__int_size(union_d, &size_union);
|
|
inter_d = (ArrayType *)inner_int_inter(datum_alpha, datum_beta);
|
|
rt__int_size(inter_d, &size_inter);
|
|
size_waste = size_union - size_inter;
|
|
|
|
pfree(union_d);
|
|
|
|
if (inter_d != (ArrayType *) NULL)
|
|
pfree(inter_d);
|
|
|
|
/*
|
|
* are these a more promising split that what we've
|
|
* already seen?
|
|
*/
|
|
|
|
if (size_waste > waste || firsttime) {
|
|
waste = size_waste;
|
|
seed_1 = i;
|
|
seed_2 = j;
|
|
firsttime = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
left = v->spl_left;
|
|
v->spl_nleft = 0;
|
|
right = v->spl_right;
|
|
v->spl_nright = 0;
|
|
|
|
datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
|
|
datum_l = copy_intArrayType( datum_alpha );
|
|
rt__int_size((ArrayType *)datum_l, &size_l);
|
|
datum_beta = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);
|
|
datum_r = copy_intArrayType( datum_beta );
|
|
rt__int_size((ArrayType *)datum_r, &size_r);
|
|
|
|
/*
|
|
* Now split up the regions between the two seeds. An important
|
|
* property of this split algorithm is that the split vector v
|
|
* has the indices of items to be split in order in its left and
|
|
* right vectors. We exploit this property by doing a merge in
|
|
* the code that actually splits the page.
|
|
*
|
|
* For efficiency, we also place the new index tuple in this loop.
|
|
* This is handled at the very end, when we have placed all the
|
|
* existing tuples and i == maxoff + 1.
|
|
*/
|
|
|
|
maxoff = OffsetNumberNext(maxoff);
|
|
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
|
|
|
|
|
|
/*
|
|
* If we've already decided where to place this item, just
|
|
* put it on the right list. Otherwise, we need to figure
|
|
* out which page needs the least enlargement in order to
|
|
* store the item.
|
|
*/
|
|
|
|
if (i == seed_1) {
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
continue;
|
|
} else if (i == seed_2) {
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
continue;
|
|
}
|
|
|
|
/* okay, which page needs least enlargement? */
|
|
datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
|
|
union_dl = (ArrayType *)inner_int_union(datum_l, datum_alpha);
|
|
union_dr = (ArrayType *)inner_int_union(datum_r, datum_alpha);
|
|
rt__int_size((ArrayType *)union_dl, &size_alpha);
|
|
rt__int_size((ArrayType *)union_dr, &size_beta);
|
|
|
|
/* pick which page to add it to */
|
|
if (size_alpha - size_l < size_beta - size_r) {
|
|
if ( datum_l ) pfree(datum_l);
|
|
if ( union_dr ) pfree(union_dr);
|
|
datum_l = union_dl;
|
|
size_l = size_alpha;
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
} else {
|
|
if ( datum_r ) pfree(datum_r);
|
|
if ( union_dl ) pfree(union_dl);
|
|
datum_r = union_dr;
|
|
size_r = size_beta;
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
}
|
|
}
|
|
/**left = *right = FirstOffsetNumber;*/ /* sentinel value, see dosplit() */
|
|
|
|
if ( *(left-1) > *(right-1) ) {
|
|
*right = FirstOffsetNumber;
|
|
*(left-1) = InvalidOffsetNumber;
|
|
} else {
|
|
*left = FirstOffsetNumber;
|
