postgresql/contrib/intarray/_int.c
Bruce Momjian 7ff432c9ad 1. Implemented binary search in array
Oleg Bartunov
2001-10-04 15:41:14 +00:00

2195 lines
47 KiB
C

/******************************************************************************
This file contains routines that can be bound to a Postgres backend and
called by the backend in the process of processing queries. The calling
format for these routines is dictated by Postgres architecture.
******************************************************************************/
/*
#define BS_DEBUG
#define GIST_DEBUG
#define GIST_QUERY_DEBUG
*/
#include "postgres.h"
#include <float.h>
#include "access/gist.h"
#include "access/itup.h"
#include "access/rtree.h"
#include "utils/elog.h"
#include "utils/palloc.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "storage/bufpage.h"
/* number ranges for compression */
#define MAXNUMRANGE 100
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define abs(a) ((a) < (0) ? -(a) : (a))
/* dimension of array */
#define NDIM 1
/*
* flags for gist__int_ops, use ArrayType->flags
* which is unused (see array.h)
*/
#define LEAFKEY (1<<31)
#define ISLEAFKEY(x) ( ((ArrayType*)(x))->flags & LEAFKEY )
/* useful macros for accessing int4 arrays */
#define ARRPTR(x) ( (int4 *) ARR_DATA_PTR(x) )
#define ARRNELEMS(x) ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x))
#define ARRISVOID(x) ( (x) ? ( ( ARR_NDIM(x) == NDIM ) ? ( ( ARRNELEMS( x ) ) ? 0 : 1 ) : ( ( ARR_NDIM(x) ) ? (elog(ERROR,"Array is not one-dimensional: %d dimensions",ARRNELEMS( x )),1) : 0 ) ) : 0 )
#define SORT(x) \
do { \
if ( ARRNELEMS( x ) > 1 ) \
isort( ARRPTR( x ), ARRNELEMS( x ) ); \
} while(0)
#define PREPAREARR(x) \
do { \
if ( ARRNELEMS( x ) > 1 ) \
if ( isort( ARRPTR( x ), ARRNELEMS( x ) ) ) \
x = _int_unique( x ); \
} while(0)
/* "wish" function */
#define WISH_F(a,b,c) (double)( -(double)(((a)-(b))*((a)-(b))*((a)-(b)))*(c) )
/* bigint defines */
#define BITBYTE 8
#define SIGLENINT 64 /* >122 => key will toast, so very slow!!! */
#define SIGLEN ( sizeof(int)*SIGLENINT )
#define SIGLENBIT (SIGLEN*BITBYTE)
typedef char BITVEC[SIGLEN];
typedef char *BITVECP;
#define SIGPTR(x) ( (BITVECP) ARR_DATA_PTR(x) )
#define LOOPBYTE(a) \
for(i=0;i<SIGLEN;i++) {\
a;\
}
#define LOOPBIT(a) \
for(i=0;i<SIGLENBIT;i++) {\
a;\
}
/* beware of multiple evaluation of arguments to these macros! */
#define GETBYTE(x,i) ( *( (BITVECP)(x) + (int)( (i) / BITBYTE ) ) )
#define GETBITBYTE(x,i) ( (*((char*)(x)) >> (i)) & 0x01 )
#define CLRBIT(x,i) GETBYTE(x,i) &= ~( 0x01 << ( (i) % BITBYTE ) )
#define SETBIT(x,i) GETBYTE(x,i) |= ( 0x01 << ( (i) % BITBYTE ) )
#define GETBIT(x,i) ( (GETBYTE(x,i) >> ( (i) % BITBYTE )) & 0x01 )
#define HASHVAL(val) (((unsigned int)(val)) % SIGLENBIT)
#define HASH(sign, val) SETBIT((sign), HASHVAL(val))
#ifdef GIST_DEBUG
static void
printarr(ArrayType *a, int num)
{
char bbb[16384];
char *cur;
int l;
int *d;
d = ARRPTR(a);
*bbb = '\0';
cur = bbb;
for (l = 0; l < min(num, ARRNELEMS(a)); l++)
{
sprintf(cur, "%d ", d[l]);
cur = strchr(cur, '\0');
}
elog(NOTICE, "\t\t%s", bbb);
}
static void
printbitvec(BITVEC bv)
{
int i;
char str[SIGLENBIT + 1];
str[SIGLENBIT] = '\0';
LOOPBIT(str[i] = (GETBIT(bv, i)) ? '1' : '0');
elog(NOTICE, "BV: %s", str);
}
#endif
/*
** types for functions
*/
typedef ArrayType *(*formarray) (ArrayType *, ArrayType *);
typedef void (*formfloat) (ArrayType *, float *);
/*
** usefull function
*/
static bool isort(int4 *a, const int len);
static ArrayType *new_intArrayType(int num);
static ArrayType *copy_intArrayType(ArrayType *a);
static ArrayType *resize_intArrayType(ArrayType *a, int num);
static int internal_size(int *a, int len);
static ArrayType *_int_unique(ArrayType *a);
/* common GiST function*/
static GIST_SPLITVEC *_int_common_picksplit(bytea *entryvec,
GIST_SPLITVEC *v,
formarray unionf,
formarray interf,
formfloat sizef,
float coef);
static float *_int_common_penalty(GISTENTRY *origentry,
GISTENTRY *newentry,
float *result,
formarray unionf,
formfloat sizef);
static ArrayType *_int_common_union(bytea *entryvec,
int *sizep,
formarray unionf);
/*
** GiST support methods
*/
PG_FUNCTION_INFO_V1( g_int_consistent );
PG_FUNCTION_INFO_V1( g_int_compress );
PG_FUNCTION_INFO_V1( g_int_decompress );
PG_FUNCTION_INFO_V1( g_int_penalty );
PG_FUNCTION_INFO_V1( g_int_picksplit );
PG_FUNCTION_INFO_V1( g_int_union );
PG_FUNCTION_INFO_V1( g_int_same );
Datum g_int_consistent(PG_FUNCTION_ARGS);
Datum g_int_compress(PG_FUNCTION_ARGS);
Datum g_int_decompress(PG_FUNCTION_ARGS);
Datum g_int_penalty(PG_FUNCTION_ARGS);
Datum g_int_picksplit(PG_FUNCTION_ARGS);
Datum g_int_union(PG_FUNCTION_ARGS);
Datum g_int_same(PG_FUNCTION_ARGS);
/*
** R-tree support functions
*/
static bool inner_int_contains(ArrayType *a, ArrayType *b);
static bool inner_int_overlap(ArrayType *a, ArrayType *b);
static ArrayType *inner_int_union(ArrayType *a, ArrayType *b);
static ArrayType *inner_int_inter(ArrayType *a, ArrayType *b);
static void rt__int_size(ArrayType *a, float *sz);
PG_FUNCTION_INFO_V1( _int_different );
PG_FUNCTION_INFO_V1( _int_same );
PG_FUNCTION_INFO_V1( _int_contains );
PG_FUNCTION_INFO_V1( _int_contained );
PG_FUNCTION_INFO_V1( _int_overlap );
PG_FUNCTION_INFO_V1( _int_union );
PG_FUNCTION_INFO_V1( _int_inter );
Datum _int_different(PG_FUNCTION_ARGS);
Datum _int_same(PG_FUNCTION_ARGS);
Datum _int_contains(PG_FUNCTION_ARGS);
Datum _int_contained(PG_FUNCTION_ARGS);
Datum _int_overlap(PG_FUNCTION_ARGS);
Datum _int_union(PG_FUNCTION_ARGS);
Datum _int_inter(PG_FUNCTION_ARGS);
/*
** _intbig methods
*/
PG_FUNCTION_INFO_V1( g_intbig_consistent );
PG_FUNCTION_INFO_V1( g_intbig_compress );
PG_FUNCTION_INFO_V1( g_intbig_decompress );
PG_FUNCTION_INFO_V1( g_intbig_penalty );
PG_FUNCTION_INFO_V1( g_intbig_picksplit );
PG_FUNCTION_INFO_V1( g_intbig_union );
PG_FUNCTION_INFO_V1( g_intbig_same );
