mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-12 18:34:36 +08:00
1abf76e82c
Few cleanups and couple of new things: - add SHA2 algorithm to older OpenSSL - add BIGNUM math to have public-key cryptography work on non-OpenSSL build. - gen_random_bytes() function The status of SHA2 algoritms and public-key encryption can now be changed to 'always available.' That makes pgcrypto functionally complete and unless there will be new editions of AES, SHA2 or OpenPGP standards, there is no major changes planned.
1027 lines
27 KiB
C
1027 lines
27 KiB
C
/* $OpenBSD: sha2.c,v 1.6 2004/05/03 02:57:36 millert Exp $ */
|
|
|
|
/*
|
|
* FILE: sha2.c
|
|
* AUTHOR: Aaron D. Gifford <me@aarongifford.com>
|
|
*
|
|
* Copyright (c) 2000-2001, Aaron D. Gifford
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the copyright holder nor the names of contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
|
|
*
|
|
* $PostgreSQL: pgsql/contrib/pgcrypto/sha2.c,v 1.7 2006/07/13 04:15:25 neilc Exp $
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include "sha2.h"
|
|
|
|
/*
|
|
* UNROLLED TRANSFORM LOOP NOTE:
|
|
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
|
|
* loop version for the hash transform rounds (defined using macros
|
|
* later in this file). Either define on the command line, for example:
|
|
*
|
|
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
|
|
*
|
|
* or define below:
|
|
*
|
|
* #define SHA2_UNROLL_TRANSFORM
|
|
*
|
|
*/
|
|
|
|
|
|
/*** SHA-256/384/512 Machine Architecture Definitions *****************/
|
|
/*
|
|
* BYTE_ORDER NOTE:
|
|
*
|
|
* Please make sure that your system defines BYTE_ORDER. If your
|
|
* architecture is little-endian, make sure it also defines
|
|
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
|
|
* equivilent.
|
|
*
|
|
* If your system does not define the above, then you can do so by
|
|
* hand like this:
|
|
*
|
|
* #define LITTLE_ENDIAN 1234
|
|
* #define BIG_ENDIAN 4321
|
|
*
|
|
* And for little-endian machines, add:
|
|
*
|
|
* #define BYTE_ORDER LITTLE_ENDIAN
|
|
*
|
|
* Or for big-endian machines:
|
|
*
|
|
* #define BYTE_ORDER BIG_ENDIAN
|
|
*
|
|
* The FreeBSD machine this was written on defines BYTE_ORDER
|
|
* appropriately by including <sys/types.h> (which in turn includes
|
|
* <machine/endian.h> where the appropriate definitions are actually
|
|
* made).
|
|
*/
|
|
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
|
|
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
|
|
#endif
|
|
|
|
|
|
/*** SHA-256/384/512 Various Length Definitions ***********************/
|
|
/* NOTE: Most of these are in sha2.h */
|
|
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
|
|
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
|
|
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
|
|
|
|
|
|
/*** ENDIAN REVERSAL MACROS *******************************************/
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
#define REVERSE32(w,x) { \
|
|
uint32 tmp = (w); \
|
|
tmp = (tmp >> 16) | (tmp << 16); \
|
|
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
|
|
}
|
|
#define REVERSE64(w,x) { \
|
|
uint64 tmp = (w); \
|
|
tmp = (tmp >> 32) | (tmp << 32); \
|
|
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
|
|
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
|
|
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
|
|
((tmp & 0x0000ffff0000ffffULL) << 16); \
|
|
}
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
/*
|
|
* Macro for incrementally adding the unsigned 64-bit integer n to the
|
|
* unsigned 128-bit integer (represented using a two-element array of
|
|
* 64-bit words):
|
|
*/
|
|
#define ADDINC128(w,n) { \
|
|
(w)[0] += (uint64)(n); \
|
|
if ((w)[0] < (n)) { \
|
|
(w)[1]++; \
|
|
} \
|
|
}
|
|
|
|
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
|
|
/*
|
|
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
|
|
*
|
|
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
|
|
* S is a ROTATION) because the SHA-256/384/512 description document
|
|
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
|
|
* same "backwards" definition.
|
|
*/
|
|
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
|
|
#define R(b,x) ((x) >> (b))
|
|
/* 32-bit Rotate-right (used in SHA-256): */
|
|
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
|
|
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
|
|
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
|
|
|
|
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
/* Four of six logical functions used in SHA-256: */
|
|
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
|
|
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
|
|
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
|
|
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
|
|
|
|
/* Four of six logical functions used in SHA-384 and SHA-512: */
|
|
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
|
|
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
|
|
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
|
|
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
|
|
|
|
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
|
|
/* NOTE: These should not be accessed directly from outside this
|
|
* library -- they are intended for private internal visibility/use
|
|
* only.
