mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-12-09 08:10:09 +08:00
1050 lines
24 KiB
C
1050 lines
24 KiB
C
/******************************************************************************
|
|
This file contains routines that can be bound to a Postgres backend and
|
|
called by the backend in the process of processing queries. The calling
|
|
format for these routines is dictated by Postgres architecture.
|
|
******************************************************************************/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include <float.h>
|
|
|
|
#include "access/gist.h"
|
|
#include "access/rtree.h"
|
|
#include "utils/elog.h"
|
|
#include "utils/palloc.h"
|
|
#include "utils/builtins.h"
|
|
|
|
#include "segdata.h"
|
|
|
|
#define max(a,b) ((a) > (b) ? (a) : (b))
|
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define abs(a) ((a) < (0) ? (-a) : (a))
|
|
|
|
/*
|
|
#define GIST_DEBUG
|
|
#define GIST_QUERY_DEBUG
|
|
*/
|
|
|
|
extern void set_parse_buffer(char *str);
|
|
extern int seg_yyparse();
|
|
/*
|
|
extern int seg_yydebug;
|
|
*/
|
|
|
|
/*
|
|
** Input/Output routines
|
|
*/
|
|
SEG * seg_in(char *str);
|
|
char * seg_out(SEG *seg);
|
|
float32 seg_lower(SEG *seg);
|
|
float32 seg_upper(SEG *seg);
|
|
float32 seg_center(SEG *seg);
|
|
|
|
/*
|
|
** GiST support methods
|
|
*/
|
|
bool gseg_consistent(GISTENTRY *entry, SEG *query, StrategyNumber strategy);
|
|
GISTENTRY * gseg_compress(GISTENTRY *entry);
|
|
GISTENTRY * gseg_decompress(GISTENTRY *entry);
|
|
float * gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
|
|
GIST_SPLITVEC * gseg_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
|
|
bool gseg_leaf_consistent(SEG *key, SEG *query, StrategyNumber strategy);
|
|
bool gseg_internal_consistent(SEG *key, SEG *query, StrategyNumber strategy);
|
|
SEG * gseg_union(bytea *entryvec, int *sizep);
|
|
SEG * gseg_binary_union(SEG *r1, SEG *r2, int *sizep);
|
|
bool * gseg_same(SEG *b1, SEG *b2, bool *result);
|
|
|
|
|
|
/*
|
|
** R-tree suport functions
|
|
*/
|
|
bool seg_same(SEG *a, SEG *b);
|
|
bool seg_contains_int(SEG *a, int *b);
|
|
bool seg_contains_float4(SEG *a, float4 *b);
|
|
bool seg_contains_float8(SEG *a, float8 *b);
|
|
bool seg_contains(SEG *a, SEG *b);
|
|
bool seg_contained(SEG *a, SEG *b);
|
|
bool seg_overlap(SEG *a, SEG *b);
|
|
bool seg_left(SEG *a, SEG *b);
|
|
bool seg_over_left(SEG *a, SEG *b);
|
|
bool seg_right(SEG *a, SEG *b);
|
|
bool seg_over_right(SEG *a, SEG *b);
|
|
SEG * seg_union(SEG *a, SEG *b);
|
|
SEG * seg_inter(SEG *a, SEG *b);
|
|
void rt_seg_size(SEG *a, float* sz);
|
|
float * seg_size(SEG *a);
|
|
|
|
/*
|
|
** Various operators
|
|
*/
|
|
int32 seg_cmp(SEG *a, SEG *b);
|
|
bool seg_lt(SEG *a, SEG *b);
|
|
bool seg_le(SEG *a, SEG *b);
|
|
bool seg_gt(SEG *a, SEG *b);
|
|
bool seg_ge(SEG *a, SEG *b);
|
|
bool seg_different(SEG *a, SEG *b);
|
|
|
|
/*
|
|
** Auxiliary funxtions
|
|
*/
|
|
static int restore(char *s, float val, int n);
|
|
int significant_digits (char* s);
|
|
|
|
|
|
/*****************************************************************************
|
|
* Input/Output functions
|
|
*****************************************************************************/
|
|
|
|
SEG *
|
|
seg_in(char *str)
|
|
{
|
|
SEG * result = palloc(sizeof(SEG));
|
|
set_parse_buffer( str );
|
|
|
|
/*
|
|
seg_yydebug = 1;
|
|
*/
|
|
if ( seg_yyparse(result) != 0 ) {
|
|
pfree ( result );
|
|
return NULL;
|
|
}
|
|
return ( result );
|
|
}
|
|
|
|
/*
|
|
* You might have noticed a slight inconsistency between the following
|
|
* declaration and the SQL definition:
|
|
* CREATE FUNCTION seg_out(opaque) RETURNS opaque ...