Datum g_intbig_consistent(PG_FUNCTION_ARGS);
Datum g_intbig_compress(PG_FUNCTION_ARGS);
Datum g_intbig_decompress(PG_FUNCTION_ARGS);
Datum g_intbig_penalty(PG_FUNCTION_ARGS);
Datum g_intbig_picksplit(PG_FUNCTION_ARGS);
Datum g_intbig_union(PG_FUNCTION_ARGS);
Datum g_intbig_same(PG_FUNCTION_ARGS);
static bool _intbig_contains(ArrayType *a, ArrayType *b);
static bool _intbig_overlap(ArrayType *a, ArrayType *b);
static ArrayType *_intbig_union(ArrayType *a, ArrayType *b);
static ArrayType * _intbig_inter(ArrayType *a, ArrayType *b);
static void rt__intbig_size(ArrayType *a, float *sz);
/*****************************************************************************
* Boolean Search
*****************************************************************************/
#define BooleanSearchStrategy 20
/*
* item in polish notation with back link
* to left operand
*/
typedef struct ITEM {
int2 type;
int2 left;
int4 val;
} ITEM;
typedef struct {
int4 len;
int4 size;
char data[1];
} QUERYTYPE;
#define HDRSIZEQT ( 2*sizeof(int4) )
#define COMPUTESIZE(size) ( HDRSIZEQT + size * sizeof(ITEM) )
#define GETQUERY(x) (ITEM*)( (char*)(x)+HDRSIZEQT )
PG_FUNCTION_INFO_V1(bqarr_in);
PG_FUNCTION_INFO_V1(bqarr_out);
Datum bqarr_in(PG_FUNCTION_ARGS);
Datum bqarr_out(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(boolop);
Datum boolop(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(rboolop);
Datum rboolop(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(querytree);
Datum querytree(PG_FUNCTION_ARGS);
static bool signconsistent( QUERYTYPE *query, BITVEC sign, bool leaf );
static bool execconsistent( QUERYTYPE *query, ArrayType *array, bool leaf );
/*****************************************************************************
* GiST functions
*****************************************************************************/
/*
** The GiST Consistent method for _intments
** Should return false if for all data items x below entry,
** the predicate x op query == FALSE, where op is the oper
** corresponding to strategy in the pg_amop table.
*/
Datum
g_int_consistent(PG_FUNCTION_ARGS) {
GISTENTRY *entry = (GISTENTRY *)PG_GETARG_POINTER(0);
ArrayType *query = ( ArrayType * )PG_GETARG_POINTER(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
bool retval;
if ( strategy == BooleanSearchStrategy )
PG_RETURN_BOOL(execconsistent( (QUERYTYPE*)query,
(ArrayType *) DatumGetPointer(entry->key),
ISLEAFKEY( (ArrayType *) DatumGetPointer(entry->key) ) ) );
/* XXX are we sure it's safe to scribble on the query object here? */
/* XXX what about toasted input? */
/* sort query for fast search, key is already sorted */
if ( ARRISVOID( query ) )
PG_RETURN_BOOL(false);
PREPAREARR(query);
switch (strategy)
{
case RTOverlapStrategyNumber:
retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
query);
break;
case RTSameStrategyNumber:
case RTContainsStrategyNumber:
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
query);
break;
case RTContainedByStrategyNumber:
if ( GIST_LEAF(entry) )
retval = inner_int_contains(query,
(ArrayType *) DatumGetPointer(entry->key) );
else
retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
query);
break;
default:
retval = FALSE;
}
PG_RETURN_BOOL(retval);
}
Datum
g_int_union(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER( _int_common_union(
(bytea *) PG_GETARG_POINTER(0),
(int *) PG_GETARG_POINTER(1),
inner_int_union
) );
}
/*
** GiST Compress and Decompress methods
*/
Datum
g_int_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *)PG_GETARG_POINTER(0);
GISTENTRY *retval;
ArrayType *r;
int len;
int *dr;
int i,
min,
cand;
if (entry->leafkey) {
r = (ArrayType *) PG_DETOAST_DATUM_COPY(entry->key);
PREPAREARR(r);
r->flags |= LEAFKEY;
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
PG_RETURN_POINTER(retval);
}
r = (ArrayType *) PG_DETOAST_DATUM(entry->key);
if ( ISLEAFKEY( r ) || ARRISVOID(r) ) {
if ( r != (ArrayType*)DatumGetPointer(entry->key) )
pfree(r);
PG_RETURN_POINTER(entry);
}
if ( (len=ARRNELEMS(r)) >= 2 * MAXNUMRANGE) { /* compress */
if ( r == (ArrayType*)DatumGetPointer( entry->key) )
r = (ArrayType *) PG_DETOAST_DATUM_COPY(entry->key);
r = resize_intArrayType(r, 2 * (len));
dr = ARRPTR(r);
for (i = len - 1; i >= 0; i--)
dr[2 * i] = dr[2 * i + 1] = dr[i];
len *= 2;
cand = 1;
while (len > MAXNUMRANGE * 2)
{
min = 0x7fffffff;
for (i = 2; i < len; i += 2)
if (min > (dr[i] - dr[i - 1]))
{
min = (dr[i] - dr[i - 1]);
cand = i;
}
memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int));
len -= 2;
}
r = resize_intArrayType(r, len);
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
PG_RETURN_POINTER(retval);
} else {
PG_RETURN_POINTER(entry);
}
PG_RETURN_POINTER(entry);
}
Datum
g_int_decompress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *)PG_GETARG_POINTER(0);
GISTENTRY *retval;
ArrayType *r;
int *dr,
lenr;
ArrayType *in;
int lenin;
int *din;
int i,
j;
in = (ArrayType *) PG_DETOAST_DATUM(entry->key);
if ( ARRISVOID(in) ) {
PG_RETURN_POINTER(entry);
}
lenin = ARRNELEMS(in);
if (lenin < 2 * MAXNUMRANGE || ISLEAFKEY( in ) ) { /* not comressed value */
if ( in != (ArrayType *) DatumGetPointer(entry->key)) {
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(in),
entry->rel, entry->page, entry->offset, VARSIZE(in), FALSE);
PG_RETURN_POINTER(retval);
}
PG_RETURN_POINTER(entry);
}
din = ARRPTR(in);
lenr = internal_size(din, lenin);
r = new_intArrayType(lenr);
dr = ARRPTR(r);
for (i = 0; i < lenin; i += 2)
for (j = din[i]; j <= din[i + 1]; j++)
if ((!i) || *(dr - 1) != j)
*dr++ = j;
if (in != (ArrayType *) DatumGetPointer(entry->key))
pfree(in);
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
PG_RETURN_POINTER(retval);
}
/*
** The GiST Penalty method for _intments
*/
Datum
g_int_penalty(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER( _int_common_penalty(
(GISTENTRY *)PG_GETARG_POINTER(0),
