mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-12-15 08:20:16 +08:00
Change patternsel() so that instead of switching from a pure
pattern-examination heuristic method to purely histogram-driven selectivity at histogram size 100, we compute both estimates and use a weighted average. The weight put on the heuristic estimate decreases linearly with histogram size, dropping to zero for 100 or more histogram entries. Likewise in ltreeparentsel(). After a patch by Greg Stark, though I reorganized the logic a bit to give the caller of histogram_selectivity() more control.
This commit is contained in:
parent
422495d0da
commit
f4230d2937
@ -1,7 +1,7 @@
|
||||
/*
|
||||
* op function for ltree
|
||||
* Teodor Sigaev <teodor@stack.net>
|
||||
* $PostgreSQL: pgsql/contrib/ltree/ltree_op.c,v 1.16 2007/02/28 22:44:38 tgl Exp $
|
||||
* $PostgreSQL: pgsql/contrib/ltree/ltree_op.c,v 1.17 2008/03/09 00:32:09 tgl Exp $
|
||||
*/
|
||||
|
||||
#include "ltree.h"
|
||||
@ -609,6 +609,7 @@ ltreeparentsel(PG_FUNCTION_ARGS)
|
||||
double mcvsum;
|
||||
double mcvsel;
|
||||
double nullfrac;
|
||||
int hist_size;
|
||||
|
||||
fmgr_info(get_opcode(operator), &contproc);
|
||||
|
||||
@ -626,21 +627,31 @@ ltreeparentsel(PG_FUNCTION_ARGS)
|
||||
*/
|
||||
selec = histogram_selectivity(&vardata, &contproc,
|
||||
constval, varonleft,
|
||||
100, 1);
|
||||
10, 1, &hist_size);
|
||||
if (selec < 0)
|
||||
{
|
||||
/* Nope, fall back on default */
|
||||
selec = DEFAULT_PARENT_SEL;
|
||||
}
|
||||
else
|
||||
else if (hist_size < 100)
|
||||
{
|
||||
/* Yes, but don't believe extremely small or large estimates. */
|
||||
if (selec < 0.0001)
|
||||
selec = 0.0001;
|
||||
else if (selec > 0.9999)
|
||||
selec = 0.9999;
|
||||
/*
|
||||
* For histogram sizes from 10 to 100, we combine the
|
||||
* histogram and default selectivities, putting increasingly
|
||||
* more trust in the histogram for larger sizes.
|
||||
*/
|
||||
double hist_weight = hist_size / 100.0;
|
||||
|
||||
selec = selec * hist_weight +
|
||||
DEFAULT_PARENT_SEL * (1.0 - hist_weight);
|
||||
}
|
||||
|
||||
/* In any case, don't believe extremely small or large estimates. */
|
||||
if (selec < 0.0001)
|
||||
selec = 0.0001;
|
||||
else if (selec > 0.9999)
|
||||
selec = 0.9999;
|
||||
|
||||
if (HeapTupleIsValid(vardata.statsTuple))
|
||||
nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
|
||||
else
|
||||
|
@ -15,7 +15,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.244 2008/03/08 22:41:38 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.245 2008/03/09 00:32:09 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -567,17 +567,23 @@ mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
|
||||
* or not it has anything to do with the histogram sort operator. We are
|
||||
* essentially using the histogram just as a representative sample. However,
|
||||
* small histograms are unlikely to be all that representative, so the caller
|
||||
* should specify a minimum histogram size to use, and fall back on some
|
||||
* other approach if this routine fails.
|
||||
* should be prepared to fall back on some other estimation approach when the
|
||||
* histogram is missing or very small. It may also be prudent to combine this
|
||||
* approach with another one when the histogram is small.
|
||||
*
|
||||
* The caller also specifies n_skip, which causes us to ignore the first and
|
||||
* last n_skip histogram elements, on the grounds that they are outliers and
|
||||
* hence not very representative. If in doubt, min_hist_size = 100 and
|
||||
* n_skip = 1 are reasonable values.
|
||||
* If the actual histogram size is not at least min_hist_size, we won't bother
|
||||
* to do the calculation at all. Also, if the n_skip parameter is > 0, we
|
||||
* ignore the first and last n_skip histogram elements, on the grounds that
|
||||
* they are outliers and hence not very representative. Typical values for
|
||||
* these parameters are 10 and 1.
|
||||
*
|
||||
* The function result is the selectivity, or -1 if there is no histogram
|
||||
* or it's smaller than min_hist_size.
|
||||
*
|
||||
* The output parameter *hist_size receives the actual histogram size,
|
||||
* or zero if no histogram. Callers may use this number to decide how
|
||||
* much faith to put in the function result.