|
|
* The reason is that the argument passed into seg_out is really just a
|
|
* pointer. POSTGRES thinks all output functions are:
|
|
* char *out_func(char *);
|
|
*/
|
|
char *
|
|
seg_out(SEG *seg)
|
|
{
|
|
char *result;
|
|
char *p;
|
|
|
|
if (seg == NULL) return(NULL);
|
|
|
|
p = result = (char *) palloc(40);
|
|
|
|
if ( seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~' ) {
|
|
p += sprintf(p, "%c", seg->l_ext);
|
|
}
|
|
|
|
if ( seg->lower == seg->upper && seg->l_ext == seg->u_ext ) {
|
|
/* indicates that this interval was built by seg_in off a single point */
|
|
p += restore(p, seg->lower, seg->l_sigd);
|
|
}
|
|
else {
|
|
if ( seg->l_ext != '-' ) {
|
|
/* print the lower boudary if exists */
|
|
p += restore(p, seg->lower, seg->l_sigd);
|
|
p += sprintf(p, " ");
|
|
}
|
|
p += sprintf(p, "..");
|
|
if ( seg->u_ext != '-' ) {
|
|
/* print the upper boudary if exists */
|
|
p += sprintf(p, " ");
|
|
if ( seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~' ) {
|
|
p += sprintf(p, "%c", seg->u_ext);
|
|
}
|
|
p += restore(p, seg->upper, seg->u_sigd);
|
|
}
|
|
}
|
|
|
|
return(result);
|
|
}
|
|
|
|
float32
|
|
seg_center(SEG *seg)
|
|
{
|
|
float32 result = (float32) palloc(sizeof(float32data));
|
|
|
|
if (!seg)
|
|
return (float32) NULL;
|
|
|
|
*result = ((float)seg->lower + (float)seg->upper)/2.0;
|
|
return (result);
|
|
}
|
|
|
|
float32
|
|
seg_lower(SEG *seg)
|
|
{
|
|
float32 result = (float32) palloc(sizeof(float32data));
|
|
|
|
if (!seg)
|
|
return (float32) NULL;
|
|
|
|
*result = (float)seg->lower;
|
|
return (result);
|
|
}
|
|
|
|
float32
|
|
seg_upper(SEG *seg)
|
|
{
|
|
float32 result = (float32) palloc(sizeof(float32data));
|
|
|
|
if (!seg)
|
|
return (float32) NULL;
|
|
|
|
*result = (float)seg->upper;
|
|
return (result);
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
* GiST functions
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
** The GiST Consistent method for segments
|
|
** Should return false if for all data items x below entry,
|
|
** the predicate x op query == FALSE, where op is the oper
|
|
** corresponding to strategy in the pg_amop table.
|
|
*/
|
|
bool
|
|
gseg_consistent(GISTENTRY *entry,
|
|
SEG *query,
|
|
StrategyNumber strategy)
|
|
{
|
|
/*
|
|
** if entry is not leaf, use gseg_internal_consistent,
|
|
** else use gseg_leaf_consistent
|
|
*/
|
|
if (GIST_LEAF(entry))
|
|
return(gseg_leaf_consistent((SEG *)(entry->pred), query, strategy));
|
|
else
|
|
return(gseg_internal_consistent((SEG *)(entry->pred), query, strategy));
|
|
}
|
|
|
|
/*
|
|
** The GiST Union method for segments
|
|
** returns the minimal bounding seg that encloses all the entries in entryvec
|
|
*/
|
|
SEG *
|
|
gseg_union(bytea *entryvec, int *sizep)
|
|
{
|
|
int numranges, i;
|
|
SEG *out = (SEG *)NULL;
|
|
SEG *tmp;
|
|
|
|
#ifdef GIST_DEBUG
|
|
fprintf(stderr, "union\n");
|
|
#endif
|
|
|
|
numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY);
|
|
tmp = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
|
|
*sizep = sizeof(SEG);
|
|
|
|
for (i = 1; i < numranges; i++) {
|
|
out = gseg_binary_union(tmp, (SEG *)
|
|
(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred,
|
|
sizep);
|
|
#ifdef GIST_DEBUG
|
|
/*
|
|
fprintf(stderr, "\t%s ^ %s -> %s\n", seg_out(tmp), seg_out((SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred), seg_out(out));
|
|
*/
|
|
#endif
|
|
|
|
if (i > 1) pfree(tmp);
|
|
tmp = out;
|
|
}
|
|
|
|
return(out);