(GISTENTRY *)PG_GETARG_POINTER(1),
(float *) PG_GETARG_POINTER(2),
inner_int_union, rt__int_size
) );
}
Datum
g_int_picksplit(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER( _int_common_picksplit(
(bytea *)PG_GETARG_POINTER(0),
(GIST_SPLITVEC *)PG_GETARG_POINTER(1),
inner_int_union,
inner_int_inter,
rt__int_size,
0.01
) );
}
/*
** Equality methods
*/
Datum
g_int_same(PG_FUNCTION_ARGS)
{
ArrayType *a = (ArrayType*)PointerGetDatum(PG_GETARG_POINTER(0));
ArrayType *b = (ArrayType*)PointerGetDatum(PG_GETARG_POINTER(1));
bool *result = (bool *)PG_GETARG_POINTER(2);
int4 n = ARRNELEMS(a);
int4 *da, *db;
if ( n != ARRNELEMS(b) ) {
*result = false;
PG_RETURN_POINTER(result);
}
*result = TRUE;
da = ARRPTR(a);
db = ARRPTR(b);
while(n--)
if (*da++ != *db++) {
*result = FALSE;
break;
}
PG_RETURN_POINTER(result);
}
Datum
_int_contained(PG_FUNCTION_ARGS)
{
PG_RETURN_BOOL( DatumGetBool(
DirectFunctionCall2(
_int_contains,
PointerGetDatum(PG_GETARG_POINTER(1)),
PointerGetDatum(PG_GETARG_POINTER(0))
)
));
}
Datum
_int_contains(PG_FUNCTION_ARGS)
{
ArrayType *a = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
ArrayType *b = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
bool res;
if (ARRISVOID(a) || ARRISVOID(b))
return FALSE;
PREPAREARR(a);
PREPAREARR(b);
res = inner_int_contains(a, b);
pfree(a);
pfree(b);
PG_RETURN_BOOL( res );
}
static bool
inner_int_contains(ArrayType *a, ArrayType *b)
{
int na,
nb;
int i,
j,
n;
int *da,
*db;
if (ARRISVOID(a) || ARRISVOID(b))
return FALSE;
na = ARRNELEMS(a);
nb = ARRNELEMS(b);
da = ARRPTR(a);
db = ARRPTR(b);
#ifdef GIST_DEBUG
elog(NOTICE, "contains %d %d", na, nb);
#endif
i = j = n = 0;
while (i < na && j < nb)
if (da[i] < db[j])
i++;
else if (da[i] == db[j])
{
n++;
i++;
j++;
}
else
j++;
return (n == nb) ? TRUE : FALSE;
}
/*****************************************************************************
* Operator class for R-tree indexing
*****************************************************************************/
Datum
_int_different(PG_FUNCTION_ARGS)
{
PG_RETURN_BOOL( ! DatumGetBool(
DirectFunctionCall2(
_int_same,
PointerGetDatum(PG_GETARG_POINTER(0)),
PointerGetDatum(PG_GETARG_POINTER(1))
)
));
}
Datum
_int_same(PG_FUNCTION_ARGS)
{
ArrayType *a = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
ArrayType *b = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
int na,
nb;
int n;
int *da,
*db;
bool result;
bool avoid = ARRISVOID(a);
bool bvoid = ARRISVOID(b);
if (avoid || bvoid)
return (avoid && bvoid) ? TRUE : FALSE;
SORT(a);
SORT(b);
na = ARRNELEMS(a);
nb = ARRNELEMS(b);
da = ARRPTR(a);
db = ARRPTR(b);
result = FALSE;
if (na == nb)
{
result = TRUE;
for (n = 0; n < na; n++)
if (da[n] != db[n])
{
result = FALSE;
break;
}
}
pfree(a);
pfree(b);
PG_RETURN_BOOL(result);
}
/* _int_overlap -- does a overlap b?
*/
Datum
_int_overlap(PG_FUNCTION_ARGS)
{
ArrayType *a = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
ArrayType *b = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
bool result;
if (ARRISVOID(a) || ARRISVOID(b))
return FALSE;
SORT(a);
SORT(b);
result = inner_int_overlap(a, b);
pfree(a);
pfree(b);
PG_RETURN_BOOL( result );
}
static bool
inner_int_overlap(ArrayType *a, ArrayType *b)
{
int na,
nb;
int i,
j;
int *da,
*db;
if (ARRISVOID(a) || ARRISVOID(b))
return FALSE;
na = ARRNELEMS(a);
nb = ARRNELEMS(b);
da = ARRPTR(a);
db = ARRPTR(b);
#ifdef GIST_DEBUG
elog(NOTICE, "g_int_overlap");
#endif
i = j = 0;
while (i < na && j < nb)
if (da[i] < db[j])
i++;
else if (da[i] == db[j])
return TRUE;
else
j++;
return FALSE;
}
Datum
_int_union(PG_FUNCTION_ARGS)
{
ArrayType *a = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
ArrayType *b = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
ArrayType *result;
if (!ARRISVOID(a))
SORT(a);
if (!ARRISVOID(b))
SORT(b);
result = inner_int_union(a, b);
if (a)
pfree(a);
if (b)
pfree(b);
PG_RETURN_POINTER( result );
}
static ArrayType *
inner_int_union(ArrayType *a, ArrayType *b)
{
ArrayType *r = NULL;
int na,
nb;
int *da,
*db,
*dr;
int i,
j;
if (ARRISVOID(a) && ARRISVOID(b))
return new_intArrayType(0);
if (ARRISVOID(a))
r = copy_intArrayType(b);
if (ARRISVOID(b))
r = copy_intArrayType(a);
if (r)
dr = ARRPTR(r);
else
{
na = ARRNELEMS(a);
nb = ARRNELEMS(b);
da = ARRPTR(a);
db = ARRPTR(b);
r = new_intArrayType(na + nb);
dr = ARRPTR(r);
/* union */
i = j = 0;
while (i < na && j < nb)
if (da[i] < db[j])
*dr++ = da[i++];
else
*dr++ = db[j++];
while (i < na)
*dr++ = da[i++];
while (j < nb)
*dr++ = db[j++];
}
if (ARRNELEMS(r) > 1)
r = _int_unique(r);
return r;
}
Datum
_int_inter(PG_FUNCTION_ARGS)
{
ArrayType *a = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(0)));
ArrayType *b = (ArrayType *)DatumGetPointer(PG_DETOAST_DATUM_COPY(PG_GETARG_DATUM(1)));
ArrayType *result;
if (ARRISVOID(a) || ARRISVOID(b))
PG_RETURN_POINTER(new_intArrayType(0));
SORT(a);
SORT(b);
result = inner_int_inter(a, b);
pfree(a);
pfree(b);
PG_RETURN_POINTER( result );
}
static ArrayType *
inner_int_inter(ArrayType *a, ArrayType *b)
{
ArrayType *r;
int na,
nb;
int *da,
*db,
*dr;
int i,
j;
if (ARRISVOID(a) || ARRISVOID(b))
return new_intArrayType(0);
na = ARRNELEMS(a);
nb = ARRNELEMS(b);
da = ARRPTR(a);
db = ARRPTR(b);
r = new_intArrayType(min(na, nb));
dr = ARRPTR(r);
i = j = 0;
while (i < na && j < nb)
if (da[i] < db[j])
i++;
else if (da[i] == db[j])
{
if (i + j == 0 || (i + j > 0 && *(dr - 1) != db[j]))
*dr++ = db[j];
i++;
j++;
}
else
j++;
if ((dr - ARRPTR(r)) == 0)
{
pfree(r);
return new_intArrayType(0);
}
else
return resize_intArrayType(r, dr - ARRPTR(r));
}
static void
rt__int_size(ArrayType *a, float *size)
{
*size = (float) ARRNELEMS(a);
return;
}
/*****************************************************************************
* Miscellaneous operators and functions
*****************************************************************************/
/* len >= 2 */