|
||||
*
|
||||
* Note that the result disregards both the most-common-values (if any) and
|
||||
* null entries. The caller is expected to combine this result with
|
||||
* statistics for those portions of the column population. It may also be
|
||||
@ -586,7 +592,8 @@ mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
|
||||
double
|
||||
histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
|
||||
Datum constval, bool varonleft,
|
||||
int min_hist_size, int n_skip)
|
||||
int min_hist_size, int n_skip,
|
||||
int *hist_size)
|
||||
{
|
||||
double result;
|
||||
Datum *values;
|
||||
@ -603,6 +610,7 @@ histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
|
||||
&values, &nvalues,
|
||||
NULL, NULL))
|
||||
{
|
||||
*hist_size = nvalues;
|
||||
if (nvalues >= min_hist_size)
|
||||
{
|
||||
int nmatch = 0;
|
||||
@ -626,7 +634,10 @@ histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
|
||||
free_attstatsslot(vardata->atttype, values, nvalues, NULL, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
*hist_size = 0;
|
||||
result = -1;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -1117,13 +1128,16 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
|
||||
* selectivity of the fixed prefix and remainder of pattern
|
||||
* separately, then combine the two to get an estimate of the
|
||||
* selectivity for the part of the column population represented by
|
||||
* the histogram. We then add up data for any most-common-values
|
||||
* values; these are not in the histogram population, and we can get
|
||||
* exact answers for them by applying the pattern operator, so there's
|
||||
* no reason to approximate. (If the MCVs cover a significant part of
|
||||
* the total population, this gives us a big leg up in accuracy.)
|
||||
* the histogram. (For small histograms, we combine these approaches.)
|
||||
*
|
||||
* We then add up data for any most-common-values values; these are
|
||||
* not in the histogram population, and we can get exact answers for
|
||||
* them by applying the pattern operator, so there's no reason to
|
||||
* approximate. (If the MCVs cover a significant part of the total
|
||||
* population, this gives us a big leg up in accuracy.)
|
||||
*/
|
||||
Selectivity selec;
|
||||
int hist_size;
|
||||
FmgrInfo opproc;
|
||||
double nullfrac,
|
||||
mcv_selec,
|
||||
@ -1133,10 +1147,12 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
|
||||
fmgr_info(get_opcode(operator), &opproc);
|
||||
|
||||
selec = histogram_selectivity(&vardata, &opproc, constval, true,
|
||||
100, 1);
|
||||
if (selec < 0)
|
||||
10, 1, &hist_size);
|
||||
|
||||
/* If not at least 100 entries, use the heuristic method */
|
||||
if (hist_size < 100)
|
||||
{
|
||||
/* Nope, so fake it with the heuristic method */
|
||||
Selectivity heursel;
|
||||
Selectivity prefixsel;
|
||||
Selectivity restsel;
|
||||
|
||||
@ -1146,17 +1162,29 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
|
||||
else
|
||||
prefixsel = 1.0;
|
||||
restsel = pattern_selectivity(rest, ptype);
|
||||
selec = prefixsel * restsel;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Yes, but don't believe extremely small or large estimates. */
|
||||
if (selec < 0.0001)
|
||||
selec = 0.0001;
|
||||
else if (selec > 0.9999)
|
||||
selec = 0.9999;
|
||||
heursel = prefixsel * restsel;
|
||||
|
||||
if (selec < 0) /* fewer than 10 histogram entries? */
|
||||
selec = heursel;
|
||||
else
|
||||
{
|
||||
/*
|
||||
* For histogram sizes from 10 to 100, we combine the
|
||||
* histogram and heuristic selectivities, putting increasingly
|
||||
* more trust in the histogram for larger sizes.
|
||||
*/
|
||||
double hist_weight = hist_size / 100.0;
|
||||
|
||||
selec = selec * hist_weight + heursel * (1.0 - hist_weight);
|
||||
}
|
||||
}
|
||||
|
||||
/* In any case, don't believe extremely small or large estimates. */
|
||||
if (selec < 0.0001)
|
||||
selec = 0.0001;
|
||||
else if (selec > 0.9999)
|
||||
selec = 0.9999;
|
||||
|
||||
/*
|
||||
* If we have most-common-values info, add up the fractions of the MCV
|
||||
* entries that satisfy MCV OP PATTERN. These fractions contribute
|
||||
|
@ -8,7 +8,7 @@
|
||||
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.43 2008/01/01 19:45:59 momjian Exp $
|
||||
* $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.44 2008/03/09 00:32:09 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -112,7 +112,8 @@ extern double mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
|
||||
double *sumcommonp);
|
||||
extern double histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
|
||||
Datum constval, bool varonleft,
|
||||
int min_hist_size, int n_skip);
|
||||
int min_hist_size, int n_skip,
|
||||
int *hist_size);
|
||||
|
||||
extern Pattern_Prefix_Status pattern_fixed_prefix(Const *patt,
|
||||
Pattern_Type ptype,
|
||||
|
Loading…
Reference in New Issue
Block a user