|
|
*/
|
|
static void SHA512_Last(SHA512_CTX *);
|
|
static void SHA256_Transform(SHA256_CTX *, const uint8 *);
|
|
static void SHA512_Transform(SHA512_CTX *, const uint8 *);
|
|
|
|
|
|
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
|
|
/* Hash constant words K for SHA-256: */
|
|
static const uint32 K256[64] = {
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
|
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
|
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
|
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
|
|
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
|
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
|
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
|
|
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
|
|
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
|
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
|
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
|
|
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
|
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
|
|
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
|
|
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-224: */
|
|
static const uint32 sha224_initial_hash_value[8] = {
|
|
0xc1059ed8UL,
|
|
0x367cd507UL,
|
|
0x3070dd17UL,
|
|
0xf70e5939UL,
|
|
0xffc00b31UL,
|
|
0x68581511UL,
|
|
0x64f98fa7UL,
|
|
0xbefa4fa4UL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-256: */
|
|
static const uint32 sha256_initial_hash_value[8] = {
|
|
0x6a09e667UL,
|
|
0xbb67ae85UL,
|
|
0x3c6ef372UL,
|
|
0xa54ff53aUL,
|
|
0x510e527fUL,
|
|
0x9b05688cUL,
|
|
0x1f83d9abUL,
|
|
0x5be0cd19UL
|
|
};
|
|
|
|
/* Hash constant words K for SHA-384 and SHA-512: */
|
|
static const uint64 K512[80] = {
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-384 */
|
|
static const uint64 sha384_initial_hash_value[8] = {
|
|
0xcbbb9d5dc1059ed8ULL,
|
|
0x629a292a367cd507ULL,
|
|
0x9159015a3070dd17ULL,
|
|
0x152fecd8f70e5939ULL,
|
|
0x67332667ffc00b31ULL,
|
|
0x8eb44a8768581511ULL,
|
|
0xdb0c2e0d64f98fa7ULL,
|
|
0x47b5481dbefa4fa4ULL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-512 */
|
|
static const uint64 sha512_initial_hash_value[8] = {
|
|
0x6a09e667f3bcc908ULL,
|
|
0xbb67ae8584caa73bULL,
|
|
0x3c6ef372fe94f82bULL,
|
|
0xa54ff53a5f1d36f1ULL,
|
|
0x510e527fade682d1ULL,
|
|
0x9b05688c2b3e6c1fULL,
|
|
0x1f83d9abfb41bd6bULL,
|
|
0x5be0cd19137e2179ULL
|
|
};
|
|
|
|
|
|
/*** SHA-256: *********************************************************/
|
|
void
|
|
SHA256_Init(SHA256_CTX * context)
|
|
{
|
|
if (context == NULL)
|
|
return;
|
|
memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
|
|
memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
|
|
context->bitcount = 0;
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-256 round macros: */
|
|
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
|
|
W256[j] = (uint32)data[3] | ((uint32)data[2] << 8) | \
|
|
((uint32)data[1] << 16) | ((uint32)data[0] << 24); \
|
|
data += 4; \
|
|
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
|
|
j++; \
|
|
} while(0)
|
|
|
|
#define ROUND256(a,b,c,d,e,f,g,h) do { \
|
|
s0 = W256[(j+1)&0x0f]; \
|
|
s0 = sigma0_256(s0); \
|
|
s1 = W256[(j+14)&0x0f]; \
|
|
s1 = sigma1_256(s1); \
|
|
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
|
|
j++; \
|
|
} while(0)
|
|
|
|
static void
|
|
SHA256_Transform(SHA256_CTX * context, const uint8 *data)
|
|
{
|
|
uint32 a,
|
|
b,
|
|
c,
|
|
d,
|
|
e,
|
|
f,
|
|
g,
|
|
h,
|
|
s0,
|
|
s1;
|
|
uint32 T1,
|
|
*W256;
|
|
int j;
|
|
|
|
W256 = (uint32 *) context->buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do
|
|
{
|
|
/* Rounds 0 to 15 (unrolled): */
|
|
ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
|
|
ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
|
|
ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
|
|
ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
|
|
ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
|
|
ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
|
|
ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
|
|
ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
|
|
} while (j < 16);
|
|
|
|