static bool
isort(int4 *a, int len)
{
int4 tmp,
index;
int4 *cur,
*end;
bool r = FALSE;
end = a + len;
do
{
index = 0;
cur = a + 1;
while (cur < end)
{
if (*(cur - 1) > *cur)
{
tmp = *(cur - 1);
*(cur - 1) = *cur;
*cur = tmp;
index = 1;
}
else if (!r && *(cur - 1) == *cur)
r = TRUE;
cur++;
}
} while (index);
return r;
}
static ArrayType *
new_intArrayType(int num)
{
ArrayType *r;
int nbytes = ARR_OVERHEAD(NDIM) + sizeof(int) * num;
r = (ArrayType *) palloc(nbytes);
MemSet(r, 0, nbytes);
r->size = nbytes;
r->ndim = NDIM;
r->flags &= ~LEAFKEY;
*((int *) ARR_DIMS(r)) = num;
*((int *) ARR_LBOUND(r)) = 1;
return r;
}
static ArrayType *
resize_intArrayType(ArrayType *a, int num)
{
int nbytes = ARR_OVERHEAD(NDIM) + sizeof(int) * num;
if (num == ARRNELEMS(a))
return a;
a = (ArrayType *) repalloc(a, nbytes);
a->size = nbytes;
*((int *) ARR_DIMS(a)) = num;
return a;
}
static ArrayType *
copy_intArrayType(ArrayType *a)
{
ArrayType *r;
r = new_intArrayType(ARRNELEMS(a));
memmove(r, a, VARSIZE(a));
return r;
}
/* num for compressed key */
static int
internal_size(int *a, int len)
{
int i,
size = 0;
for (i = 0; i < len; i += 2)
if (!i || a[i] != a[i - 1]) /* do not count repeated range */
size += a[i + 1] - a[i] + 1;
return size;
}
/* r is sorted and size of r > 1 */
static ArrayType *
_int_unique(ArrayType *r)
{
int *tmp,
*dr,
*data;
int num = ARRNELEMS(r);
data = tmp = dr = ARRPTR(r);
while (tmp - data < num)
if (*tmp != *dr)
*(++dr) = *tmp++;
else
tmp++;
return resize_intArrayType(r, dr + 1 - ARRPTR(r));
}
/*********************************************************************
** intbig functions
*********************************************************************/
static void
gensign(BITVEC sign, int *a, int len)
{
int i;
/* we assume that the sign vector is previously zeroed */
for (i = 0; i < len; i++)
{
HASH(sign, *a);
a++;
}
}
static bool
_intbig_overlap(ArrayType *a, ArrayType *b)
{
int i;
BITVECP da,
db;
da = SIGPTR(a);
db = SIGPTR(b);
LOOPBYTE(if (da[i] & db[i]) return TRUE);
return FALSE;
}
static bool
_intbig_contains(ArrayType *a, ArrayType *b)
{
int i;
BITVECP da,
db;
da = SIGPTR(a);
db = SIGPTR(b);
LOOPBYTE(if (db[i] & ~da[i]) return FALSE);
return TRUE;
}
static void
rt__intbig_size(ArrayType *a, float *sz)
{
int i,
len = 0;
BITVECP bv = SIGPTR(a);
LOOPBYTE(
len +=
GETBITBYTE(bv,0) +
GETBITBYTE(bv,1) +
GETBITBYTE(bv,2) +
GETBITBYTE(bv,3) +
GETBITBYTE(bv,4) +
GETBITBYTE(bv,5) +
GETBITBYTE(bv,6) +
GETBITBYTE(bv,7) ;
bv = (BITVECP) ( ((char*)bv) + 1 );
);
*sz = (float) len;
return;
}
static ArrayType *
_intbig_union(ArrayType *a, ArrayType *b)
{
ArrayType *r;
BITVECP da,
db,
dr;
int i;
r = new_intArrayType(SIGLENINT);
da = SIGPTR(a);
db = SIGPTR(b);
dr = SIGPTR(r);
LOOPBYTE(dr[i] = da[i] | db[i]);
return r;
}
static ArrayType *
_intbig_inter(ArrayType *a, ArrayType *b)
{
ArrayType *r;
BITVECP da,
db,
dr;
int i;
r = new_intArrayType(SIGLENINT);
da = SIGPTR(a);
db = SIGPTR(b);
dr = SIGPTR(r);
LOOPBYTE(dr[i] = da[i] & db[i]);
return r;
}
Datum
g_intbig_same(PG_FUNCTION_ARGS)
{
ArrayType *a = (ArrayType *)PG_GETARG_POINTER(0);
ArrayType *b = (ArrayType *)PG_GETARG_POINTER(1);
bool *result = (bool *)PG_GETARG_POINTER(2);
BITVECP da,
db;
int i;
da = SIGPTR(a);
db = SIGPTR(b);
LOOPBYTE(
if (da[i] != db[i])
{
*result = FALSE;
PG_RETURN_POINTER( result );
}
);
*result = TRUE;
PG_RETURN_POINTER( result );
}
Datum
g_intbig_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *)PG_GETARG_POINTER(0);
GISTENTRY *retval;
ArrayType *r,
*in;
bool maycompress = true;
int i;
if (DatumGetPointer(entry->key) != NULL)
in = (ArrayType *) PG_DETOAST_DATUM(entry->key);
else
in = NULL;
if (!entry->leafkey) {
LOOPBYTE(
if ( ( ((char*)ARRPTR(in))[i] & 0xff ) != 0xff ) {
maycompress = false;
break;
}
);
if ( maycompress ) {
retval = palloc(sizeof(GISTENTRY));
r = new_intArrayType(1);
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
PG_RETURN_POINTER( retval );
}
PG_RETURN_POINTER( entry );
}
retval = palloc(sizeof(GISTENTRY));
r = new_intArrayType( SIGLENINT );
if (ARRISVOID(in))
{
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
if (in != (ArrayType *) DatumGetPointer(entry->key))
pfree(in);
PG_RETURN_POINTER (retval);
}
gensign(SIGPTR(r),
ARRPTR(in),
ARRNELEMS(in));
LOOPBYTE(
if( ( ((char*)ARRPTR(in))[i] & 0xff ) != 0xff ) {
maycompress = false;
break;
}
);
if ( maycompress ) {
pfree(r);
r = new_intArrayType(1);
}
gistentryinit(*retval, PointerGetDatum(r), entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
if ( in != (ArrayType *) DatumGetPointer(entry->key))
pfree(in);
PG_RETURN_POINTER (retval);
}
Datum
g_intbig_decompress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *)PG_GETARG_POINTER(0);
ArrayType *key;
key = (ArrayType *) PG_DETOAST_DATUM(entry->key);
if ( key != (ArrayType *) DatumGetPointer(entry->key))
{
GISTENTRY *retval;
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(key),
entry->rel, entry->page, entry->offset, (key) ? VARSIZE(key) : 0, FALSE);
PG_RETURN_POINTER( retval );
}
if ( ARRNELEMS(key) == 1 ) {
GISTENTRY *retval;
ArrayType *newkey;
retval = palloc(sizeof(GISTENTRY));
newkey = new_intArrayType(SIGLENINT);
MemSet( (void*)ARRPTR(newkey), 0xff, SIGLEN );
gistentryinit(*retval, PointerGetDatum(newkey),
entry->rel, entry->page, entry->offset, VARSIZE(newkey), FALSE);
PG_RETURN_POINTER( retval );
}
PG_RETURN_POINTER( entry );
}
Datum
g_intbig_picksplit(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER( _int_common_picksplit(
(bytea *)PG_GETARG_POINTER(0),
(GIST_SPLITVEC *)PG_GETARG_POINTER(1),
_intbig_union,
_intbig_inter,
rt__intbig_size,
0.1
) );
}
Datum
g_intbig_union(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER( _int_common_union(
(bytea *) PG_GETARG_POINTER(0),
(int *) PG_GETARG_POINTER(1),
_intbig_union
) );
}
Datum
g_intbig_penalty(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER( _int_common_penalty(