|
*(right-1) = InvalidOffsetNumber;
|
|
}
|
|
|
|
|
|
v->spl_ldatum = (char *)datum_l;
|
|
v->spl_rdatum = (char *)datum_r;
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "--------ENDpicksplit %d %d",v->spl_nleft, v->spl_nright);
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
** Equality methods
|
|
*/
|
|
|
|
|
|
bool *
|
|
g_int_same(ArrayType *b1, ArrayType *b2, bool *result)
|
|
{
|
|
if (_int_same(b1, b2))
|
|
*result = TRUE;
|
|
else *result = FALSE;
|
|
|
|
return(result);
|
|
}
|
|
|
|
bool
|
|
g_int_internal_consistent(ArrayType *key,
|
|
ArrayType *query,
|
|
StrategyNumber strategy)
|
|
{
|
|
bool retval;
|
|
|
|
#ifdef GIST_QUERY_DEBUG
|
|
elog(NOTICE, "internal_consistent, %d", strategy);
|
|
#endif
|
|
|
|
switch(strategy) {
|
|
case RTOverlapStrategyNumber:
|
|
retval = (bool)inner_int_overlap(key, query);
|
|
break;
|
|
case RTSameStrategyNumber:
|
|
case RTContainsStrategyNumber:
|
|
retval = (bool)inner_int_contains(key, query);
|
|
break;
|
|
case RTContainedByStrategyNumber:
|
|
retval = (bool)inner_int_overlap(key, query);
|
|
break;
|
|
default:
|
|
retval = FALSE;
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
bool
|
|
_int_contained(ArrayType *a, ArrayType *b)
|
|
{
|
|
return ( _int_contains(b, a) );
|
|
}
|
|
|
|
bool
|
|
_int_contains ( ArrayType *a, ArrayType *b ) {
|
|
bool res;
|
|
ArrayType *an, *bn;
|
|
if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
|
|
|
|
an = copy_intArrayType( a );
|
|
bn = copy_intArrayType( b );
|
|
|
|
PREPAREARR(an);
|
|
PREPAREARR(bn);
|
|
|
|
res = inner_int_contains( an, bn );
|
|
pfree( an ); pfree( bn );
|
|
return res;
|
|
}
|
|
|
|
bool
|
|
inner_int_contains ( ArrayType *a, ArrayType *b ) {
|
|
int na, nb;
|
|
int i,j, n;
|
|
int *da, *db;
|
|
|
|
if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
|
|
|
|
na = ARRSIZE( a );
|
|
nb = ARRSIZE( b );
|
|
da = ARRPTR( a );
|
|
db = ARRPTR( b );
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "contains %d %d", na, nb);
|
|
#endif
|
|
|
|
i = j = n = 0;
|
|
while( i<na && j<nb )
|
|
if ( da[i] < db[j] )
|
|
i++;
|
|
else if ( da[i] == db[j] ) {
|
|
n++; i++; j++;
|
|
} else
|
|
j++;
|
|
|
|
return ( n == nb ) ? TRUE : FALSE;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Operator class for R-tree indexing
|
|
*****************************************************************************/
|
|
|
|
bool
|
|
_int_different(ArrayType *a, ArrayType *b)
|
|
{
|
|
return ( !_int_same( a, b ) );
|
|
}
|
|
|
|
bool
|
|
_int_same ( ArrayType *a, ArrayType *b ) {
|
|
int na , nb ;
|
|
int n;
|
|
int *da, *db;
|
|
bool anull = ARRISNULL( a );
|
|
bool bnull = ARRISNULL( b );
|
|
|
|
if ( anull || bnull )
|
|
return ( anull && bnull ) ? TRUE : FALSE;
|
|
|
|
SORT( a );
|
|
SORT( b );
|
|
na = ARRSIZE( a );
|
|
nb = ARRSIZE( b );
|
|
da = ARRPTR( a );
|
|
db = ARRPTR( b );
|
|
|
|
if ( na != nb ) return FALSE;
|
|
|
|
n = 0;
|
|
for(n=0; n<na; n++)
|
|
if ( da[n] != db[n] )
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* _int_overlap -- does a overlap b?