/* Now for the remaining rounds to 64: */
|
|
do
|
|
{
|
|
ROUND256(a, b, c, d, e, f, g, h);
|
|
ROUND256(h, a, b, c, d, e, f, g);
|
|
ROUND256(g, h, a, b, c, d, e, f);
|
|
ROUND256(f, g, h, a, b, c, d, e);
|
|
ROUND256(e, f, g, h, a, b, c, d);
|
|
ROUND256(d, e, f, g, h, a, b, c);
|
|
ROUND256(c, d, e, f, g, h, a, b);
|
|
ROUND256(b, c, d, e, f, g, h, a);
|
|
} while (j < 64);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
}
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
static void
|
|
SHA256_Transform(SHA256_CTX * context, const uint8 *data)
|
|
{
|
|
uint32 a,
|
|
b,
|
|
c,
|
|
d,
|
|
e,
|
|
f,
|
|
g,
|
|
h,
|
|
s0,
|
|
s1;
|
|
uint32 T1,
|
|
T2,
|
|
*W256;
|
|
int j;
|
|
|
|
W256 = (uint32 *) context->buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do
|
|
{
|
|
W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) |
|
|
((uint32) data[1] << 16) | ((uint32) data[0] << 24);
|
|
data += 4;
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
|
|
T2 = Sigma0_256(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do
|
|
{
|
|
/* Part of the message block expansion: */
|
|
s0 = W256[(j + 1) & 0x0f];
|
|
s0 = sigma0_256(s0);
|
|
s1 = W256[(j + 14) & 0x0f];
|
|
s1 = sigma1_256(s1);
|
|
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
|
|
(W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
|
|
T2 = Sigma0_256(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 64);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
}
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void
|
|
SHA256_Update(SHA256_CTX * context, const uint8 *data, size_t len)
|
|
{
|
|
size_t freespace,
|
|
usedspace;
|
|
|
|
/* Calling with no data is valid (we do nothing) */
|
|
if (len == 0)
|
|
return;
|
|
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
|
if (usedspace > 0)
|
|
{
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = SHA256_BLOCK_LENGTH - usedspace;
|
|
|
|
if (len >= freespace)
|
|
{
|
|
/* Fill the buffer completely and process it */
|
|
memcpy(&context->buffer[usedspace], data, freespace);
|
|
context->bitcount += freespace << 3;
|
|
len -= freespace;
|
|
data += freespace;
|
|
SHA256_Transform(context, context->buffer);
|
|
}
|
|
else
|
|
{
|
|
/* The buffer is not yet full */
|
|
memcpy(&context->buffer[usedspace], data, len);
|
|
context->bitcount += len << 3;
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= SHA256_BLOCK_LENGTH)
|
|
{
|
|
/* Process as many complete blocks as we can */
|
|
SHA256_Transform(context, data);
|
|
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
|
len -= SHA256_BLOCK_LENGTH;
|
|
data += SHA256_BLOCK_LENGTH;
|
|
}
|
|
if (len > 0)
|
|
{
|
|
/* There's left-overs, so save 'em */
|
|
memcpy(context->buffer, data, len);
|
|
context->bitcount += len << 3;
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
static void
|
|
SHA256_Last(SHA256_CTX *context)
|
|
{
|
|
unsigned int usedspace;
|
|
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64(context->bitcount, context->bitcount);
|
|
#endif
|
|
if (usedspace > 0)
|
|
{
|
|
/* Begin padding with a 1 bit: */
|
|
context->buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH)
|
|
{
|
|
/* Set-up for the last transform: */
|
|
memset(&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace);
|
|
}
|
|
else
|
|
{
|
|
if (usedspace < SHA256_BLOCK_LENGTH)
|
|
{
|
|
memset(&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
SHA256_Transform(context, context->buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set-up for the last transform: */
|
|
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->buffer = 0x80;
|
|
}
|
|
/* Set the bit count: */
|
|
*(uint64 *) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
|
|
|
|
/* Final transform: */
|
|
SHA256_Transform(context, context->buffer);
|
|
}
|
|
|
|
void
|
|
SHA256_Final(uint8 digest[], SHA256_CTX * context)
|
|
{
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != NULL)
|
|
{
|
|
SHA256_Last(context);
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
REVERSE32(context->state[j], context->state[j]);
|
|
}
|
|
}
|
|
#endif
|
|
memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
|
|
}
|
|
|
|
/* Clean up state data: */
|