(GISTENTRY *)PG_GETARG_POINTER(0),
(GISTENTRY *)PG_GETARG_POINTER(1),
(float *) PG_GETARG_POINTER(2),
_intbig_union, rt__intbig_size
) );
}
Datum
g_intbig_consistent(PG_FUNCTION_ARGS) {
GISTENTRY *entry = (GISTENTRY *)PG_GETARG_POINTER(0);
ArrayType *query = ( ArrayType * )PG_GETARG_POINTER(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
bool retval;
ArrayType *q;
if ( strategy == BooleanSearchStrategy )
PG_RETURN_BOOL(signconsistent( (QUERYTYPE*)query,
SIGPTR((ArrayType *) DatumGetPointer(entry->key)),
false ) );
/* XXX what about toasted input? */
if (ARRISVOID(query))
return FALSE;
q = new_intArrayType(SIGLENINT);
gensign(SIGPTR(q),
ARRPTR(query),
ARRNELEMS(query));
switch (strategy)
{
case RTOverlapStrategyNumber:
retval = _intbig_overlap((ArrayType *) DatumGetPointer(entry->key), q);
break;
case RTSameStrategyNumber:
case RTContainsStrategyNumber:
retval = _intbig_contains((ArrayType *) DatumGetPointer(entry->key), q);
break;
case RTContainedByStrategyNumber:
retval = _intbig_overlap((ArrayType *) DatumGetPointer(entry->key), q);
break;
default:
retval = FALSE;
}
pfree(q);
PG_RETURN_BOOL(retval);
}
/*****************************************************************
** Common GiST Method
*****************************************************************/
/*
** The GiST Union method for _intments
** returns the minimal set that encloses all the entries in entryvec
*/
static ArrayType *
_int_common_union(bytea *entryvec, int *sizep, formarray unionf)
{
int numranges,
i;
ArrayType *out = (ArrayType *) NULL;
ArrayType *tmp;
#ifdef GIST_DEBUG
elog(NOTICE, "_int_common_union in");
#endif
numranges = (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY);
tmp = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[0].key);
for (i = 1; i < numranges; i++)
{
out = (*unionf) (tmp, (ArrayType *)
DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key));
if (i > 1 && tmp)
pfree(tmp);
tmp = out;
}
out->flags &= ~LEAFKEY;
*sizep = VARSIZE(out);
if (*sizep == 0)
{
pfree(out);
#ifdef GIST_DEBUG
elog(NOTICE, "_int_common_union out1");
#endif
return NULL;
}
#ifdef GIST_DEBUG
elog(NOTICE, "_int_common_union out");
#endif
return (out);
}
/*****************************************
* The GiST Penalty method for _intments *
*****************************************/
static float *
_int_common_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result,
formarray unionf,
formfloat sizef)
{
ArrayType *ud;
float tmp1,
tmp2;
#ifdef GIST_DEBUG
elog(NOTICE, "penalty");
#endif
ud = (*unionf) ((ArrayType *) DatumGetPointer(origentry->key),
(ArrayType *) DatumGetPointer(newentry->key));
(*sizef) (ud, &tmp1);
(*sizef) ((ArrayType *) DatumGetPointer(origentry->key), &tmp2);
*result = tmp1 - tmp2;
pfree(ud);
#ifdef GIST_DEBUG
elog(NOTICE, "--penalty\t%g", *result);
#endif
return (result);
}
typedef struct {
OffsetNumber pos;
float cost;
} SPLITCOST;
static int
comparecost( const void *a, const void *b ) {
if ( ((SPLITCOST*)a)->cost == ((SPLITCOST*)b)->cost )
return 0;
else
return ( ((SPLITCOST*)a)->cost > ((SPLITCOST*)b)->cost ) ? 1 : -1;
}
/*
** The GiST PickSplit method for _intments
** We use Guttman's poly time split algorithm
*/
static GIST_SPLITVEC *
_int_common_picksplit(bytea *entryvec,
GIST_SPLITVEC *v,
formarray unionf,
formarray interf,
formfloat sizef,
float coef)
{
OffsetNumber i,
j;
ArrayType *datum_alpha,
*datum_beta;
ArrayType *datum_l,
*datum_r;
ArrayType *union_d,
*union_dl,
*union_dr;
ArrayType *inter_d;
bool firsttime;
float size_alpha,
size_beta,
size_union,
size_inter;
float size_waste,
waste;
float size_l,
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
OffsetNumber maxoff;
SPLITCOST *costvector;
#ifdef GIST_DEBUG
elog(NOTICE, "--------picksplit %d", (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY));
#endif
maxoff = ((VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY)) - 2;
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
datum_alpha = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key);
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
datum_beta = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[j].key);
/* compute the wasted space by unioning these guys */
/* size_waste = size_union - size_inter; */
union_d = (*unionf) (datum_alpha, datum_beta);
(*sizef) (union_d, &size_union);
inter_d = (*interf) (datum_alpha, datum_beta);
(*sizef) (inter_d, &size_inter);
size_waste = size_union - size_inter;
pfree(union_d);
if (inter_d != (ArrayType *) NULL)
pfree(inter_d);
/*
* are these a more promising split that what we've already
* seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
datum_alpha = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[seed_1].key);
datum_l = copy_intArrayType(datum_alpha);
(*sizef) (datum_l, &size_l);
datum_beta = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[seed_2].key);
datum_r = copy_intArrayType(datum_beta);
(*sizef) (datum_r, &size_r);
maxoff = OffsetNumberNext(maxoff);
/*
* sort entries
*/
costvector=(SPLITCOST*)palloc( sizeof(SPLITCOST)*maxoff );
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
costvector[i-1].pos = i;
datum_alpha = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key);
union_d = (*unionf)(datum_l, datum_alpha);
(*sizef)(union_d, &size_alpha);
pfree( union_d );
union_d = (*unionf)(datum_r, datum_alpha);
(*sizef)(union_d, &size_beta);
pfree( union_d );
costvector[i-1].cost = abs( (size_alpha - size_l) - (size_beta - size_r) );
}
qsort( (void*)costvector, maxoff, sizeof(SPLITCOST), comparecost );
/*
* Now split up the regions between the two seeds. An important
* property of this split algorithm is that the split vector v has the
* indices of items to be split in order in its left and right
* vectors. We exploit this property by doing a merge in the code
* that actually splits the page.
