The user can whitelist specified extension(s) in the foreign server's
options, whereupon we will treat immutable functions and operators of those
extensions as candidates to be sent for remote execution.
Whitelisting an extension in this way basically promises that the extension
exists on the remote server and behaves compatibly with the local instance.
We have no way to prove that formally, so we have to rely on the user to
get it right. But this seems like something that people can usually get
right in practice.
We might in future allow functions and operators to be whitelisted
individually, but extension granularity is a very convenient special case,
so it got done first.
The patch as-committed lacks any regression tests, which is unfortunate,
but introducing dependencies on other extensions for testing purposes
would break "make installcheck" scenarios, which is worse. I have some
ideas about klugy ways around that, but it seems like material for a
separate patch. For the moment, leave the problem open.
Paul Ramsey, hacked up a bit more by me
If the join problem's entire ORDER BY clause can be pushed to the
remote server, consider a path that adds this ORDER BY clause. If
use_remote_estimate is on, we cost this path using an additional
remote EXPLAIN. If not, we just estimate that the path costs 20%
more, which is intended to be large enough that we won't request a
remote sort when it's not helpful, but small enough that we'll have
the remote side do the sort when in doubt. In some cases, the remote
sort might actually be free, because the remote query plan might
happen to produce output that is ordered the way we need, but without
remote estimates we have no way of knowing that.
It might also be useful to request sorted output from the remote side
if it enables an efficient merge join, but this patch doesn't attempt
to handle that case.
Ashutosh Bapat with revisions by me. Also reviewed by Fabrízio de Royes
Mello and Jeevan Chalke.
If we have a local Var of say varchar type with default collation, and
we apply a RelabelType to convert that to text with default collation, we
don't want to consider that as creating an FDW_COLLATE_UNSAFE situation.
It should be okay to compare that to a remote Var, so long as the remote
Var determines the comparison collation. (When we actually ship such an
expression to the remote side, the local Var would become a Param with
default collation, meaning the remote Var would in fact control the
comparison collation, because non-default implicit collation overrides
default implicit collation in parse_collate.c.) To fix, be more precise
about what FDW_COLLATE_NONE means: it applies either to a noncollatable
data type or to a collatable type with default collation, if that collation
can't be traced to a remote Var. (When it can, FDW_COLLATE_SAFE is
appropriate.) We were essentially using that interpretation already at
the Var/Const/Param level, but we weren't bubbling it up properly.
An alternative fix would be to introduce a separate FDW_COLLATE_DEFAULT
value to describe the second situation, but that would add more code
without changing the actual behavior, so it didn't seem worthwhile.
Also, since we're clarifying the rule to be that we care about whether
operator/function input collations match, there seems no need to fail
immediately upon seeing a Const/Param/non-foreign-Var with nondefault
collation. We only have to reject if it appears in a collation-sensitive
context (for example, "var IS NOT NULL" is perfectly safe from a collation
standpoint, whatever collation the var has). So just set the state to
UNSAFE rather than failing immediately.
Per report from Jeevan Chalke. This essentially corrects some sloppy
thinking in commit ed3ddf918b, so back-patch
to 9.3 where that logic appeared.
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
postgres_fdw would send query conditions involving system columns to the
remote server, even though it makes no effort to ensure that system
columns other than CTID match what the remote side thinks. tableoid,
in particular, probably won't match and might have some use in queries.
Hence, prevent sending conditions that include non-CTID system columns.
Also, create_foreignscan_plan neglected to check local restriction
conditions while determining whether to set fsSystemCol for a foreign
scan plan node. This again would bollix the results for queries that
test a foreign table's tableoid.
Back-patch the first fix to 9.3 where postgres_fdw was introduced.
Back-patch the second to 9.2. The code is probably broken in 9.1 as
well, but the patch doesn't apply cleanly there; given the weak state
of support for FDWs in 9.1, it doesn't seem worth fixing.
Etsuro Fujita, reviewed by Ashutosh Bapat, and somewhat modified by me
This command provides an automated way to create foreign table definitions
that match remote tables, thereby reducing tedium and chances for error.
In this patch, we provide the necessary core-server infrastructure and
implement the feature fully in the postgres_fdw foreign-data wrapper.
Other wrappers will throw a "feature not supported" error until/unless
they are updated.
Ronan Dunklau and Michael Paquier, additional work by me
Since most of the system thinks AND and OR are N-argument expressions
anyway, let's have the grammar generate a representation of that form when
dealing with input like "x AND y AND z AND ...", rather than generating
a deeply-nested binary tree that just has to be flattened later by the
planner. This avoids stack overflow in parse analysis when dealing with
queries having more than a few thousand such clauses; and in any case it
removes some rather unsightly inconsistencies, since some parts of parse
analysis were generating N-argument ANDs/ORs already.