|
memset(context, 0, sizeof(*context));
|
|
}
|
|
|
|
|
|
/*** SHA-512: *********************************************************/
|
|
void
|
|
SHA512_Init(SHA512_CTX * context)
|
|
{
|
|
if (context == NULL)
|
|
return;
|
|
memcpy(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
|
|
memset(context->buffer, 0, SHA512_BLOCK_LENGTH);
|
|
context->bitcount[0] = context->bitcount[1] = 0;
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-512 round macros: */
|
|
|
|
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
|
|
W512[j] = (uint64)data[7] | ((uint64)data[6] << 8) | \
|
|
((uint64)data[5] << 16) | ((uint64)data[4] << 24) | \
|
|
((uint64)data[3] << 32) | ((uint64)data[2] << 40) | \
|
|
((uint64)data[1] << 48) | ((uint64)data[0] << 56); \
|
|
data += 8; \
|
|
T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
|
|
j++; \
|
|
} while(0)
|
|
|
|
|
|
#define ROUND512(a,b,c,d,e,f,g,h) do { \
|
|
s0 = W512[(j+1)&0x0f]; \
|
|
s0 = sigma0_512(s0); \
|
|
s1 = W512[(j+14)&0x0f]; \
|
|
s1 = sigma1_512(s1); \
|
|
T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
|
|
j++; \
|
|
} while(0)
|
|
|
|
static void
|
|
SHA512_Transform(SHA512_CTX * context, const uint8 *data)
|
|
{
|
|
uint64 a,
|
|
b,
|
|
c,
|
|
d,
|
|
e,
|
|
f,
|
|
g,
|
|
h,
|
|
s0,
|
|
s1;
|
|
uint64 T1,
|
|
*W512 = (uint64 *) context->buffer;
|
|
int j;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do
|
|
{
|
|
ROUND512_0_TO_15(a, b, c, d, e, f, g, h);
|
|
ROUND512_0_TO_15(h, a, b, c, d, e, f, g);
|
|
ROUND512_0_TO_15(g, h, a, b, c, d, e, f);
|
|
ROUND512_0_TO_15(f, g, h, a, b, c, d, e);
|
|
ROUND512_0_TO_15(e, f, g, h, a, b, c, d);
|
|
ROUND512_0_TO_15(d, e, f, g, h, a, b, c);
|
|
ROUND512_0_TO_15(c, d, e, f, g, h, a, b);
|
|
ROUND512_0_TO_15(b, c, d, e, f, g, h, a);
|
|
} while (j < 16);
|
|
|
|
/* Now for the remaining rounds up to 79: */
|
|
do
|
|
{
|
|
ROUND512(a, b, c, d, e, f, g, h);
|
|
ROUND512(h, a, b, c, d, e, f, g);
|
|
ROUND512(g, h, a, b, c, d, e, f);
|
|
ROUND512(f, g, h, a, b, c, d, e);
|
|
ROUND512(e, f, g, h, a, b, c, d);
|
|
ROUND512(d, e, f, g, h, a, b, c);
|
|
ROUND512(c, d, e, f, g, h, a, b);
|
|
ROUND512(b, c, d, e, f, g, h, a);
|
|
} while (j < 80);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
}
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
static void
|
|
SHA512_Transform(SHA512_CTX * context, const uint8 *data)
|
|
{
|
|
uint64 a,
|
|
b,
|
|
c,
|
|
d,
|
|
e,
|
|
f,
|
|
g,
|
|
h,
|
|
s0,
|
|
s1;
|
|
uint64 T1,
|
|
T2,
|
|
*W512 = (uint64 *) context->buffer;
|
|
int j;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do
|
|
{
|
|
W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) |
|
|
((uint64) data[5] << 16) | ((uint64) data[4] << 24) |
|
|
((uint64) data[3] << 32) | ((uint64) data[2] << 40) |
|
|
((uint64) data[1] << 48) | ((uint64) data[0] << 56);
|
|
data += 8;
|
|
/* Apply the SHA-512 compression function to update a..h */
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
|
|
T2 = Sigma0_512(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do
|
|
{
|
|
/* Part of the message block expansion: */
|
|
s0 = W512[(j + 1) & 0x0f];
|
|
s0 = sigma0_512(s0);
|
|
s1 = W512[(j + 14) & 0x0f];
|
|
s1 = sigma1_512(s1);
|
|
|
|
/* Apply the SHA-512 compression function to update a..h */
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
|
|
(W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
|
|
T2 = Sigma0_512(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 80);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
}
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void
|
|
SHA512_Update(SHA512_CTX * context, const uint8 *data, size_t len)
|
|
{
|
|
size_t freespace,
|
|
usedspace;
|
|
|
|
/* Calling with no data is valid (we do nothing) */
|
|
if (len == 0)
|
|
return;
|
|
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
|
if (usedspace > 0)
|
|
{
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = SHA512_BLOCK_LENGTH - usedspace;
|
|
|
|
if (len >= freespace)
|
|
{
|
|
/* Fill the buffer completely and process it */
|
|
memcpy(&context->buffer[usedspace], data, freespace);
|
|
ADDINC128(context->bitcount, freespace << 3);
|
|
len -= freespace;
|
|