|
|
*/
|
|
bool
|
|
_int_overlap ( ArrayType *a, ArrayType *b ) {
|
|
if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
|
|
|
|
SORT(a);
|
|
SORT(b);
|
|
|
|
return inner_int_overlap( a, b );
|
|
}
|
|
|
|
bool
|
|
inner_int_overlap ( ArrayType *a, ArrayType *b ) {
|
|
int na , nb ;
|
|
int i,j;
|
|
int *da, *db;
|
|
|
|
if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
|
|
|
|
na = ARRSIZE( a );
|
|
nb = ARRSIZE( b );
|
|
da = ARRPTR( a );
|
|
db = ARRPTR( b );
|
|
|
|
#ifdef GIST_DEBUG
|
|
elog(NOTICE, "g_int_overlap");
|
|
#endif
|
|
|
|
i = j = 0;
|
|
while( i<na && j<nb )
|
|
if ( da[i] < db[j] )
|
|
i++;
|
|
else if ( da[i] == db[j] )
|
|
return TRUE;
|
|
else
|
|
j++;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
ArrayType *
|
|
_int_union ( ArrayType *a, ArrayType *b ) {
|
|
if ( ! ARRISNULL( a ) ) SORT(a);
|
|
if ( ! ARRISNULL( b ) ) SORT(b);
|
|
|
|
return inner_int_union( a, b );
|
|
}
|
|
|
|
ArrayType *
|
|
inner_int_union ( ArrayType *a, ArrayType *b ) {
|
|
ArrayType * r = NULL;
|
|
int na , nb;
|
|
int *da, *db, *dr;
|
|
int i,j;
|
|
|
|
#ifdef GIST_DEBUG
|
|
//elog(NOTICE, "inner_union %d %d", ARRISNULL( a ) , ARRISNULL( b ) );
|
|
#endif
|
|
|
|
if ( ARRISNULL( a ) && ARRISNULL( b ) ) return new_intArrayType(0);
|
|
if ( ARRISNULL( a ) ) r = copy_intArrayType( b );
|
|
if ( ARRISNULL( b ) ) r = copy_intArrayType( a );
|
|
|
|
if ( r ) {
|
|
dr = ARRPTR( r );
|
|
} else {
|
|
na = ARRSIZE( a );
|
|
nb = ARRSIZE( b );
|
|
da = ARRPTR( a );
|
|
db = ARRPTR( b );
|
|
|
|
r = new_intArrayType( na + nb );
|
|
dr = ARRPTR( r );
|
|
|
|
/* union */
|
|
i = j = 0;
|
|
while( i<na && j<nb )
|
|
if ( da[i] < db[j] )
|
|
*dr++ = da[i++];
|
|
else
|
|
*dr++ = db[j++];
|
|
|
|
while( i<na ) *dr++ = da[i++];
|
|
while( j<nb ) *dr++ = db[j++];
|
|
|
|
}
|
|
|
|
if ( ARRSIZE(r) > 1 )
|
|
r = _int_unique( r );
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
ArrayType *
|
|
_int_inter ( ArrayType *a, ArrayType *b ) {
|
|
if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
|
|
|
|
SORT(a);
|
|
SORT(b);
|
|
|
|
return inner_int_inter( a, b );
|
|
}
|
|
|
|
ArrayType *
|
|
inner_int_inter ( ArrayType *a, ArrayType *b ) {
|
|
ArrayType * r;
|
|
int na , nb ;
|
|
int *da, *db, *dr;
|
|
int i,j;
|
|
|
|
#ifdef GIST_DEBUG
|
|
//elog(NOTICE, "inner_inter %d %d", ARRISNULL( a ), ARRISNULL( b ) );
|
|
#endif
|
|
|
|
if ( ARRISNULL( a ) || ARRISNULL( b ) ) return NULL;
|
|
|
|
na = ARRSIZE( a );
|
|
nb = ARRSIZE( b );
|
|
da = ARRPTR( a );
|
|
db = ARRPTR( b );
|
|
r = new_intArrayType( min(na, nb) );
|
|
dr = ARRPTR( r );
|
|
|
|
i = j = 0;
|
|
while( i<na && j<nb )
|
|
