mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-12-09 08:10:09 +08:00
382ceffdf7
Don't move parenthesized lines to the left, even if that means they flow past the right margin. By default, BSD indent lines up statement continuation lines that are within parentheses so that they start just to the right of the preceding left parenthesis. However, traditionally, if that resulted in the continuation line extending to the right of the desired right margin, then indent would push it left just far enough to not overrun the margin, if it could do so without making the continuation line start to the left of the current statement indent. That makes for a weird mix of indentations unless one has been completely rigid about never violating the 80-column limit. This behavior has been pretty universally panned by Postgres developers. Hence, disable it with indent's new -lpl switch, so that parenthesized lines are always lined up with the preceding left paren. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
239 lines
5.6 KiB
C
239 lines
5.6 KiB
C
/*
|
|
* contrib/btree_gist/btree_uuid.c
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "btree_gist.h"
|
|
#include "btree_utils_num.h"
|
|
#include "port/pg_bswap.h"
|
|
#include "utils/uuid.h"
|
|
|
|
typedef struct
|
|
{
|
|
pg_uuid_t lower,
|
|
upper;
|
|
} uuidKEY;
|
|
|
|
|
|
/*
|
|
* UUID ops
|
|
*/
|
|
PG_FUNCTION_INFO_V1(gbt_uuid_compress);
|
|
PG_FUNCTION_INFO_V1(gbt_uuid_fetch);
|
|
PG_FUNCTION_INFO_V1(gbt_uuid_union);
|
|
PG_FUNCTION_INFO_V1(gbt_uuid_picksplit);
|
|
PG_FUNCTION_INFO_V1(gbt_uuid_consistent);
|
|
PG_FUNCTION_INFO_V1(gbt_uuid_penalty);
|
|
PG_FUNCTION_INFO_V1(gbt_uuid_same);
|
|
|
|
|
|
static int
|
|
uuid_internal_cmp(const pg_uuid_t *arg1, const pg_uuid_t *arg2)
|
|
{
|
|
return memcmp(arg1->data, arg2->data, UUID_LEN);
|
|
}
|
|
|
|
static bool
|
|
gbt_uuidgt(const void *a, const void *b, FmgrInfo *flinfo)
|
|
{
|
|
return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) > 0;
|
|
}
|
|
|
|
static bool
|
|
gbt_uuidge(const void *a, const void *b, FmgrInfo *flinfo)
|
|
{
|
|
return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) >= 0;
|
|
}
|
|
|
|
static bool
|
|
gbt_uuideq(const void *a, const void *b, FmgrInfo *flinfo)
|
|
{
|
|
return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) == 0;
|
|
}
|
|
|
|
static bool
|
|
gbt_uuidle(const void *a, const void *b, FmgrInfo *flinfo)
|
|
{
|
|
return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) <= 0;
|
|
}
|
|
|
|
static bool
|
|
gbt_uuidlt(const void *a, const void *b, FmgrInfo *flinfo)
|
|
{
|
|
return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) < 0;
|
|
}
|
|
|
|
static int
|
|
gbt_uuidkey_cmp(const void *a, const void *b, FmgrInfo *flinfo)
|
|
{
|
|
uuidKEY *ia = (uuidKEY *) (((const Nsrt *) a)->t);
|
|
uuidKEY *ib = (uuidKEY *) (((const Nsrt *) b)->t);
|
|
int res;
|
|
|
|
res = uuid_internal_cmp(&ia->lower, &ib->lower);
|
|
if (res == 0)
|
|
res = uuid_internal_cmp(&ia->upper, &ib->upper);
|
|
return res;
|
|
}
|
|
|
|
|
|
static const gbtree_ninfo tinfo =
|
|
{
|
|
gbt_t_uuid,
|
|
UUID_LEN,
|
|
32, /* sizeof(gbtreekey32) */
|
|
gbt_uuidgt,
|
|
gbt_uuidge,
|
|
gbt_uuideq,
|
|
gbt_uuidle,
|
|
gbt_uuidlt,
|
|
gbt_uuidkey_cmp,
|
|
NULL
|
|
};
|
|
|
|
|
|
/**************************************************
|
|
* uuid ops
|
|
**************************************************/
|
|
|
|
|
|
Datum
|
|
gbt_uuid_compress(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
GISTENTRY *retval;
|
|
|
|
if (entry->leafkey)
|
|
{
|
|
char *r = (char *) palloc(2 * UUID_LEN);
|
|
pg_uuid_t *key = DatumGetUUIDP(entry->key);
|
|
|
|
retval = palloc(sizeof(GISTENTRY));