It's still possible to get a stack overflow with weirdly parenthesized
input, such as "x AND (y AND (z AND ( ... )))", but such cases are not
mainstream usage. The maximum depth of parenthesization is already
limited by Bison's stack in such cases, anyway, so that the limit is
probably fairly platform-independent.
Patch originally by Gurjeet Singh, heavily revised by me
We were emitting "(SELECT null::typename)", which is usually interpreted
as a scalar subselect, but not so much in the context "x = ANY(...)".
This led to remote-side parsing failures when remote_estimate is enabled.
A quick and ugly fix is to stick in an extra cast step,
"((SELECT null::typename)::typename)". The cast will be thrown away as
redundant by parse analysis, but not before it's done its job of making
sure the grammar sees the ANY argument as an a_expr rather than a
select_with_parens. Per an example from Hannu Krosing.
For variadic functions (other than VARIADIC ANY), the syntaxes foo(x,y,...)
and foo(VARIADIC ARRAY[x,y,...]) should be considered equivalent, since the
former is converted to the latter at parse time. They have indeed been
equivalent, in all releases before 9.3. However, commit 75b39e790 made an
ill-considered decision to record which syntax had been used in FuncExpr
nodes, and then to make equal() test that in checking node equality ---
which caused the syntaxes to not be seen as equivalent by the planner.
This is the underlying cause of bug #9817 from Dmitry Ryabov.
It might seem that a quick fix would be to make equal() disregard
FuncExpr.funcvariadic, but the same commit made that untenable, because
the field actually *is* semantically significant for some VARIADIC ANY
functions. This patch instead adopts the approach of redefining
funcvariadic (and aggvariadic, in HEAD) as meaning that the last argument
is a variadic array, whether it got that way by parser intervention or was
supplied explicitly by the user. Therefore the value will always be true
for non-ANY variadic functions, restoring the principle of equivalence.
(However, the planner will continue to consider use of VARIADIC as a
meaningful difference for VARIADIC ANY functions, even though some such
functions might disregard it.)
In HEAD, this change lets us simplify the decompilation logic in
ruleutils.c, since the funcvariadic/aggvariadic flag tells directly whether
to print VARIADIC. However, in 9.3 we have to continue to cope with
existing stored rules/views that might contain the previous definition.
Fortunately, this just means no change in ruleutils.c, since its existing
behavior effectively ignores funcvariadic for all cases other than VARIADIC
ANY functions.
In HEAD, bump catversion to reflect the fact that FuncExpr.funcvariadic
changed meanings; this is sort of pro forma, since I don't believe any
built-in views are affected.
Unfortunately, this patch doesn't magically fix everything for affected
9.3 users. After installing 9.3.5, they might need to recreate their
rules/views/indexes containing variadic function calls in order to get
everything consistent with the new definition. As in the cited bug,
the symptom of a problem would be failure to use a nominally matching
index that has a variadic function call in its definition. We'll need
to mention this in the 9.3.5 release notes.
This covers all the SQL-standard trigger types supported for regular
tables; it does not cover constraint triggers. The approach for
acquiring the old row mirrors that for view INSTEAD OF triggers. For
AFTER ROW triggers, we spool the foreign tuples to a tuplestore.
This changes the FDW API contract; when deciding which columns to
populate in the slot returned from data modification callbacks, writable
FDWs will need to check for AFTER ROW triggers in addition to checking
for a RETURNING clause.
In support of the feature addition, refactor the TriggerFlags bits and
the assembly of old tuples in ModifyTable.
Ronan Dunklau, reviewed by KaiGai Kohei; some additional hacking by me.
The previous coding supposed that it could consider just a single join
condition in any one parameterized path for the foreign table. But in
reality, the parameterized-path machinery forces all join clauses that are
"movable to" the foreign table to be evaluated at that node; including
clauses that we might not consider safe to send across. Such cases would
result in an Assert failure in an assert-enabled build, and otherwise in
sending an unsafe clause to the foreign server, which might result in
errors or silently-wrong answers. A lesser problem was that the
cost/rowcount estimates generated for the parameterized path failed to
account for any additional join quals that get assigned to the scan.
To fix, rewrite postgresGetForeignPaths so that it correctly collects all
the movable quals for any one outer relation when generating parameterized
paths; we'll now generate just one path per outer relation not one per join
qual. Also fix bogus assumptions in postgresGetForeignPlan and
estimate_path_cost_size that only safe-to-send join quals will be
presented.