if ( da[i] < db[j] )
|
|
i++;
|
|
else if ( da[i] == db[j] ) {
|
|
if ( i+j == 0 || ( i+j>0 && *(dr-1) != db[j] ) )
|
|
*dr++ = db[j];
|
|
i++; j++;
|
|
} else
|
|
j++;
|
|
|
|
if ( (dr - ARRPTR(r)) == 0 ) {
|
|
pfree( r );
|
|
return NULL;
|
|
} else
|
|
return resize_intArrayType(r, dr - ARRPTR(r) );
|
|
}
|
|
|
|
void
|
|
rt__int_size(ArrayType *a, float *size)
|
|
{
|
|
if ( ARRISNULL( a ) )
|
|
*size = 0.0;
|
|
else
|
|
*size = (float)ARRSIZE( a );
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
* Miscellaneous operators and functions
|
|
*****************************************************************************/
|
|
|
|
/* len >= 2 */
|
|
bool isort ( int *a, int len ) {
|
|
int tmp, index;
|
|
int *cur, *end;
|
|
bool r = FALSE;
|
|
end = a + len;
|
|
do {
|
|
index = 0;
|
|
cur = a + 1;
|
|
while( cur < end ) {
|
|
if( *(cur-1) > *cur ) {
|
|
tmp=*(cur-1); *(cur-1) = *cur; *cur=tmp;
|
|
index = 1;
|
|
} else if ( ! r && *(cur-1) == *cur )
|
|
r = TRUE;
|
|
cur++;
|
|
}
|
|
} while( index );
|
|
return r;
|
|
}
|
|
|
|
ArrayType * new_intArrayType( int num ) {
|
|
ArrayType * r;
|
|
int nbytes = ARR_OVERHEAD( NDIM ) + sizeof(int)*num;
|
|
|
|
r = (ArrayType *) palloc( nbytes );
|
|
if ( ! r )
|
|
elog(ERROR, "Can't allocate memory for new array");
|
|
MemSet(r, 0, nbytes);
|
|
r->size = nbytes;
|
|
r->ndim = NDIM;
|
|
#ifndef PGSQL71
|
|
SET_LO_FLAG(false, r);
|
|
#endif
|
|
*( (int*)ARR_DIMS(r) ) = num;
|
|
*( (int*)ARR_LBOUND(r) ) = 1;
|
|
|
|
return r;
|
|
}
|
|
|
|
ArrayType * resize_intArrayType( ArrayType * a, int num ) {
|
|
int nbytes = ARR_OVERHEAD( NDIM ) + sizeof(int)*num;
|
|
|
|
if ( num == ARRSIZE(a) ) return a;
|
|
|
|
a = (ArrayType *) repalloc( a, nbytes );
|
|
if ( ! a )
|
|
elog(ERROR, "Can't reallocate memory for new array");
|
|
|
|
a->size = nbytes;
|
|
*( (int*)ARR_DIMS(a) ) = num;
|
|
return a;
|
|
}
|
|
|
|
ArrayType * copy_intArrayType( ArrayType * a ) {
|
|
ArrayType * r;
|
|
if ( ! a ) return NULL;
|
|
r = new_intArrayType( ARRSIZE(a) );
|
|
memmove(r,a,VARSIZE(a));
|
|
return r;
|
|
}
|
|
|
|
/* num for compressed key */
|
|
int internal_size (int *a, int len ) {
|
|
int i,size=0;
|
|
|
|
for(i=0;i<len;i+=2)
|
|
if ( ! i || a[i] != a[i-1] ) /* do not count repeated range */
|
|
size += a[i+1] - a[i] + 1;
|
|
|
|
return size;
|
|
}
|
|
|
|
/* r is sorted and size of r > 1 */
|
|
ArrayType * _int_unique( ArrayType * r ) {
|
|
int *tmp, *dr, *data;
|
|
int num = ARRSIZE(r);
|
|
data = tmp = dr = ARRPTR( r );
|
|
while( tmp - data < num )
|
|
if ( *tmp != *dr )
|
|
*(++dr) = *tmp++;
|
|
else
|
|
tmp++;
|
|
return resize_intArrayType(r, dr + 1 - ARRPTR(r) );
|
|
}
|