|
|
}
|
|
|
|
/*
|
|
** GiST Compress and Decompress methods for segments
|
|
** do not do anything.
|
|
*/
|
|
GISTENTRY *
|
|
gseg_compress(GISTENTRY *entry)
|
|
{
|
|
return(entry);
|
|
}
|
|
|
|
GISTENTRY *
|
|
gseg_decompress(GISTENTRY *entry)
|
|
{
|
|
return(entry);
|
|
}
|
|
|
|
/*
|
|
** The GiST Penalty method for segments
|
|
** As in the R-tree paper, we use change in area as our penalty metric
|
|
*/
|
|
float *
|
|
gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
|
|
{
|
|
Datum ud;
|
|
float tmp1, tmp2;
|
|
|
|
ud = (Datum)seg_union((SEG *)(origentry->pred), (SEG *)(newentry->pred));
|
|
rt_seg_size((SEG *)ud, &tmp1);
|
|
rt_seg_size((SEG *)(origentry->pred), &tmp2);
|
|
*result = tmp1 - tmp2;
|
|
pfree((char *)ud);
|
|
|
|
#ifdef GIST_DEBUG
|
|
fprintf(stderr, "penalty\n");
|
|
fprintf(stderr, "\t%g\n", *result);
|
|
#endif
|
|
|
|
return(result);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** The GiST PickSplit method for segments
|
|
** We use Guttman's poly time split algorithm
|
|
*/
|
|
GIST_SPLITVEC *
|
|
gseg_picksplit(bytea *entryvec,
|
|
GIST_SPLITVEC *v)
|
|
{
|
|
OffsetNumber i, j;
|
|
SEG *datum_alpha, *datum_beta;
|
|
SEG *datum_l, *datum_r;
|
|
SEG *union_d, *union_dl, *union_dr;
|
|
SEG *inter_d;
|
|
bool firsttime;
|
|
float size_alpha, size_beta, size_union, size_inter;
|
|
float size_waste, waste;
|
|
float size_l, size_r;
|
|
int nbytes;
|
|
OffsetNumber seed_1 = 0, seed_2 = 0;
|
|
OffsetNumber *left, *right;
|
|
OffsetNumber maxoff;
|
|
|
|
#ifdef GIST_DEBUG
|
|
fprintf(stderr, "picksplit\n");
|
|
#endif
|
|
|
|
maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
|
|
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
|
|
v->spl_left = (OffsetNumber *) palloc(nbytes);
|
|
v->spl_right = (OffsetNumber *) palloc(nbytes);
|
|
|
|
firsttime = true;
|
|
waste = 0.0;
|
|
|
|
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
|
|
datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
|
|
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
|
|
datum_beta = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
|
|
|
|
/* compute the wasted space by unioning these guys */
|
|
/* size_waste = size_union - size_inter; */
|
|
union_d = (SEG *)seg_union(datum_alpha, datum_beta);
|
|
rt_seg_size(union_d, &size_union);
|
|
inter_d = (SEG *)seg_inter(datum_alpha, datum_beta);
|
|
rt_seg_size(inter_d, &size_inter);
|
|
size_waste = size_union - size_inter;
|
|
|
|
pfree(union_d);
|
|
|
|
if (inter_d != (SEG *) NULL)
|
|
pfree(inter_d);
|
|
|
|
/*
|
|
* are these a more promising split that what we've
|
|
* already seen?
|
|
*/
|
|
|
|
if (size_waste > waste || firsttime) {
|
|
waste = size_waste;
|
|
seed_1 = i;
|
|
seed_2 = j;
|
|
firsttime = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
left = v->spl_left;
|
|
v->spl_nleft = 0;
|
|
right = v->spl_right;
|
|
v->spl_nright = 0;
|
|
|
|
datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
|
|
datum_l = (SEG *)seg_union(datum_alpha, datum_alpha);
|
|
rt_seg_size((SEG *)datum_l, &size_l);
|
|
datum_beta = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);;
|
|
datum_r = (SEG *)seg_union(datum_beta, datum_beta);
|
|
rt_seg_size((SEG *)datum_r, &size_r);
|
|
|
|
/*
|
|
* Now split up the regions between the two seeds. An important
|
|
* property of this split algorithm is that the split vector v
|
|
* has the indices of items to be split in order in its left and
|
|
* right vectors. We exploit this property by doing a merge in
|
|
* the code that actually splits the page.