|
|
|
|
memcpy((void *) r, (void *) key, UUID_LEN);
|
|
memcpy((void *) (r + UUID_LEN), (void *) key, UUID_LEN);
|
|
gistentryinit(*retval, PointerGetDatum(r),
|
|
entry->rel, entry->page,
|
|
entry->offset, FALSE);
|
|
}
|
|
else
|
|
retval = entry;
|
|
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
|
|
Datum
|
|
gbt_uuid_fetch(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_POINTER(gbt_num_fetch(entry, &tinfo));
|
|
}
|
|
|
|
Datum
|
|
gbt_uuid_consistent(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
|
|
pg_uuid_t *query = PG_GETARG_UUID_P(1);
|
|
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
|
|
|
|
/* Oid subtype = PG_GETARG_OID(3); */
|
|
bool *recheck = (bool *) PG_GETARG_POINTER(4);
|
|
uuidKEY *kkk = (uuidKEY *) DatumGetPointer(entry->key);
|
|
GBT_NUMKEY_R key;
|
|
|
|
/* All cases served by this function are exact */
|
|
*recheck = false;
|
|
|
|
key.lower = (GBT_NUMKEY *) &kkk->lower;
|
|
key.upper = (GBT_NUMKEY *) &kkk->upper;
|
|
|
|
PG_RETURN_BOOL(
|
|
gbt_num_consistent(&key, (void *) query, &strategy,
|
|
GIST_LEAF(entry), &tinfo, fcinfo->flinfo)
|
|
);
|
|
}
|
|
|
|
Datum
|
|
gbt_uuid_union(PG_FUNCTION_ARGS)
|
|
{
|
|
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
|
|
void *out = palloc(sizeof(uuidKEY));
|
|
|
|
*(int *) PG_GETARG_POINTER(1) = sizeof(uuidKEY);
|
|
PG_RETURN_POINTER(gbt_num_union((void *) out, entryvec, &tinfo, fcinfo->flinfo));
|
|
}
|
|
|
|
/*
|
|
* Convert a uuid to a "double" value for estimating sizes of ranges.
|
|
*/
|
|
static double
|
|
uuid_2_double(const pg_uuid_t *u)
|
|
{
|
|
uint64 uu[2];
|
|
const double two64 = 18446744073709551616.0; /* 2^64 */
|
|
|
|
/* Source data may not be suitably aligned, so copy */
|
|
memcpy(uu, u->data, UUID_LEN);
|
|
|
|
/*
|
|
* uuid values should be considered as big-endian numbers, since that
|
|
* corresponds to how memcmp will compare them. On a little-endian
|
|
* machine, byte-swap each half so we can use native uint64 arithmetic.
|
|
*/
|
|
#ifndef WORDS_BIGENDIAN
|
|
uu[0] = BSWAP64(uu[0]);
|
|
uu[1] = BSWAP64(uu[1]);
|
|
#endif
|
|
|
|
/*
|
|
* 2^128 is about 3.4e38, which in theory could exceed the range of
|
|
* "double" (POSIX only requires 1e37). To avoid any risk of overflow,
|
|
* put the decimal point between the two halves rather than treating the
|
|
* uuid value as a 128-bit integer.
|
|
*/
|
|
return (double) uu[0] + (double) uu[1] / two64;
|
|
}
|
|
|
|
Datum
|
|
gbt_uuid_penalty(PG_FUNCTION_ARGS)
|
|
{
|
|
uuidKEY *origentry = (uuidKEY *) DatumGetPointer(((GISTENTRY *) PG_GETARG_POINTER(0))->key);
|
|
uuidKEY *newentry = (uuidKEY *) DatumGetPointer(((GISTENTRY *) PG_GETARG_POINTER(1))->key);
|
|
float *result = (float *) PG_GETARG_POINTER(2);
|
|
double olower,
|
|
oupper,
|
|
nlower,
|
|
nupper;
|
|
|
|
olower = uuid_2_double(&origentry->lower);
|
|
oupper = uuid_2_double(&origentry->upper);
|
|
nlower = uuid_2_double(&newentry->lower);
|
|
nupper = uuid_2_double(&newentry->upper);
|
|
|
|
penalty_num(result, olower, oupper, nlower, nupper);
|
|
|
|
PG_RETURN_POINTER(result);
|
|
}
|
|
|
|
Datum
|
|
gbt_uuid_picksplit(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_POINTER(gbt_num_picksplit(
|
|
(GistEntryVector *) PG_GETARG_POINTER(0),
|
|
(GIST_SPLITVEC *) PG_GETARG_POINTER(1),
|
|
&tinfo, fcinfo->flinfo
|
|
));
|
|
}
|
|
|
|
Datum
|
|
gbt_uuid_same(PG_FUNCTION_ARGS)
|
|
{
|
|
uuidKEY *b1 = (uuidKEY *) PG_GETARG_POINTER(0);
|
|
uuidKEY *b2 = (uuidKEY *) PG_GETARG_POINTER(1);
|
|
bool *result = (bool *) PG_GETARG_POINTER(2);
|
|
|
|
*result = gbt_num_same((void *) b1, (void *) b2, &tinfo, fcinfo->flinfo);
|
|
PG_RETURN_POINTER(result);
|
|
}
|