data += freespace;
|
|
SHA512_Transform(context, context->buffer);
|
|
}
|
|
else
|
|
{
|
|
/* The buffer is not yet full */
|
|
memcpy(&context->buffer[usedspace], data, len);
|
|
ADDINC128(context->bitcount, len << 3);
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= SHA512_BLOCK_LENGTH)
|
|
{
|
|
/* Process as many complete blocks as we can */
|
|
SHA512_Transform(context, data);
|
|
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
|
|
len -= SHA512_BLOCK_LENGTH;
|
|
data += SHA512_BLOCK_LENGTH;
|
|
}
|
|
if (len > 0)
|
|
{
|
|
/* There's left-overs, so save 'em */
|
|
memcpy(context->buffer, data, len);
|
|
ADDINC128(context->bitcount, len << 3);
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
static void
|
|
SHA512_Last(SHA512_CTX * context)
|
|
{
|
|
unsigned int usedspace;
|
|
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64(context->bitcount[0], context->bitcount[0]);
|
|
REVERSE64(context->bitcount[1], context->bitcount[1]);
|
|
#endif
|
|
if (usedspace > 0)
|
|
{
|
|
/* Begin padding with a 1 bit: */
|
|
context->buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
|
|
{
|
|
/* Set-up for the last transform: */
|
|
memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
|
|
}
|
|
else
|
|
{
|
|
if (usedspace < SHA512_BLOCK_LENGTH)
|
|
{
|
|
memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
SHA512_Transform(context, context->buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Prepare for final transform: */
|
|
memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->buffer = 0x80;
|
|
}
|
|
/* Store the length of input data (in bits): */
|
|
*(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
|
|
*(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0];
|
|
|
|
/* Final transform: */
|
|
SHA512_Transform(context, context->buffer);
|
|
}
|
|
|
|
void
|
|
SHA512_Final(uint8 digest[], SHA512_CTX * context)
|
|
{
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != NULL)
|
|
{
|
|
SHA512_Last(context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
REVERSE64(context->state[j], context->state[j]);
|
|
}
|
|
}
|
|
#endif
|
|
memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
|
|
}
|
|
|
|
/* Zero out state data */
|
|
memset(context, 0, sizeof(*context));
|
|
}
|
|
|
|
|
|
/*** SHA-384: *********************************************************/
|
|
void
|
|
SHA384_Init(SHA384_CTX * context)
|
|
{
|
|
if (context == NULL)
|
|
return;
|
|
memcpy(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
|
|
memset(context->buffer, 0, SHA384_BLOCK_LENGTH);
|
|
context->bitcount[0] = context->bitcount[1] = 0;
|
|
}
|
|
|
|
void
|
|
SHA384_Update(SHA384_CTX * context, const uint8 *data, size_t len)
|
|
{
|
|
SHA512_Update((SHA512_CTX *) context, data, len);
|
|
}
|
|
|
|
void
|
|
SHA384_Final(uint8 digest[], SHA384_CTX * context)
|
|
{
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != NULL)
|
|
{
|
|
SHA512_Last((SHA512_CTX *) context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
|
|
for (j = 0; j < 6; j++)
|
|
{
|
|
REVERSE64(context->state[j], context->state[j]);
|
|
}
|
|
}
|
|
#endif
|
|
memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
|
|
}
|
|
|
|
/* Zero out state data */
|
|
memset(context, 0, sizeof(*context));
|
|
}
|
|
|
|
/*** SHA-224: *********************************************************/
|
|
void
|
|
SHA224_Init(SHA224_CTX * context)
|
|
{
|
|
if (context == NULL)
|
|
return;
|
|
memcpy(context->state, sha224_initial_hash_value, SHA256_DIGEST_LENGTH);
|
|
memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
|
|
context->bitcount = 0;
|
|
}
|
|
|
|
void
|
|
SHA224_Update(SHA224_CTX * context, const uint8 *data, size_t len)
|
|
{
|
|
SHA256_Update((SHA256_CTX *) context, data, len);
|
|
}
|
|
|
|
void
|
|
SHA224_Final(uint8 digest[], SHA224_CTX * context)
|
|
{
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != NULL)
|
|
{
|
|
SHA256_Last(context);
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
REVERSE32(context->state[j], context->state[j]);
|
|
}
|
|
}
|
|
#endif
|
|
memcpy(digest, context->state, SHA224_DIGEST_LENGTH);
|
|
}
|
|
|
|
/* Clean up state data: */
|
|
memset(context, 0, sizeof(*context));
|
|
}
|
|
|