|
|
*
|
|
* For efficiency, we also place the new index tuple in this loop.
|
|
* This is handled at the very end, when we have placed all the
|
|
* existing tuples and i == maxoff + 1.
|
|
*/
|
|
|
|
maxoff = OffsetNumberNext(maxoff);
|
|
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
|
|
|
|
/*
|
|
* If we've already decided where to place this item, just
|
|
* put it on the right list. Otherwise, we need to figure
|
|
* out which page needs the least enlargement in order to
|
|
* store the item.
|
|
*/
|
|
|
|
if (i == seed_1) {
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
continue;
|
|
} else if (i == seed_2) {
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
continue;
|
|
}
|
|
|
|
/* okay, which page needs least enlargement? */
|
|
datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
|
|
union_dl = (SEG *)seg_union(datum_l, datum_alpha);
|
|
union_dr = (SEG *)seg_union(datum_r, datum_alpha);
|
|
rt_seg_size((SEG *)union_dl, &size_alpha);
|
|
rt_seg_size((SEG *)union_dr, &size_beta);
|
|
|
|
/* pick which page to add it to */
|
|
if (size_alpha - size_l < size_beta - size_r) {
|
|
pfree(datum_l);
|
|
pfree(union_dr);
|
|
datum_l = union_dl;
|
|
size_l = size_alpha;
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
} else {
|
|
pfree(datum_r);
|
|
pfree(union_dl);
|
|
datum_r = union_dr;
|
|
size_r = size_alpha;
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
}
|
|
}
|
|
*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
|
|
|
|
v->spl_ldatum = (char *)datum_l;
|
|
v->spl_rdatum = (char *)datum_r;
|
|
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
** Equality methods
|
|
*/
|
|
bool *
|
|
gseg_same(SEG *b1, SEG *b2, bool *result)
|
|
{
|
|
if (seg_same(b1, b2))
|
|
*result = TRUE;
|
|
else *result = FALSE;
|
|
|
|
#ifdef GIST_DEBUG
|
|
fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
|
|
#endif
|
|
|
|
return(result);
|
|
}
|
|
|
|
/*
|
|
** SUPPORT ROUTINES
|
|
*/
|
|
bool
|
|
gseg_leaf_consistent(SEG *key,
|
|
SEG *query,
|
|
StrategyNumber strategy)
|
|
{
|
|
bool retval;
|
|
|
|
#ifdef GIST_QUERY_DEBUG
|
|
fprintf(stderr, "leaf_consistent, %d\n", strategy);
|
|
#endif
|
|
|
|
switch(strategy) {
|
|
case RTLeftStrategyNumber:
|
|
retval = (bool)seg_left(key, query);
|
|
break;
|
|
case RTOverLeftStrategyNumber:
|
|
retval = (bool)seg_over_left(key,query);
|
|
break;
|
|
case RTOverlapStrategyNumber:
|
|
retval = (bool)seg_overlap(key, query);
|
|
break;
|
|
case RTOverRightStrategyNumber:
|
|
retval = (bool)seg_over_right(key, query);
|
|
break;
|
|
case RTRightStrategyNumber:
|
|
retval = (bool)seg_right(key, query);
|
|
break;
|
|
case RTSameStrategyNumber:
|
|
retval = (bool)seg_same(key, query);
|
|
break;
|
|
case RTContainsStrategyNumber:
|
|
retval = (bool)seg_contains(key, query);
|
|
break;
|
|
case RTContainedByStrategyNumber:
|
|
retval = (bool)seg_contained(key,query);
|
|
break;
|
|
default:
|
|
retval = FALSE;
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
bool
|
|
gseg_internal_consistent(SEG *key,
|
|
SEG *query,
|
