postgresql/contrib/pgcrypto/imath.h
Neil Conway 1abf76e82c "Annual" pgcrypto update from Marko Kreen:
Few cleanups and couple of new things:

 - add SHA2 algorithm to older OpenSSL
 - add BIGNUM math to have public-key cryptography work on non-OpenSSL
   build.
 - gen_random_bytes() function

The status of SHA2 algoritms and public-key encryption can now be
changed to 'always available.'

That makes pgcrypto functionally complete and unless there will be new
editions of AES, SHA2 or OpenPGP standards, there is no major changes
planned.
2006-07-13 04:15:25 +00:00

213 lines
8.1 KiB
C

/*
Name: imath.h
Purpose: Arbitrary precision integer arithmetic routines.
Author: M. J. Fromberger <http://www.dartmouth.edu/~sting/>
Info: $Id: imath.h,v 1.1 2006/07/13 04:15:24 neilc Exp $
Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef IMATH_H_
#define IMATH_H_
/* use always 32bit digits - should some arch use 16bit digits? */
#define USE_LONG_LONG
#include <limits.h>
typedef unsigned char mp_sign;
typedef unsigned int mp_size;
typedef int mp_result;
#ifdef USE_LONG_LONG
typedef unsigned int mp_digit;
typedef unsigned long long mp_word;
#else
typedef unsigned short mp_digit;
typedef unsigned int mp_word;
#endif
typedef struct mpz {
mp_digit *digits;
mp_size alloc;
mp_size used;
mp_sign sign;
} mpz_t, *mp_int;
#define MP_DIGITS(Z) ((Z)->digits)
#define MP_ALLOC(Z) ((Z)->alloc)
#define MP_USED(Z) ((Z)->used)
#define MP_SIGN(Z) ((Z)->sign)
extern const mp_result MP_OK;
extern const mp_result MP_FALSE;
extern const mp_result MP_TRUE;
extern const mp_result MP_MEMORY;
extern const mp_result MP_RANGE;
extern const mp_result MP_UNDEF;
extern const mp_result MP_TRUNC;
extern const mp_result MP_BADARG;
#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
#ifdef USE_LONG_LONG
# ifndef ULONG_LONG_MAX
# ifdef ULLONG_MAX
# define ULONG_LONG_MAX ULLONG_MAX
# else
# error "Maximum value of unsigned long long not defined!"
# endif
# endif
# define MP_DIGIT_MAX (ULONG_MAX * 1ULL)
# define MP_WORD_MAX ULONG_LONG_MAX
#else
# define MP_DIGIT_MAX (USHRT_MAX * 1UL)
# define MP_WORD_MAX (UINT_MAX * 1UL)
#endif
#define MP_MIN_RADIX 2
#define MP_MAX_RADIX 36
extern const mp_sign MP_NEG;
extern const mp_sign MP_ZPOS;
#define mp_int_is_odd(Z) ((Z)->digits[0] & 1)
#define mp_int_is_even(Z) !((Z)->digits[0] & 1)
mp_size mp_get_default_precision(void);
void mp_set_default_precision(mp_size s);
mp_size mp_get_multiply_threshold(void);
void mp_set_multiply_threshold(mp_size s);
mp_result mp_int_init(mp_int z);
mp_int mp_int_alloc(void);
mp_result mp_int_init_size(mp_int z, mp_size prec);
mp_result mp_int_init_copy(mp_int z, mp_int old);
mp_result mp_int_init_value(mp_int z, int value);
mp_result mp_int_set_value(mp_int z, int value);
void mp_int_clear(mp_int z);
void mp_int_free(mp_int z);
mp_result mp_int_copy(mp_int a, mp_int c); /* c = a */
void mp_int_swap(mp_int a, mp_int c); /* swap a, c */
void mp_int_zero(mp_int z); /* z = 0 */
mp_result mp_int_abs(mp_int a, mp_int c); /* c = |a| */
mp_result mp_int_neg(mp_int a, mp_int c); /* c = -a */
mp_result mp_int_add(mp_int a, mp_int b, mp_int c); /* c = a + b */
mp_result mp_int_add_value(mp_int a, int value, mp_int c);
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); /* c = a - b */
mp_result mp_int_sub_value(mp_int a, int value, mp_int c);
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); /* c = a * b */
mp_result mp_int_mul_value(mp_int a, int value, mp_int c);