Based on complaint from Etsuro Fujita that the path costs were being
miscalculated, though this is significantly different from his proposed
patch.
This should provide some marginal overall savings, since it surely takes
many more cycles for the remote server to deal with the NULL columns than
it takes for postgres_fdw not to emit them. But really the reason is to
keep the emitted queries from looking quite so silly ...
I wasn't going to ship this without having at least some example of how
to do that. This version isn't terribly bright; in particular it won't
consider any combinations of multiple join clauses. Given the cost of
executing a remote EXPLAIN, I'm not sure we want to be very aggressive
about doing that, anyway.
In support of this, refactor generate_implied_equalities_for_indexcol
so that it can be used to extract equivalence clauses that aren't
necessarily tied to an index.
Treat expressions as being remotely executable only if all collations used
in them are determined by Vars of the foreign table. This means that, if
the foreign server gets different answers than we do, it's the user's fault
for not having marked the foreign table columns with collations equivalent
to the remote table's. This rule allows most simple expressions such as
"var < 'constant'" to be sent to the remote side, because the constant
isn't determining the collation (the Var's collation would win). There's
still room for improvement, but it's hard to see how to do it without a
lot more knowledge and/or assumptions about what the remote side will do.
Adopt the position that only locally-defined defaults matter. Any defaults
defined in the remote database do not affect insertions performed through
a foreign table (unless they are for columns not known to the foreign
table). While it'd arguably be more useful to permit remote defaults to be
used, making that work in a consistent fashion requires far more work than
seems possible for 9.3.
For datatypes whose output formatting depends on one or more GUC settings,
we have to worry about whether the other server will interpret the value
the same way it was meant. pg_dump has been aware of this hazard for a
long time, but postgres_fdw needs to deal with it too. To fix data
retrieval from the remote server, set the necessary remote GUC settings at
connection startup. (We were already assuming that settings made then
would persist throughout the remote session.) To fix data transmission to
the remote server, temporarily force the relevant GUCs to the right values
when we're about to convert any data values to text for transmission.
This is all pretty grotty, and not very cheap either. It's tempting to
think of defining one uber-GUC that would override any settings that might
render printed data values unportable. But of course, older remote servers
wouldn't know any such thing and would still need this logic.
While at it, revert commit f7951eef89, since
this provides a real fix. (The timestamptz given in the error message
returned from the "remote" server will now reliably be shown in UTC.)
This patch adds the core-system infrastructure needed to support updates
on foreign tables, and extends contrib/postgres_fdw to allow updates
against remote Postgres servers. There's still a great deal of room for
improvement in optimization of remote updates, but at least there's basic
functionality there now.
KaiGai Kohei, reviewed by Alexander Korotkov and Laurenz Albe, and rather
heavily revised by Tom Lane.
Include eval costs of local conditions in remote-estimate mode, and don't
assume the remote eval cost is zero in local-estimate mode. (The best
we can do with that at the moment is to assume a seqscan, which may well
be wildly pessimistic ... but zero won't do at all.)
To get a reasonable local estimate, we need to know the relpages count
for the remote rel, so improve the ANALYZE code to fetch that rather
than just setting the foreign table's relpages field to zero.
On reflection this method seems to be exposing an unreasonable amount of
implementation detail. It wouldn't matter when talking to a remote server
of the identical Postgres version, but it seems likely to make things worse
not better if the remote is a different version with different casting
infrastructure. Instead adopt ruleutils.c's policy of regurgitating the
cast as it was originally specified; including not showing it at all, if
it was implicit to start with. (We must do that because for some datatypes
explicit and implicit casts have different semantics.)
The only place we depended on that was in sending numeric type OIDs in
PQexecParams; but we can replace that usage with explicitly casting
each Param symbol in the query string, so that the types are specified
to the remote by name not OID. This makes no immediate difference but
will be essential if we ever hope to support use of non-builtin types.
Set the remote session's search path to exactly "pg_catalog" at session
start, then schema-qualify only names that aren't in that schema. This
greatly reduces clutter in the generated SQL commands, as seen in the
regression test changes. Per discussion.
Also, rethink use of FirstNormalObjectId as the "built-in object" cutoff
--- FirstBootstrapObjectId is safer, since the former will accept
objects in information_schema for instance.
There's still a lot of room for improvement, but it basically works,
and we need this to be present before we can do anything much with the
writable-foreign-tables patch. So let's commit it and get on with testing.
Shigeru Hanada, reviewed by KaiGai Kohei and Tom Lane