|
StrategyNumber strategy)
|
|
{
|
|
bool retval;
|
|
|
|
#ifdef GIST_QUERY_DEBUG
|
|
fprintf(stderr, "internal_consistent, %d\n", strategy);
|
|
#endif
|
|
|
|
switch(strategy) {
|
|
case RTLeftStrategyNumber:
|
|
case RTOverLeftStrategyNumber:
|
|
retval = (bool)seg_over_left(key,query);
|
|
break;
|
|
case RTOverlapStrategyNumber:
|
|
retval = (bool)seg_overlap(key, query);
|
|
break;
|
|
case RTOverRightStrategyNumber:
|
|
case RTRightStrategyNumber:
|
|
retval = (bool)seg_right(key, query);
|
|
break;
|
|
case RTSameStrategyNumber:
|
|
case RTContainsStrategyNumber:
|
|
retval = (bool)seg_contains(key, query);
|
|
break;
|
|
case RTContainedByStrategyNumber:
|
|
retval = (bool)seg_overlap(key, query);
|
|
break;
|
|
default:
|
|
retval = FALSE;
|
|
}
|
|
return(retval);
|
|
}
|
|
|
|
SEG *
|
|
gseg_binary_union(SEG *r1, SEG *r2, int *sizep)
|
|
{
|
|
SEG *retval;
|
|
|
|
retval = seg_union(r1, r2);
|
|
*sizep = sizeof(SEG);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
|
|
bool
|
|
seg_contains(SEG *a, SEG *b)
|
|
{
|
|
return ( (a->lower <= b->lower) && (a->upper >= b->upper) );
|
|
}
|
|
|
|
bool
|
|
seg_contained(SEG *a, SEG *b)
|
|
{
|
|
return ( seg_contains(b, a) );
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Operator class for R-tree indexing
|
|
*****************************************************************************/
|
|
|
|
bool
|
|
seg_same(SEG *a, SEG *b)
|
|
{
|
|
return seg_cmp(a, b) == 0;
|
|
}
|
|
|
|
/* seg_overlap -- does a overlap b?
|
|
*/
|
|
bool
|
|
seg_overlap(SEG *a, SEG *b)
|
|
{
|
|
return (
|
|
((a->upper >= b->upper) && (a->lower <= b->upper))
|
|
||
|
|
((b->upper >= a->upper) && (b->lower <= a->upper))
|
|
);
|
|
}
|
|
|
|
/* seg_overleft -- is the right edge of (a) located to the left of the right edge of (b)?
|
|
*/
|
|
bool
|
|
seg_over_left(SEG *a, SEG *b)
|
|
{
|
|
return ( a->upper <= b->upper && !seg_left(a, b) && !seg_right(a, b));
|
|
}
|
|
|
|
/* seg_left -- is (a) entirely on the left of (b)?
|
|
*/
|
|
bool
|
|
seg_left(SEG *a, SEG *b)
|
|
{
|
|
return ( a->upper < b->lower );
|
|
}
|
|
|
|
/* seg_right -- is (a) entirely on the right of (b)?
|
|
*/
|
|
bool
|
|
seg_right(SEG *a, SEG *b)
|
|
{
|
|
return ( a->lower > b->upper );
|
|
}
|
|
|
|
/* seg_overright -- is the left edge of (a) located to the right of the left edge of (b)?
|
|
*/
|
|
bool
|
|
seg_over_right(SEG *a, SEG *b)
|
|
{
|
|
return (a->lower >= b->lower && !seg_left(a, b) && !seg_right(a, b));
|
|
}
|
|
|
|
|
|
SEG *
|
|
seg_union(SEG *a, SEG *b)
|
|
{
|
|
SEG *n;
|
|
|
|
n = (SEG *) palloc(sizeof(*n));
|
|
|
|
/* take max of upper endpoints */
|
|
if (a->upper > b->upper)
|
|
{
|
|
n->upper = a->upper;
|
|
n->u_sigd = a->u_sigd;
|
|
n->u_ext = a->u_ext;
|
|
}
|
|
else
|
|
{
|
|
n->upper = b->upper;
|
|
n->u_sigd = b->u_sigd;
|
|
n->u_ext = b->u_ext;
|
|
}
|
|
|
|
/* take min of lower endpoints */
|
|
if (a->lower < b->lower)
|
|
{
|
|
n->lower = a->lower;
|
|
n->l_sigd = a->l_sigd;
|
|
n->l_ext = a->l_ext;
|
|
}
|
|
else
|
|
{
|
|
n->lower = b->lower;
|
|