mp_result mp_int_mul_pow2(mp_int a, int p2, mp_int c);
mp_result mp_int_sqr(mp_int a, mp_int c); /* c = a * a */
mp_result mp_int_div(mp_int a, mp_int b, /* q = a / b */
mp_int q, mp_int r); /* r = a % b */
mp_result mp_int_div_value(mp_int a, int value, /* q = a / value */
mp_int q, int *r); /* r = a % value */
mp_result mp_int_div_pow2(mp_int a, int p2, /* q = a / 2^p2 */
mp_int q, mp_int r); /* r = q % 2^p2 */
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); /* c = a % m */
#define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
mp_result mp_int_expt(mp_int a, int b, mp_int c); /* c = a^b */
mp_result mp_int_expt_value(int a, int b, mp_int c); /* c = a^b */
int mp_int_compare(mp_int a, mp_int b); /* a <=> b */
int mp_int_compare_unsigned(mp_int a, mp_int b); /* |a| <=> |b| */
int mp_int_compare_zero(mp_int z); /* a <=> 0 */
int mp_int_compare_value(mp_int z, int value); /* a <=> v */
/* Returns true if v|a, false otherwise (including errors) */
int mp_int_divisible_value(mp_int a, int v);
/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
int mp_int_is_pow2(mp_int z);
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m,
mp_int c); /* c = a^b (mod m) */
mp_result mp_int_exptmod_evalue(mp_int a, int value,
mp_int m, mp_int c); /* c = a^v (mod m) */
mp_result mp_int_exptmod_bvalue(int value, mp_int b,
mp_int m, mp_int c); /* c = v^b (mod m) */
mp_result mp_int_exptmod_known(mp_int a, mp_int b,
mp_int m, mp_int mu,
mp_int c); /* c = a^b (mod m) */
mp_result mp_int_redux_const(mp_int m, mp_int c);
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); /* c = gcd(a, b) */
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, /* c = gcd(a, b) */
mp_int x, mp_int y); /* c = ax + by */
mp_result mp_int_sqrt(mp_int a, mp_int c); /* c = floor(sqrt(q)) */
/* Convert to an int, if representable (returns MP_RANGE if not). */
mp_result mp_int_to_int(mp_int z, int *out);
/* Convert to nul-terminated string with the specified radix, writing at
most limit characters including the nul terminator */
mp_result mp_int_to_string(mp_int z, mp_size radix,
char *str, int limit);
/* Return the number of characters required to represent
z in the given radix. May over-estimate. */
mp_result mp_int_string_len(mp_int z, mp_size radix);
/* Read zero-terminated string into z */
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
char **end);
/* Return the number of significant bits in z */
mp_result mp_int_count_bits(mp_int z);
/* Convert z to two's complement binary, writing at most limit bytes */
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
/* Read a two's complement binary value into z from the given buffer */
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len);
/* Return the number of bytes required to represent z in binary. */
mp_result mp_int_binary_len(mp_int z);
/* Convert z to unsigned binary, writing at most limit bytes */
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
/* Read an unsigned binary value into z from the given buffer */
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
/* Return the number of bytes required to represent z as unsigned output */
mp_result mp_int_unsigned_len(mp_int z);
/* Return a statically allocated string describing error code res */
const char *mp_error_string(mp_result res);
#if 0
void s_print(char *tag, mp_int z);
void s_print_buf(char *tag, mp_digit *buf, mp_size num);
#endif
#endif /* end IMATH_H_ */