*
* For efficiency, we also place the new index tuple in this loop. This
* is handled at the very end, when we have placed all the existing
* tuples and i == maxoff + 1.
*/
for (j = 0; j < maxoff; j++) {
i = costvector[j].pos;
/*
* If we've already decided where to place this item, just put it
* on the right list. Otherwise, we need to figure out which page
* needs the least enlargement in order to store the item.
*/
if (i == seed_1)
{
*left++ = i;
v->spl_nleft++;
continue;
}
else if (i == seed_2)
{
*right++ = i;
v->spl_nright++;
continue;
}
/* okay, which page needs least enlargement? */
datum_alpha = (ArrayType *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key);
union_dl = (*unionf) (datum_l, datum_alpha);
union_dr = (*unionf) (datum_r, datum_alpha);
(*sizef) (union_dl, &size_alpha);
(*sizef) (union_dr, &size_beta);
/* pick which page to add it to */
if (size_alpha - size_l < size_beta - size_r + WISH_F(v->spl_nleft, v->spl_nright, coef))
{
if (datum_l)
pfree(datum_l);
if (union_dr)
pfree(union_dr);
datum_l = union_dl;
size_l = size_alpha;
*left++ = i;
v->spl_nleft++;
}
else
{
if (datum_r)
pfree(datum_r);
if (union_dl)
pfree(union_dl);
datum_r = union_dr;
size_r = size_beta;
*right++ = i;
v->spl_nright++;
}
}
pfree( costvector );
*right = *left = FirstOffsetNumber;
datum_l->flags &= ~LEAFKEY;
datum_r->flags &= ~LEAFKEY;
v->spl_ldatum = PointerGetDatum(datum_l);
v->spl_rdatum = PointerGetDatum(datum_r);
#ifdef GIST_DEBUG
elog(NOTICE, "--------ENDpicksplit %d %d", v->spl_nleft, v->spl_nright);
#endif
return v;
}
/*****************************************************************************
* BoolSearch
*****************************************************************************/
#define END 0
#define ERR 1
#define VAL 2
#define OPR 3
#define OPEN 4
#define CLOSE 5
/* parser's states */
#define WAITOPERAND 1
#define WAITENDOPERAND 2
#define WAITOPERATOR 3
/*
* node of query tree, also used
* for storing polish notation in parser
*/
typedef struct NODE {
int4 type;
int4 val;
struct NODE *next;
} NODE;
typedef struct {
char *buf;
int4 state;
int4 count;
/* reverse polish notation in list (for temprorary usage)*/
NODE *str;
/* number in str */
int4 num;
} WORKSTATE;
/*
* get token from query string
*/
static int4
gettoken( WORKSTATE* state, int4* val ) {
char nnn[16], *curnnn;
curnnn=nnn;
while(1) {
switch(state->state) {
case WAITOPERAND:
curnnn=nnn;
if ( (*(state->buf)>='0' && *(state->buf)<='9') ||
*(state->buf)=='-' ) {
state->state = WAITENDOPERAND;
*curnnn = *(state->buf);
curnnn++;
} else if ( *(state->buf) == '!' ) {
(state->buf)++;
*val = (int4)'!';
return OPR;
} else if ( *(state->buf) == '(' ) {
state->count++;
(state->buf)++;
return OPEN;
} else if ( *(state->buf) != ' ' )
return ERR;
break;
case WAITENDOPERAND:
if ( *(state->buf)>='0' && *(state->buf)<='9' ) {
*curnnn = *(state->buf);
curnnn++;
} else {
*curnnn = '\0';
*val=(int4)atoi( nnn );
state->state = WAITOPERATOR;
return ( state->count && *(state->buf) == '\0' )
? ERR : VAL;
}
break;
case WAITOPERATOR:
if ( *(state->buf) == '&' || *(state->buf) == '|' ) {
state->state = WAITOPERAND;
*val = (int4) *(state->buf);
(state->buf)++;
return OPR;
} else if ( *(state->buf) == ')' ) {
(state->buf)++;
state->count--;
return ( state->count <0 ) ? ERR : CLOSE;
} else if ( *(state->buf) == '\0' ) {
return ( state->count ) ? ERR : END;
} else if ( *(state->buf) != ' ' )
return ERR;
break;
default:
return ERR;
break;
}
(state->buf)++;
}
return END;
}
/*
* push new one in polish notation reverse view
*/
static void
pushquery( WORKSTATE *state, int4 type, int4 val ) {
NODE *tmp = (NODE*)palloc(sizeof(NODE));
tmp->type=type;
tmp->val =val;
tmp->next = state->str;
state->str = tmp;
state->num++;
}
#define STACKDEPTH 16
/*
* make polish notaion of query
*/
static int4
makepol(WORKSTATE *state) {
int4 val,type;
int4 stack[STACKDEPTH];
int4 lenstack=0;
while( (type=gettoken(state, &val))!=END ) {
switch(type) {
case VAL:
pushquery(state, type, val);
while ( lenstack && (stack[ lenstack-1 ] == (int4)'&' ||
stack[ lenstack-1 ] == (int4)'!') ) {
lenstack--;
pushquery(state, OPR, stack[ lenstack ]);
}
break;
case OPR:
if ( lenstack && val == (int4) '|' ) {
pushquery(state, OPR, val);
} else {
if ( lenstack == STACKDEPTH )
elog(ERROR,"Stack too short");
stack[ lenstack ] = val;
lenstack++;
}
break;
case OPEN:
if ( makepol( state ) == ERR ) return ERR;
if ( lenstack && (stack[ lenstack-1 ] == (int4)'&' ||
stack[ lenstack-1 ] == (int4)'!') ) {
lenstack--;
pushquery(state, OPR, stack[ lenstack ]);
}
break;
case CLOSE:
while ( lenstack ) {
lenstack--;
pushquery(state, OPR, stack[ lenstack ]);
};
return END;
break;
case ERR:
default:
elog(ERROR,"Syntax error");
return ERR;
}
}
while (lenstack) {
lenstack--;
pushquery(state, OPR, stack[ lenstack ]);
};
return END;
}
typedef struct {
int4 *arrb;
int4 *arre;
} CHKVAL;
/*
* is there value 'val' in array or not ?