n->l_sigd = b->l_sigd;
|
|
n->l_ext = b->l_ext;
|
|
}
|
|
|
|
return (n);
|
|
}
|
|
|
|
|
|
SEG *
|
|
seg_inter(SEG *a, SEG *b)
|
|
{
|
|
SEG *n;
|
|
|
|
n = (SEG *) palloc(sizeof(*n));
|
|
|
|
/* take min of upper endpoints */
|
|
if (a->upper < b->upper)
|
|
{
|
|
n->upper = a->upper;
|
|
n->u_sigd = a->u_sigd;
|
|
n->u_ext = a->u_ext;
|
|
}
|
|
else
|
|
{
|
|
n->upper = b->upper;
|
|
n->u_sigd = b->u_sigd;
|
|
n->u_ext = b->u_ext;
|
|
}
|
|
|
|
/* take max of lower endpoints */
|
|
if (a->lower > b->lower)
|
|
{
|
|
n->lower = a->lower;
|
|
n->l_sigd = a->l_sigd;
|
|
n->l_ext = a->l_ext;
|
|
}
|
|
else
|
|
{
|
|
n->lower = b->lower;
|
|
n->l_sigd = b->l_sigd;
|
|
n->l_ext = b->l_ext;
|
|
}
|
|
|
|
return (n);
|
|
}
|
|
|
|
void
|
|
rt_seg_size(SEG *a, float *size)
|
|
{
|
|
if (a == (SEG *) NULL || a->upper <= a->lower)
|
|
*size = 0.0;
|
|
else
|
|
*size = (float) abs(a->upper - a->lower);
|
|
|
|
return;
|
|
}
|
|
|
|
float *
|
|
seg_size(SEG *a)
|
|
{
|
|
float *result;
|
|
|
|
result = (float *) palloc(sizeof(float));
|
|
|
|
*result = (float) abs(a->upper - a->lower);
|
|
|
|
return(result);
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
* Miscellaneous operators
|
|
*****************************************************************************/
|
|
int32
|
|
seg_cmp(SEG *a, SEG *b)
|
|
{
|
|
/*
|
|
* First compare on lower boundary position
|
|
*/
|
|
if ( a->lower < b->lower )
|
|
return -1;
|
|
if ( a->lower > b->lower )
|
|
return 1;
|
|
/*
|
|
* a->lower == b->lower, so consider type of boundary.
|
|
*
|
|
* A '-' lower bound is < any other kind (this could only be relevant
|
|
* if -HUGE is used as a regular data value).
|
|
* A '<' lower bound is < any other kind except '-'.
|
|
* A '>' lower bound is > any other kind.
|
|
*/
|
|
if ( a->l_ext != b->l_ext )
|
|
{
|
|
if ( a->l_ext == '-')
|
|
return -1;
|
|
if ( b->l_ext == '-')
|
|
return 1;
|
|
if ( a->l_ext == '<')
|
|
return -1;
|
|
if ( b->l_ext == '<')
|
|
return 1;
|
|
if ( a->l_ext == '>')
|
|
return 1;
|
|
if ( b->l_ext == '>')
|
|
return -1;
|
|
}
|
|
/*
|
|
* For other boundary types, consider # of significant digits first.
|
|
*/
|
|
if ( a->l_sigd < b->l_sigd ) /* (a) is blurred and is likely to include (b) */
|
|
return -1;
|
|
if ( a->l_sigd > b->l_sigd ) /* (a) is less blurred and is likely to be included in (b) */
|
|
return 1;
|
|
/*
|
|
* For same # of digits, an approximate boundary is more blurred than
|
|
* exact.
|
|
*/
|
|
if ( a->l_ext != b->l_ext )
|
|
{
|
|
if ( a->l_ext == '~' ) /* (a) is approximate, while (b) is exact */
|
|
return -1;
|
|
if ( b->l_ext == '~' )
|
|
return 1;
|
|
/* can't get here unless data is corrupt */
|
|
elog(ERROR, "seg_cmp: bogus lower boundary types %d %d",
|
|
(int) a->l_ext, (int) b->l_ext);
|
|
}
|
|
|
|
/* at this point, the lower boundaries are identical */
|
|
|
|
/*
|
|
* First compare on upper boundary position
|
|
*/
|
|
if ( a->upper < b->upper )
|
|
return -1;
|
|
if ( a->upper > b->upper )
|
|
return 1;
|
|
/*
|
|
* a->upper == b->upper, so consider type of boundary.
