/* * tablefunc * * Sample to demonstrate C functions which return setof scalar * and setof composite. * Joe Conway * * Copyright 2002 by PostgreSQL Global Development Group * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without a written agreement * is hereby granted, provided that the above copyright notice and this * paragraph and the following two paragraphs appear in all copies. * * IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING * LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS * DOCUMENTATION, EVEN IF THE AUTHOR OR DISTRIBUTORS HAVE BEEN ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE AUTHOR AND DISTRIBUTORS HAS NO OBLIGATIONS TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * */ #include "postgres.h" #include #include "fmgr.h" #include "funcapi.h" #include "executor/spi.h" #include "miscadmin.h" #include "utils/builtins.h" #include "utils/guc.h" #include "utils/lsyscache.h" #include "tablefunc.h" static void validateConnectbyTupleDesc(TupleDesc tupdesc, bool show_branch); static bool compatCrosstabTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2); static bool compatConnectbyTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2); static void get_normal_pair(float8 *x1, float8 *x2); static TupleDesc make_crosstab_tupledesc(TupleDesc spi_tupdesc, int num_catagories); static Tuplestorestate *connectby(char *relname, char *key_fld, char *parent_key_fld, char *branch_delim, char *start_with, int max_depth, bool show_branch, MemoryContext per_query_ctx, AttInMetadata *attinmeta); static Tuplestorestate *build_tuplestore_recursively(char *key_fld, char *parent_key_fld, char *relname, char *branch_delim, char *start_with, char *branch, int level, int max_depth, bool show_branch, MemoryContext per_query_ctx, AttInMetadata *attinmeta, Tuplestorestate *tupstore); static char *quote_ident_cstr(char *rawstr); typedef struct { float8 mean; /* mean of the distribution */ float8 stddev; /* stddev of the distribution */ float8 carry_val; /* hold second generated value */ bool use_carry; /* use second generated value */ } normal_rand_fctx; typedef struct { SPITupleTable *spi_tuptable; /* sql results from user query */ char *lastrowid; /* rowid of the last tuple sent */ } crosstab_fctx; #define GET_TEXT(cstrp) DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(cstrp))) #define GET_STR(textp) DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(textp))) #define xpfree(var_) \ do { \ if (var_ != NULL) \ { \ pfree(var_); \ var_ = NULL; \ } \ } while (0) /* sign, 10 digits, '\0' */ #define INT32_STRLEN 12 /* * normal_rand - return requested number of random values * with a Gaussian (Normal) distribution. * * inputs are int numvals, float8 lower_bound, and float8 upper_bound * returns float8 */ PG_FUNCTION_INFO_V1(normal_rand); Datum normal_rand(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; int call_cntr; int max_calls; normal_rand_fctx *fctx; float8 mean; float8 stddev; float8 carry_val; bool use_carry; MemoryContext oldcontext; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* * switch to memory context appropriate for multiple function * calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* total number of tuples to be returned */ funcctx->max_calls = PG_GETARG_UINT32(0); /* allocate memory for user context */ fctx = (normal_rand_fctx *) palloc(sizeof(normal_rand_fctx)); /* * Use fctx to keep track of upper and lower bounds from call to * call. It will also be used to carry over the spare value we get * from the Box-Muller algorithm so that we only actually * calculate a new value every other call. */ fctx->mean = PG_GETARG_FLOAT8(1); fctx->stddev = PG_GETARG_FLOAT8(2); fctx->carry_val = 0; fctx->use_carry = false; funcctx->user_fctx = fctx; /* * we might actually get passed a negative number, but for this * purpose it doesn't matter, just cast it as an unsigned value */ srandom(PG_GETARG_UINT32(3)); MemoryContextSwitchTo(oldcontext); } /* stuff done on every call of the function */ funcctx = SRF_PERCALL_SETUP(); call_cntr = funcctx->call_cntr; max_calls = funcctx->max_calls; fctx = funcctx->user_fctx; mean = fctx->mean; stddev = fctx->stddev; carry_val = fctx->carry_val; use_carry = fctx->use_carry; if (call_cntr < max_calls) /* do when there is more left to send */ { float8 result; if (use_carry) { /* * reset use_carry and use second value obtained on last pass */ fctx->use_carry = false; result = carry_val; } else { float8 normval_1; float8 normval_2; /* Get the next two normal values */ get_normal_pair(&normval_1, &normval_2); /* use the first */ result = mean + (stddev * normval_1); /* and save the second */ fctx->carry_val = mean + (stddev * normval_2); fctx->use_carry = true; } /* send the result */ SRF_RETURN_NEXT(funcctx, Float8GetDatum(result)); } else /* do when there is no more left */ SRF_RETURN_DONE(funcctx); } /* * get_normal_pair() * Assigns normally distributed (Gaussian) values to a pair of provided * parameters, with mean 0, standard deviation 1. * * This routine implements Algorithm P (Polar method for normal deviates) * from Knuth's _The_Art_of_Computer_Programming_, Volume 2, 3rd ed., pages * 122-126. Knuth cites his source as "The polar method", G. E. P. Box, M. E. * Muller, and G. Marsaglia, _Annals_Math,_Stat._ 29 (1958), 610-611. * */ static void get_normal_pair(float8 *x1, float8 *x2) { float8 u1, u2, v1, v2, s; for (;;) { u1 = (float8) random() / (float8) RAND_MAX; u2 = (float8) random() / (float8) RAND_MAX; v1 = (2.0 * u1) - 1.0; v2 = (2.0 * u2) - 1.0; s = pow(v1, 2) + pow(v2, 2); if (s >= 1.0) continue; if (s == 0) { *x1 = 0; *x2 = 0; } else { *x1 = v1 * sqrt((-2.0 * log(s)) / s); *x2 = v2 * sqrt((-2.0 * log(s)) / s); } return; } } /* * crosstab - create a crosstab of rowids and values columns from a * SQL statement returning one rowid column, one category column, * and one value column. * * e.g. given sql which produces: * * rowid cat value * ------+-------+------- * row1 cat1 val1 * row1 cat2 val2 * row1 cat3 val3 * row1 cat4 val4 * row2 cat1 val5 * row2 cat2 val6 * row2 cat3 val7 * row2 cat4 val8 * * crosstab returns: * <===== values columns =====> * rowid cat1 cat2 cat3 cat4 * ------+-------+-------+-------+------- * row1 val1 val2 val3 val4 * row2 val5 val6 val7 val8 * * NOTES: * 1. SQL result must be ordered by 1,2. * 2. The number of values columns depends on the tuple description * of the function's declared return type. * 2. Missing values (i.e. not enough adjacent rows of same rowid to * fill the number of result values columns) are filled in with nulls. * 3. Extra values (i.e. too many adjacent rows of same rowid to fill * the number of result values columns) are skipped. * 4. Rows with all nulls in the values columns are skipped. */ PG_FUNCTION_INFO_V1(crosstab); Datum crosstab(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; TupleDesc ret_tupdesc; int call_cntr; int max_calls; TupleTableSlot *slot; AttInMetadata *attinmeta; SPITupleTable *spi_tuptable = NULL; TupleDesc spi_tupdesc; char *lastrowid = NULL; crosstab_fctx *fctx; int i; int num_categories; MemoryContext oldcontext; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { char *sql = GET_STR(PG_GETARG_TEXT_P(0)); Oid funcid = fcinfo->flinfo->fn_oid; Oid functypeid; char functyptype; TupleDesc tupdesc = NULL; int ret; int proc; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* * switch to memory context appropriate for multiple function * calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* Connect to SPI manager */ if ((ret = SPI_connect()) < 0) elog(ERROR, "crosstab: SPI_connect returned %d", ret); /* Retrieve the desired rows */ ret = SPI_exec(sql, 0); proc = SPI_processed; /* Check for qualifying tuples */ if ((ret == SPI_OK_SELECT) && (proc > 0)) { spi_tuptable = SPI_tuptable; spi_tupdesc = spi_tuptable->tupdesc; /* * The provided SQL query must always return three columns. * * 1. rowname the label or identifier for each row in the final * result 2. category the label or identifier for each column * in the final result 3. values the value for each column * in the final result */ if (spi_tupdesc->natts != 3) elog(ERROR, "crosstab: provided SQL must return 3 columns;" " a rowid, a category, and a values column"); } else { /* no qualifying tuples */ SPI_finish(); SRF_RETURN_DONE(funcctx); } /* SPI switches context on us, so reset it */ MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* get the typeid that represents our return type */ functypeid = get_func_rettype(funcid); /* check typtype to see if we have a predetermined return type */ functyptype = get_typtype(functypeid); if (functyptype == 'c') { /* Build a tuple description for a functypeid tuple */ tupdesc = TypeGetTupleDesc(functypeid, NIL); } else if (functyptype == 'p' && functypeid == RECORDOID) { if (fcinfo->nargs != 2) elog(ERROR, "Wrong number of arguments specified for function"); else { int num_catagories = PG_GETARG_INT32(1); tupdesc = make_crosstab_tupledesc(spi_tupdesc, num_catagories); } } else if (functyptype == 'b') elog(ERROR, "Invalid kind of return type specified for function"); else elog(ERROR, "Unknown kind of return type specified for function"); /* * Check that return tupdesc is compatible with the one we got * from ret_relname, at least based on number and type of * attributes */ if (!compatCrosstabTupleDescs(tupdesc, spi_tupdesc)) elog(ERROR, "crosstab: return and sql tuple descriptions are" " incompatible"); /* allocate a slot for a tuple with this tupdesc */ slot = TupleDescGetSlot(tupdesc); /* assign slot to function context */ funcctx->slot = slot; /* * Generate attribute metadata needed later to produce tuples from * raw C strings */ attinmeta = TupleDescGetAttInMetadata(tupdesc); funcctx->attinmeta = attinmeta; /* allocate memory for user context */ fctx = (crosstab_fctx *) palloc(sizeof(crosstab_fctx)); /* * Save spi data for use across calls */ fctx->spi_tuptable = spi_tuptable; fctx->lastrowid = NULL; funcctx->user_fctx = fctx; /* total number of tuples to be returned */ funcctx->max_calls = proc; MemoryContextSwitchTo(oldcontext); } /* stuff done on every call of the function */ funcctx = SRF_PERCALL_SETUP(); /* * initialize per-call variables */ call_cntr = funcctx->call_cntr; max_calls = funcctx->max_calls; /* return slot for our tuple */ slot = funcctx->slot; /* user context info */ fctx = (crosstab_fctx *) funcctx->user_fctx; lastrowid = fctx->lastrowid; spi_tuptable = fctx->spi_tuptable; /* the sql tuple */ spi_tupdesc = spi_tuptable->tupdesc; /* attribute return type and return tuple description */ attinmeta = funcctx->attinmeta; ret_tupdesc = attinmeta->tupdesc; /* the return tuple always must have 1 rowid + num_categories columns */ num_categories = ret_tupdesc->natts - 1; if (call_cntr < max_calls) /* do when there is more left to send */ { HeapTuple tuple; Datum result; char **values; bool allnulls = true; while (true) { /* allocate space */ values = (char **) palloc((1 + num_categories) * sizeof(char *)); /* and make sure it's clear */ memset(values, '\0', (1 + num_categories) * sizeof(char *)); /* * now loop through the sql results and assign each value in * sequence to the next category */ for (i = 0; i < num_categories; i++) { HeapTuple spi_tuple; char *rowid = NULL; /* see if we've gone too far already */ if (call_cntr >= max_calls) break; /* get the next sql result tuple */ spi_tuple = spi_tuptable->vals[call_cntr]; /* get the rowid from the current sql result tuple */ rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1); /* * If this is the first pass through the values for this * rowid set it, otherwise make sure it hasn't changed on * us. Also check to see if the rowid is the same as that * of the last tuple sent -- if so, skip this tuple * entirely */ if (i == 0) values[0] = pstrdup(rowid); if ((rowid != NULL) && (strcmp(rowid, values[0]) == 0)) { if ((lastrowid != NULL) && (strcmp(rowid, lastrowid) == 0)) break; else if (allnulls == true) allnulls = false; /* * Get the next category item value, which is alway * attribute number three. * * Be careful to sssign the value to the array index * based on which category we are presently * processing. */ values[1 + i] = SPI_getvalue(spi_tuple, spi_tupdesc, 3); /* * increment the counter since we consume a row for * each category, but not for last pass because the * API will do that for us */ if (i < (num_categories - 1)) call_cntr = ++funcctx->call_cntr; } else { /* * We'll fill in NULLs for the missing values, but we * need to decrement the counter since this sql result * row doesn't belong to the current output tuple. */ call_cntr = --funcctx->call_cntr; break; } if (rowid != NULL) xpfree(rowid); } xpfree(fctx->lastrowid); if (values[0] != NULL) { /* * switch to memory context appropriate for multiple * function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); lastrowid = fctx->lastrowid = pstrdup(values[0]); MemoryContextSwitchTo(oldcontext); } if (!allnulls) { /* build the tuple */ tuple = BuildTupleFromCStrings(attinmeta, values); /* make the tuple into a datum */ result = TupleGetDatum(slot, tuple); /* Clean up */ for (i = 0; i < num_categories + 1; i++) if (values[i] != NULL) xpfree(values[i]); xpfree(values); SRF_RETURN_NEXT(funcctx, result); } else { /* * Skipping this tuple entirely, but we need to advance * the counter like the API would if we had returned one. */ call_cntr = ++funcctx->call_cntr; /* we'll start over at the top */ xpfree(values); /* see if we've gone too far already */ if (call_cntr >= max_calls) { /* release SPI related resources */ SPI_finish(); SRF_RETURN_DONE(funcctx); } } } } else /* do when there is no more left */ { /* release SPI related resources */ SPI_finish(); SRF_RETURN_DONE(funcctx); } } /* * connectby_text - produce a result set from a hierarchical (parent/child) * table. * * e.g. given table foo: * * keyid parent_keyid * ------+-------------- * row1 NULL * row2 row1 * row3 row1 * row4 row2 * row5 row2 * row6 row4 * row7 row3 * row8 row6 * row9 row5 * * * connectby(text relname, text keyid_fld, text parent_keyid_fld, * text start_with, int max_depth [, text branch_delim]) * connectby('foo', 'keyid', 'parent_keyid', 'row2', 0, '~') returns: * * keyid parent_id level branch * ------+-----------+--------+----------------------- * row2 NULL 0 row2 * row4 row2 1 row2~row4 * row6 row4 2 row2~row4~row6 * row8 row6 3 row2~row4~row6~row8 * row5 row2 1 row2~row5 * row9 row5 2 row2~row5~row9 * */ PG_FUNCTION_INFO_V1(connectby_text); #define CONNECTBY_NCOLS 4 #define CONNECTBY_NCOLS_NOBRANCH 3 Datum connectby_text(PG_FUNCTION_ARGS) { char *relname = GET_STR(PG_GETARG_TEXT_P(0)); char *key_fld = GET_STR(PG_GETARG_TEXT_P(1)); char *parent_key_fld = GET_STR(PG_GETARG_TEXT_P(2)); char *start_with = GET_STR(PG_GETARG_TEXT_P(3)); int max_depth = PG_GETARG_INT32(4); char *branch_delim = NULL; bool show_branch = false; ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; TupleDesc tupdesc; AttInMetadata *attinmeta; MemoryContext per_query_ctx; MemoryContext oldcontext; if (fcinfo->nargs == 6) { branch_delim = GET_STR(PG_GETARG_TEXT_P(5)); show_branch = true; } per_query_ctx = rsinfo->econtext->ecxt_per_query_memory; oldcontext = MemoryContextSwitchTo(per_query_ctx); /* get the requested return tuple description */ tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc); /* does it meet our needs */ validateConnectbyTupleDesc(tupdesc, show_branch); /* OK, use it then */ attinmeta = TupleDescGetAttInMetadata(tupdesc); /* check to see if caller supports us returning a tuplestore */ if (!rsinfo->allowedModes & SFRM_Materialize) elog(ERROR, "connectby requires Materialize mode, but it is not " "allowed in this context"); /* OK, go to work */ rsinfo->returnMode = SFRM_Materialize; rsinfo->setResult = connectby(relname, key_fld, parent_key_fld, branch_delim, start_with, max_depth, show_branch, per_query_ctx, attinmeta); rsinfo->setDesc = tupdesc; MemoryContextSwitchTo(oldcontext); /* * SFRM_Materialize mode expects us to return a NULL Datum. The actual * tuples are in our tuplestore and passed back through * rsinfo->setResult. rsinfo->setDesc is set to the tuple description * that we actually used to build our tuples with, so the caller can * verify we did what it was expecting. */ return (Datum) 0; } /* * connectby - does the real work for connectby_text() */ static Tuplestorestate * connectby(char *relname, char *key_fld, char *parent_key_fld, char *branch_delim, char *start_with, int max_depth, bool show_branch, MemoryContext per_query_ctx, AttInMetadata *attinmeta) { Tuplestorestate *tupstore = NULL; int ret; MemoryContext oldcontext; /* Connect to SPI manager */ if ((ret = SPI_connect()) < 0) elog(ERROR, "connectby: SPI_connect returned %d", ret); /* switch to longer term context to create the tuple store */ oldcontext = MemoryContextSwitchTo(per_query_ctx); /* initialize our tuplestore */ tupstore = tuplestore_begin_heap(true, SortMem); MemoryContextSwitchTo(oldcontext); /* now go get the whole tree */ tupstore = build_tuplestore_recursively(key_fld, parent_key_fld, relname, branch_delim, start_with, start_with, /* current_branch */ 0, /* initial level is 0 */ max_depth, show_branch, per_query_ctx, attinmeta, tupstore); SPI_finish(); oldcontext = MemoryContextSwitchTo(per_query_ctx); tuplestore_donestoring(tupstore); MemoryContextSwitchTo(oldcontext); return tupstore; } static Tuplestorestate * build_tuplestore_recursively(char *key_fld, char *parent_key_fld, char *relname, char *branch_delim, char *start_with, char *branch, int level, int max_depth, bool show_branch, MemoryContext per_query_ctx, AttInMetadata *attinmeta, Tuplestorestate *tupstore) { TupleDesc tupdesc = attinmeta->tupdesc; MemoryContext oldcontext; StringInfo sql = makeStringInfo(); int ret; int proc; if (max_depth > 0 && level > max_depth) return tupstore; /* Build initial sql statement */ appendStringInfo(sql, "SELECT %s, %s FROM %s WHERE %s = '%s' AND %s IS NOT NULL", quote_ident_cstr(key_fld), quote_ident_cstr(parent_key_fld), quote_ident_cstr(relname), quote_ident_cstr(parent_key_fld), start_with, quote_ident_cstr(key_fld)); /* Retrieve the desired rows */ ret = SPI_exec(sql->data, 0); proc = SPI_processed; /* Check for qualifying tuples */ if ((ret == SPI_OK_SELECT) && (proc > 0)) { HeapTuple tuple; HeapTuple spi_tuple; SPITupleTable *tuptable = SPI_tuptable; TupleDesc spi_tupdesc = tuptable->tupdesc; int i; char *current_key; char *current_key_parent; char current_level[INT32_STRLEN]; char *current_branch; char **values; if (show_branch) values = (char **) palloc(CONNECTBY_NCOLS * sizeof(char *)); else values = (char **) palloc(CONNECTBY_NCOLS_NOBRANCH * sizeof(char *)); /* First time through, do a little setup */ if (level == 0) { /* * Check that return tupdesc is compatible with the one we got * from the query, but only at level 0 -- no need to check * more than once */ if (!compatConnectbyTupleDescs(tupdesc, spi_tupdesc)) elog(ERROR, "connectby: return and sql tuple descriptions are " "incompatible"); /* root value is the one we initially start with */ values[0] = start_with; /* root value has no parent */ values[1] = NULL; /* root level is 0 */ sprintf(current_level, "%d", level); values[2] = current_level; /* root branch is just starting root value */ if (show_branch) values[3] = start_with; /* construct the tuple */ tuple = BuildTupleFromCStrings(attinmeta, values); /* switch to long lived context while storing the tuple */ oldcontext = MemoryContextSwitchTo(per_query_ctx); /* now store it */ tuplestore_puttuple(tupstore, tuple); /* now reset the context */ MemoryContextSwitchTo(oldcontext); /* increment level */ level++; } for (i = 0; i < proc; i++) { StringInfo branchstr = NULL; /* start a new branch */ if (show_branch) { branchstr = makeStringInfo(); appendStringInfo(branchstr, "%s", branch); } /* get the next sql result tuple */ spi_tuple = tuptable->vals[i]; /* get the current key and parent */ current_key = SPI_getvalue(spi_tuple, spi_tupdesc, 1); current_key_parent = pstrdup(SPI_getvalue(spi_tuple, spi_tupdesc, 2)); /* get the current level */ sprintf(current_level, "%d", level); /* extend the branch */ if (show_branch) { appendStringInfo(branchstr, "%s%s", branch_delim, current_key); current_branch = branchstr->data; } else current_branch = NULL; /* build a tuple */ values[0] = pstrdup(current_key); values[1] = current_key_parent; values[2] = current_level; if (show_branch) values[3] = current_branch; tuple = BuildTupleFromCStrings(attinmeta, values); xpfree(current_key); xpfree(current_key_parent); /* switch to long lived context while storing the tuple */ oldcontext = MemoryContextSwitchTo(per_query_ctx); /* store the tuple for later use */ tuplestore_puttuple(tupstore, tuple); /* now reset the context */ MemoryContextSwitchTo(oldcontext); heap_freetuple(tuple); /* recurse using current_key_parent as the new start_with */ tupstore = build_tuplestore_recursively(key_fld, parent_key_fld, relname, branch_delim, values[0], current_branch, level + 1, max_depth, show_branch, per_query_ctx, attinmeta, tupstore); } } return tupstore; } /* * Check expected (query runtime) tupdesc suitable for Connectby */ static void validateConnectbyTupleDesc(TupleDesc tupdesc, bool show_branch) { /* are there the correct number of columns */ if (show_branch) { if (tupdesc->natts != CONNECTBY_NCOLS) elog(ERROR, "Query-specified return tuple not valid for Connectby: " "wrong number of columns"); } else { if (tupdesc->natts != CONNECTBY_NCOLS_NOBRANCH) elog(ERROR, "Query-specified return tuple not valid for Connectby: " "wrong number of columns"); } /* check that the types of the first two columns match */ if (tupdesc->attrs[0]->atttypid != tupdesc->attrs[1]->atttypid) elog(ERROR, "Query-specified return tuple not valid for Connectby: " "first two columns must be the same type"); /* check that the type of the third column is INT4 */ if (tupdesc->attrs[2]->atttypid != INT4OID) elog(ERROR, "Query-specified return tuple not valid for Connectby: " "third column must be type %s", format_type_be(INT4OID)); /* check that the type of the forth column is TEXT if applicable */ if (show_branch && tupdesc->attrs[3]->atttypid != TEXTOID) elog(ERROR, "Query-specified return tuple not valid for Connectby: " "third column must be type %s", format_type_be(TEXTOID)); /* OK, the tupdesc is valid for our purposes */ } /* * Check if spi sql tupdesc and return tupdesc are compatible */ static bool compatConnectbyTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc) { Oid ret_atttypid; Oid sql_atttypid; /* check the key_fld types match */ ret_atttypid = ret_tupdesc->attrs[0]->atttypid; sql_atttypid = sql_tupdesc->attrs[0]->atttypid; if (ret_atttypid != sql_atttypid) elog(ERROR, "compatConnectbyTupleDescs: SQL key field datatype does " "not match return key field datatype"); /* check the parent_key_fld types match */ ret_atttypid = ret_tupdesc->attrs[1]->atttypid; sql_atttypid = sql_tupdesc->attrs[1]->atttypid; if (ret_atttypid != sql_atttypid) elog(ERROR, "compatConnectbyTupleDescs: SQL parent key field datatype " "does not match return parent key field datatype"); /* OK, the two tupdescs are compatible for our purposes */ return true; } /* * Check if two tupdescs match in type of attributes */ static bool compatCrosstabTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc) { int i; Form_pg_attribute ret_attr; Oid ret_atttypid; Form_pg_attribute sql_attr; Oid sql_atttypid; /* check the rowid types match */ ret_atttypid = ret_tupdesc->attrs[0]->atttypid; sql_atttypid = sql_tupdesc->attrs[0]->atttypid; if (ret_atttypid != sql_atttypid) elog(ERROR, "compatCrosstabTupleDescs: SQL rowid datatype does not match" " return rowid datatype"); /* * - attribute [1] of the sql tuple is the category; no need to check * it - attribute [2] of the sql tuple should match attributes [1] to * [natts] of the return tuple */ sql_attr = sql_tupdesc->attrs[2]; for (i = 1; i < ret_tupdesc->natts; i++) { ret_attr = ret_tupdesc->attrs[i]; if (ret_attr->atttypid != sql_attr->atttypid) return false; } /* OK, the two tupdescs are compatible for our purposes */ return true; } static TupleDesc make_crosstab_tupledesc(TupleDesc spi_tupdesc, int num_catagories) { Form_pg_attribute sql_attr; Oid sql_atttypid; TupleDesc tupdesc; int natts; AttrNumber attnum; char attname[NAMEDATALEN]; int i; /* * We need to build a tuple description with one column for the * rowname, and num_catagories columns for the values. Each must be of * the same type as the corresponding spi result input column. */ natts = num_catagories + 1; tupdesc = CreateTemplateTupleDesc(natts, false); /* first the rowname column */ attnum = 1; sql_attr = spi_tupdesc->attrs[0]; sql_atttypid = sql_attr->atttypid; strcpy(attname, "rowname"); TupleDescInitEntry(tupdesc, attnum, attname, sql_atttypid, -1, 0, false); /* now the catagory values columns */ sql_attr = spi_tupdesc->attrs[2]; sql_atttypid = sql_attr->atttypid; for (i = 0; i < num_catagories; i++) { attnum++; sprintf(attname, "category_%d", i + 1); TupleDescInitEntry(tupdesc, attnum, attname, sql_atttypid, -1, 0, false); } return tupdesc; } /* * Return a properly quoted identifier. * Uses quote_ident in quote.c */ static char * quote_ident_cstr(char *rawstr) { text *rawstr_text; text *result_text; char *result; rawstr_text = DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(rawstr))); result_text = DatumGetTextP(DirectFunctionCall1(quote_ident, PointerGetDatum(rawstr_text))); result = DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(result_text))); return result; }