*/
static bool
checkcondition_arr( void *checkval, int4 val ) {
int4 *StopLow = ((CHKVAL*)checkval)->arrb;
int4 *StopHigh = ((CHKVAL*)checkval)->arre;
int4 *StopMiddle;
/* Loop invariant: StopLow <= val < StopHigh */
while (StopLow < StopHigh) {
StopMiddle = StopLow + (StopHigh - StopLow) / 2;
if (*StopMiddle == val)
return (true);
else if (*StopMiddle < val )
StopLow = StopMiddle + 1;
else
StopHigh = StopMiddle;
}
return false;
}
static bool
checkcondition_bit( void *checkval, int4 val ) {
return GETBIT( checkval, HASHVAL( val ) );
}
/*
* check for boolean condition
*/
static bool
execute( ITEM* curitem, void *checkval, bool calcnot, bool (*chkcond)(void *checkval, int4 val )) {
if ( curitem->type == VAL ) {
return (*chkcond)( checkval, curitem->val );
} else if ( curitem->val == (int4)'!' ) {
return ( calcnot ) ?
( ( execute(curitem - 1, checkval, calcnot, chkcond) ) ? false : true )
: true;
} else if ( curitem->val == (int4)'&' ) {
if ( execute(curitem + curitem->left, checkval, calcnot, chkcond) )
return execute(curitem - 1, checkval, calcnot, chkcond);
else
return false;
} else { /* |-operator */
if ( execute(curitem + curitem->left, checkval, calcnot, chkcond) )
return true;
else
return execute(curitem - 1, checkval, calcnot, chkcond);
}
return false;
}
/*
* signconsistent & execconsistent called by *_consistent
*/
static bool
signconsistent( QUERYTYPE *query, BITVEC sign, bool calcnot ) {
return execute(
GETQUERY(query) + query->size-1 ,
(void*)sign, calcnot,
checkcondition_bit
);
}
static bool
execconsistent( QUERYTYPE *query, ArrayType *array, bool calcnot ) {
CHKVAL chkval;
chkval.arrb = ARRPTR(array);
chkval.arre = chkval.arrb + ARRNELEMS(array);
return execute(
GETQUERY(query) + query->size-1 ,
(void*)&chkval, calcnot,
checkcondition_arr
);
}
/*
* boolean operations
*/
Datum
rboolop(PG_FUNCTION_ARGS) {
return DirectFunctionCall2(
boolop,
PG_GETARG_DATUM(1),
PG_GETARG_DATUM(0)
);
}
Datum
boolop(PG_FUNCTION_ARGS) {
ArrayType *val = ( ArrayType * )PG_DETOAST_DATUM_COPY(PG_GETARG_POINTER(0));
QUERYTYPE *query = ( QUERYTYPE * )PG_DETOAST_DATUM(PG_GETARG_POINTER(1));
CHKVAL chkval;
bool result;
if ( ARRISVOID( val ) ) {
pfree(val);
PG_FREE_IF_COPY(query,1);
PG_RETURN_BOOL( false );
}
PREPAREARR(val);
chkval.arrb = ARRPTR(val);
chkval.arre = chkval.arrb + ARRNELEMS(val);
result = execute(
GETQUERY(query) + query->size-1 ,
&chkval, true,
checkcondition_arr
);
pfree(val);
PG_FREE_IF_COPY(query,1);
PG_RETURN_BOOL( result );
}
static void
findoprnd( ITEM *ptr, int4 *pos ) {
#ifdef BS_DEBUG
elog(NOTICE, ( ptr[*pos].type == OPR ) ?
"%d %c" : "%d %d ", *pos, ptr[*pos].val );
#endif
if ( ptr[*pos].type == VAL ) {
ptr[*pos].left = 0;
(*pos)--;
} else if ( ptr[*pos].val == (int4)'!' ) {
ptr[*pos].left = -1;
(*pos)--;
findoprnd( ptr, pos );
} else {
ITEM *curitem = &ptr[*pos];
int4 tmp = *pos;
(*pos)--;
findoprnd(ptr,pos);
curitem->left = *pos - tmp;
findoprnd(ptr,pos);
}
}
/*
* input
*/
Datum
bqarr_in(PG_FUNCTION_ARGS) {
char *buf=(char*)PG_GETARG_POINTER(0);
WORKSTATE state;
int4 i;
QUERYTYPE *query;
int4 commonlen;
ITEM *ptr;
NODE *tmp;
int4 pos=0;
#ifdef BS_DEBUG
char pbuf[16384],*cur;
#endif
state.buf = buf;
state.state = WAITOPERAND;
state.count = 0;
state.num = 0;
state.str=NULL;
/* make polish notation (postfix, but in reverse order) */
makepol( &state );
if (!state.num)
elog( ERROR,"Empty query");
commonlen = COMPUTESIZE(state.num);
query = (QUERYTYPE*) palloc( commonlen );
query->len = commonlen;
query->size = state.num;
ptr = GETQUERY(query);
for(i=state.num-1; i>=0; i-- ) {
ptr[i].type = state.str->type;
ptr[i].val = state.str->val;
tmp = state.str->next;
pfree( state.str );
state.str = tmp;
}
pos = query->size-1;
findoprnd( ptr, &pos );
#ifdef BS_DEBUG
cur = pbuf;
*cur = '\0';
for( i=0;i<query->size;i++ ) {
if ( ptr[i].type == OPR )
sprintf(cur, "%c(%d) ", ptr[i].val, ptr[i].left);
else
sprintf(cur, "%d ", ptr[i].val );
cur = strchr(cur,'\0');
}
elog(NOTICE,"POR: %s", pbuf);
#endif
PG_RETURN_POINTER( query );
}
/*
* out function
*/
typedef struct {
ITEM *curpol;
char *buf;
char *cur;
int4 buflen;
} INFIX;
#define RESIZEBUF(inf,addsize) while( ( inf->cur - inf->buf ) + addsize + 1 >= inf->buflen ) { \
int4 len = inf->cur - inf->buf; \
inf->buflen *= 2; \
inf->buf = (char*) repalloc( (void*)inf->buf, inf->buflen ); \
inf->cur = inf->buf + len; \
}
static void
infix(INFIX *in, bool first) {
if ( in->curpol->type == VAL ) {
RESIZEBUF(in, 11);
sprintf(in->cur, "%d", in->curpol->val );
in->cur = strchr( in->cur, '\0' );
in->curpol--;
} else if ( in->curpol->val == (int4)'!' ) {
bool isopr = false;
RESIZEBUF(in, 1);
*(in->cur) = '!';
in->cur++;
*(in->cur) = '\0';
in->curpol--;
if ( in->curpol->type == OPR ) {
isopr = true;
RESIZEBUF(in, 2);
sprintf(in->cur, "( ");
in->cur = strchr( in->cur, '\0' );