|
|
*
|
|
* A '-' upper bound is > any other kind (this could only be relevant
|
|
* if HUGE is used as a regular data value).
|
|
* A '<' upper bound is < any other kind.
|
|
* A '>' upper bound is > any other kind except '-'.
|
|
*/
|
|
if ( a->u_ext != b->u_ext )
|
|
{
|
|
if ( a->u_ext == '-')
|
|
return 1;
|
|
if ( b->u_ext == '-')
|
|
return -1;
|
|
if ( a->u_ext == '<')
|
|
return -1;
|
|
if ( b->u_ext == '<')
|
|
return 1;
|
|
if ( a->u_ext == '>')
|
|
return 1;
|
|
if ( b->u_ext == '>')
|
|
return -1;
|
|
}
|
|
/*
|
|
* For other boundary types, consider # of significant digits first.
|
|
* Note result here is converse of the lower-boundary case.
|
|
*/
|
|
if ( a->u_sigd < b->u_sigd ) /* (a) is blurred and is likely to include (b) */
|
|
return 1;
|
|
if ( a->u_sigd > b->u_sigd ) /* (a) is less blurred and is likely to be included in (b) */
|
|
return -1;
|
|
/*
|
|
* For same # of digits, an approximate boundary is more blurred than
|
|
* exact. Again, result is converse of lower-boundary case.
|
|
*/
|
|
if ( a->u_ext != b->u_ext )
|
|
{
|
|
if ( a->u_ext == '~' ) /* (a) is approximate, while (b) is exact */
|
|
return 1;
|
|
if ( b->u_ext == '~' )
|
|
return -1;
|
|
/* can't get here unless data is corrupt */
|
|
elog(ERROR, "seg_cmp: bogus upper boundary types %d %d",
|
|
(int) a->u_ext, (int) b->u_ext);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool
|
|
seg_lt(SEG *a, SEG *b)
|
|
{
|
|
return seg_cmp(a, b) < 0;
|
|
}
|
|
|
|
bool
|
|
seg_le(SEG *a, SEG *b)
|
|
{
|
|
return seg_cmp(a, b) <= 0;
|
|
}
|
|
|
|
bool
|
|
seg_gt(SEG *a, SEG *b)
|
|
{
|
|
return seg_cmp(a, b) > 0;
|
|
}
|
|
|
|
|
|
bool
|
|
seg_ge(SEG *a, SEG *b)
|
|
{
|
|
return seg_cmp(a, b) >= 0;
|
|
}
|
|
|
|
bool
|
|
seg_different(SEG *a, SEG *b)
|
|
{
|
|
return seg_cmp(a, b) != 0;
|
|
}
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
* Auxiliary functions
|
|
*****************************************************************************/
|
|
|
|
/* The purpose of this routine is to print the floating point
|
|
* value with exact number of significant digits. Its behaviour
|
|
* is similar to %.ng except it prints 8.00 where %.ng would
|
|
* print 8
|
|
*/
|
|
static int restore ( char * result, float val, int n )
|
|
{
|
|
static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0};
|
|
char buf[25] = {
|
|
'0', '0', '0', '0', '0',
|
|
'0', '0', '0', '0', '0',
|
|
'0', '0', '0', '0', '0',
|
|
'0', '0', '0', '0', '0',
|
|
'0', '0', '0', '0', '\0'
|
|
};
|
|
char *p;
|
|
char *mant;
|
|
int exp;
|
|
int i, dp, sign;
|
|
|
|
/* put a cap on the number of siugnificant digits to avoid
|
|
nonsense in the output */
|
|
n = min(n, FLT_DIG);
|
|
|
|
/* remember the sign */
|
|
sign = ( val < 0 ? 1 : 0 );
|
|
|
|
efmt[5] = '0' + (n-1)%10; /* makes %-15.(n-1)e -- this format guarantees that
|
|
the exponent is always present */
|
|
|
|
sprintf(result, efmt, val);
|
|
|
|
/* trim the spaces left by the %e */
|
|
for( p = result; *p != ' '; p++ ); *p = '\0';
|
|
|
|
/* get the exponent */
|
|
mant = (char *)strtok( strdup(result), "e" );
|
|
exp = atoi(strtok( NULL, "e" ));
|
|
|
|
if ( exp == 0 ) {