}
infix( in, isopr );
if ( isopr ) {
RESIZEBUF(in, 2);
sprintf(in->cur, " )");
in->cur = strchr( in->cur, '\0' );
}
} else {
int4 op = in->curpol->val;
INFIX nrm;
in->curpol--;
if ( op == (int4)'|' && ! first) {
RESIZEBUF(in, 2);
sprintf(in->cur, "( ");
in->cur = strchr( in->cur, '\0' );
}
nrm.curpol = in->curpol;
nrm.buflen = 16;
nrm.cur = nrm.buf = (char*)palloc( sizeof(char) * nrm.buflen );
/* get right operand */
infix( &nrm, false );
/* get & print left operand */
in->curpol = nrm.curpol;
infix( in, false );
/* print operator & right operand*/
RESIZEBUF(in, 3 + (nrm.cur - nrm.buf) );
sprintf(in->cur, " %c %s", op, nrm.buf);
in->cur = strchr( in->cur, '\0' );
pfree( nrm.buf );
if ( op == (int4)'|' && ! first) {
RESIZEBUF(in, 2);
sprintf(in->cur, " )");
in->cur = strchr( in->cur, '\0' );
}
}
}
Datum
bqarr_out(PG_FUNCTION_ARGS) {
QUERYTYPE *query = (QUERYTYPE*)PG_DETOAST_DATUM(PG_GETARG_POINTER(0));
INFIX nrm;
if ( query->size == 0 )
elog(ERROR,"Empty");
nrm.curpol = GETQUERY(query) + query->size - 1;
nrm.buflen = 32;
nrm.cur = nrm.buf = (char*)palloc( sizeof(char) * nrm.buflen );
*(nrm.cur) = '\0';
infix( &nrm, true );
PG_FREE_IF_COPY(query,0);
PG_RETURN_POINTER( nrm.buf );
}
static int4
countdroptree( ITEM *q, int4 pos ) {
if ( q[pos].type == VAL ) {
return 1;
} else if ( q[pos].val == (int4)'!' ) {
return 1+countdroptree(q, pos-1);
} else {
return 1 + countdroptree(q, pos-1) + countdroptree(q, pos + q[pos].left);
}
}
/*
* common algorithm:
* result of all '!' will be = 'true', so
* we can modify query tree for clearing
*/
static int4
shorterquery( ITEM *q, int4 len ) {
int4 index,posnot,poscor;
bool notisleft = false;
int4 drop,i;
/* out all '!' */
do {
index=0;
drop=0;
/* find ! */
for(posnot=0; posnot < len; posnot++)
if ( q[posnot].type == OPR && q[posnot].val == (int4)'!') {
index=1;
break;
}
if ( posnot == len )
return len;
/* last operator is ! */
if ( posnot == len-1 )
return 0;
/* find operator for this operand */
for( poscor=posnot+1; poscor<len; poscor++) {
if ( q[poscor].type == OPR ) {
if ( poscor == posnot+1 ) {
notisleft = false;
break;
} else if ( q[poscor].left + poscor == posnot ) {
notisleft = true;
break;
}
}
}
if ( q[poscor].val == (int4)'!' ) {
drop = countdroptree(q, poscor);
q[poscor-1].type=VAL;
for(i=poscor+1;i<len;i++)
if ( q[i].type == OPR && q[i].left + i <= poscor )
q[i].left += drop - 2;
memcpy( (void*)&q[poscor-drop+1],
(void*)&q[poscor-1],
sizeof(ITEM) * ( len - (poscor-1) ));
len -= drop - 2;
} else if ( q[poscor].val == (int4)'|' ) {
drop = countdroptree(q, poscor);
q[poscor-1].type=VAL;
q[poscor].val=(int4)'!';
q[poscor].left=-1;
for(i=poscor+1;i<len;i++)
if ( q[i].type == OPR && q[i].left + i < poscor )
q[i].left += drop - 2;
memcpy( (void*)&q[poscor-drop+1],
(void*)&q[poscor-1],
sizeof(ITEM) * ( len - (poscor-1) ));
len -= drop - 2;
} else { /* &-operator */
if (
(notisleft && q[poscor-1].type == OPR &&
q[poscor-1].val == (int4)'!' ) ||
(!notisleft && q[poscor+q[poscor].left].type == OPR &&
q[poscor+q[poscor].left].val == (int4)'!' )
) { /* drop subtree */
drop = countdroptree(q, poscor);
q[poscor-1].type=VAL;
q[poscor].val=(int4)'!';
q[poscor].left=-1;
for(i=poscor+1;i<len;i++)
if ( q[i].type == OPR && q[i].left + i < poscor )
q[i].left += drop - 2;
memcpy( (void*)&q[poscor-drop+1],
(void*)&q[poscor-1],
sizeof(ITEM) * ( len - (poscor-1) ));
len -= drop - 2;
} else { /* drop only operator */
int4 subtreepos = ( notisleft ) ?
poscor-1 : poscor+q[poscor].left;
int4 subtreelen = countdroptree( q, subtreepos );
drop = countdroptree(q, poscor);
for(i=poscor+1;i<len;i++)
if ( q[i].type == OPR && q[i].left + i < poscor )
q[i].left += drop - subtreelen;
memcpy( (void*)&q[ subtreepos+1 ],
(void*)&q[poscor+1],
sizeof(ITEM)*( len - (poscor-1) ) );
memcpy( (void*)&q[ poscor-drop+1 ],
(void*)&q[subtreepos-subtreelen+1],
sizeof(ITEM)*( len - (drop-subtreelen) ) );
len -= drop - subtreelen;
}
}
} while( index );
return len;
}
Datum
querytree(PG_FUNCTION_ARGS) {
QUERYTYPE *query = (QUERYTYPE*)PG_DETOAST_DATUM(PG_GETARG_POINTER(0));
INFIX nrm;
text *res;
ITEM *q;
int4 len;
if ( query->size == 0 )
elog(ERROR,"Empty");
q = (ITEM*)palloc( sizeof(ITEM) * query->size );
memcpy( (void*)q, GETQUERY(query), sizeof(ITEM) * query->size );
len = shorterquery( q, query->size );
PG_FREE_IF_COPY(query,0);
if ( len == 0 ) {
res = (text*) palloc( 1 + VARHDRSZ );
VARATT_SIZEP(res) = 1 + VARHDRSZ;
*((char*)VARDATA(res)) = 'T';
} else {
nrm.curpol = q + len - 1;
nrm.buflen = 32;
nrm.cur = nrm.buf = (char*)palloc( sizeof(char) * nrm.buflen );
*(nrm.cur) = '\0';
infix( &nrm, true );
res = (text*) palloc( nrm.cur-nrm.buf + VARHDRSZ );
VARATT_SIZEP(res) = nrm.cur-nrm.buf + VARHDRSZ;
strncpy( VARDATA(res), nrm.buf, nrm.cur-nrm.buf );
}
pfree(q);
PG_RETURN_POINTER( res );
}