|
|
/* use the supplied mantyssa with sign */
|
|
strcpy((char *)index(result, 'e'), "");
|
|
}
|
|
else {
|
|
if ( abs( exp ) <= 4 ) {
|
|
/* remove the decimal point from the mantyssa and write the digits to the buf array */
|
|
for( p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++ ) {
|
|
buf[i] = *p;
|
|
if( *p == '.' ) {
|
|
dp = i--; /* skip the decimal point */
|
|
}
|
|
}
|
|
if (dp == 0) dp = i--; /* no decimal point was found in the above for() loop */
|
|
|
|
if ( exp > 0 ) {
|
|
if ( dp - 10 + exp >= n ) {
|
|
/*
|
|
the decimal point is behind the last significant digit;
|
|
the digits in between must be converted to the exponent
|
|
and the decimal point placed after the first digit
|
|
*/
|
|
exp = dp - 10 + exp - n;
|
|
buf[10+n] = '\0';
|
|
|
|
/* insert the decimal point */
|
|
if ( n > 1 ) {
|
|
dp = 11;
|
|
for ( i = 23; i > dp; i-- ) {
|
|
buf[i] = buf[i-1];
|
|
}
|
|
buf[dp] = '.';
|
|
}
|
|
|
|
/* adjust the exponent by the number of digits after the decimal point */
|
|
if ( n > 1 ) {
|
|
sprintf(&buf[11+n], "e%d", exp + n - 1);
|
|
}
|
|
else {
|
|
sprintf(&buf[11], "e%d", exp + n - 1);
|
|
}
|
|
|
|
if ( sign ) {
|
|
buf[9] = '-';
|
|
strcpy(result, &buf[9]);
|
|
}
|
|
else {
|
|
strcpy(result, &buf[10]);
|
|
}
|
|
}
|
|
else { /* insert the decimal point */
|
|
dp += exp;
|
|
for ( i = 23; i > dp; i-- ) {
|
|
buf[i] = buf[i-1];
|
|
}
|
|
buf[11+n] = '\0';
|
|
buf[dp] = '.';
|
|
if ( sign ) {
|
|
buf[9] = '-';
|
|
strcpy(result, &buf[9]);
|
|
}
|
|
else {
|
|
strcpy(result, &buf[10]);
|
|
}
|
|
}
|
|
}
|
|
else { /* exp <= 0 */
|
|
dp += exp - 1;
|
|
buf[10+n] = '\0';
|
|
buf[dp] = '.';
|
|
if ( sign ) {
|
|
buf[dp-2] = '-';
|
|
strcpy(result, &buf[dp-2]);
|
|
}
|
|
else {
|
|
strcpy(result, &buf[dp-1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* do nothing for abs(exp) > 4; %e must be OK */
|
|
/* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */
|
|
|
|
/* ... this is not done yet. */
|
|
}
|
|
return ( strlen ( result ) );
|
|
}
|
|
|
|
|
|
/*
|
|
** Miscellany
|
|
*/
|
|
|
|
bool
|
|
seg_contains_int(SEG *a, int *b)
|
|
{
|
|
return ( (a->lower <= *b) && (a->upper >= *b) );
|
|
}
|
|
|
|
bool
|
|
seg_contains_float4(SEG *a, float4 *b)
|
|
{
|
|
return ( (a->lower <= *b) && (a->upper >= *b) );
|
|
}
|
|
|
|
bool
|
|
seg_contains_float8(SEG *a, float8 *b)
|
|
{
|
|
return ( (a->lower <= *b) && (a->upper >= *b) );
|
|
}
|
|
|
|
/* find out the number of significant digits in a string representing
|
|
* a floating point number
|
|
*/
|
|
int significant_digits ( char* s )
|
|
{
|
|
char * p = s;
|
|
int n, c, zeroes;
|
|
|
|
zeroes = 1;
|
|
/* skip leading zeroes and sign */
|
|
for ( c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p) );
|
|
|
|
/* skip decimal point and following zeroes */
|
|
for ( c = *p; (c == '0' || c == '.' ) && c != 0; c = *(++p) ) {
|
|
if ( c != '.') zeroes++;
|
|
}
|
|
|
|
/* count significant digits (n) */
|
|
for ( c = *p, n = 0; c != 0; c = *(++p) ) {
|
|
if ( !( (c >= '0' && c <= '9') || (c == '.') ) ) break;
|
|
if ( c != '.') n++;
|
|
}
|
|
|
|
if (!n) return ( zeroes );
|
|
|
|
return( n );
|
|
}
|