Change patternsel() so that instead of switching from a pure

pattern-examination heuristic method to purely histogram-driven selectivity at
histogram size 100, we compute both estimates and use a weighted average.
The weight put on the heuristic estimate decreases linearly with histogram
size, dropping to zero for 100 or more histogram entries.
Likewise in ltreeparentsel().  After a patch by Greg Stark, though I
reorganized the logic a bit to give the caller of histogram_selectivity()
more control.
This commit is contained in:
Tom Lane 2008-03-09 00:32:09 +00:00
parent 422495d0da
commit f4230d2937
3 changed files with 75 additions and 35 deletions

View File

@ -1,7 +1,7 @@
/*
* op function for ltree
* Teodor Sigaev <teodor@stack.net>
* $PostgreSQL: pgsql/contrib/ltree/ltree_op.c,v 1.16 2007/02/28 22:44:38 tgl Exp $
* $PostgreSQL: pgsql/contrib/ltree/ltree_op.c,v 1.17 2008/03/09 00:32:09 tgl Exp $
*/
#include "ltree.h"
@ -609,6 +609,7 @@ ltreeparentsel(PG_FUNCTION_ARGS)
double mcvsum;
double mcvsel;
double nullfrac;
int hist_size;
fmgr_info(get_opcode(operator), &contproc);
@ -626,21 +627,31 @@ ltreeparentsel(PG_FUNCTION_ARGS)
*/
selec = histogram_selectivity(&vardata, &contproc,
constval, varonleft,
100, 1);
10, 1, &hist_size);
if (selec < 0)
{
/* Nope, fall back on default */
selec = DEFAULT_PARENT_SEL;
}
else
else if (hist_size < 100)
{
/* Yes, but don't believe extremely small or large estimates. */
if (selec < 0.0001)
selec = 0.0001;
else if (selec > 0.9999)
selec = 0.9999;
/*
* For histogram sizes from 10 to 100, we combine the
* histogram and default selectivities, putting increasingly
* more trust in the histogram for larger sizes.
*/
double hist_weight = hist_size / 100.0;
selec = selec * hist_weight +
DEFAULT_PARENT_SEL * (1.0 - hist_weight);
}
/* In any case, don't believe extremely small or large estimates. */
if (selec < 0.0001)
selec = 0.0001;
else if (selec > 0.9999)
selec = 0.9999;
if (HeapTupleIsValid(vardata.statsTuple))
nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
else

View File

@ -15,7 +15,7 @@
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.244 2008/03/08 22:41:38 tgl Exp $
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.245 2008/03/09 00:32:09 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -567,17 +567,23 @@ mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
* or not it has anything to do with the histogram sort operator. We are
* essentially using the histogram just as a representative sample. However,
* small histograms are unlikely to be all that representative, so the caller
* should specify a minimum histogram size to use, and fall back on some
* other approach if this routine fails.
* should be prepared to fall back on some other estimation approach when the
* histogram is missing or very small. It may also be prudent to combine this
* approach with another one when the histogram is small.
*
* The caller also specifies n_skip, which causes us to ignore the first and
* last n_skip histogram elements, on the grounds that they are outliers and
* hence not very representative. If in doubt, min_hist_size = 100 and
* n_skip = 1 are reasonable values.
* If the actual histogram size is not at least min_hist_size, we won't bother
* to do the calculation at all. Also, if the n_skip parameter is > 0, we
* ignore the first and last n_skip histogram elements, on the grounds that
* they are outliers and hence not very representative. Typical values for
* these parameters are 10 and 1.
*
* The function result is the selectivity, or -1 if there is no histogram
* or it's smaller than min_hist_size.
*
* The output parameter *hist_size receives the actual histogram size,
* or zero if no histogram. Callers may use this number to decide how
* much faith to put in the function result.
*
* Note that the result disregards both the most-common-values (if any) and
* null entries. The caller is expected to combine this result with
* statistics for those portions of the column population. It may also be
@ -586,7 +592,8 @@ mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
double
histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
Datum constval, bool varonleft,
int min_hist_size, int n_skip)
int min_hist_size, int n_skip,
int *hist_size)
{
double result;
Datum *values;
@ -603,6 +610,7 @@ histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
&values, &nvalues,
NULL, NULL))
{
*hist_size = nvalues;
if (nvalues >= min_hist_size)
{
int nmatch = 0;
@ -626,7 +634,10 @@ histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
free_attstatsslot(vardata->atttype, values, nvalues, NULL, 0);
}
else
{
*hist_size = 0;
result = -1;
}
return result;
}
@ -1117,13 +1128,16 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
* selectivity of the fixed prefix and remainder of pattern
* separately, then combine the two to get an estimate of the
* selectivity for the part of the column population represented by
* the histogram. We then add up data for any most-common-values
* values; these are not in the histogram population, and we can get
* exact answers for them by applying the pattern operator, so there's
* no reason to approximate. (If the MCVs cover a significant part of
* the total population, this gives us a big leg up in accuracy.)
* the histogram. (For small histograms, we combine these approaches.)
*
* We then add up data for any most-common-values values; these are
* not in the histogram population, and we can get exact answers for
* them by applying the pattern operator, so there's no reason to
* approximate. (If the MCVs cover a significant part of the total
* population, this gives us a big leg up in accuracy.)
*/
Selectivity selec;
int hist_size;
FmgrInfo opproc;
double nullfrac,
mcv_selec,
@ -1133,10 +1147,12 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
fmgr_info(get_opcode(operator), &opproc);
selec = histogram_selectivity(&vardata, &opproc, constval, true,
100, 1);
if (selec < 0)
10, 1, &hist_size);
/* If not at least 100 entries, use the heuristic method */
if (hist_size < 100)
{
/* Nope, so fake it with the heuristic method */
Selectivity heursel;
Selectivity prefixsel;
Selectivity restsel;
@ -1146,17 +1162,29 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
else
prefixsel = 1.0;
restsel = pattern_selectivity(rest, ptype);
selec = prefixsel * restsel;
}
else
{
/* Yes, but don't believe extremely small or large estimates. */
if (selec < 0.0001)
selec = 0.0001;
else if (selec > 0.9999)
selec = 0.9999;
heursel = prefixsel * restsel;
if (selec < 0) /* fewer than 10 histogram entries? */
selec = heursel;
else
{
/*
* For histogram sizes from 10 to 100, we combine the
* histogram and heuristic selectivities, putting increasingly
* more trust in the histogram for larger sizes.
*/
double hist_weight = hist_size / 100.0;
selec = selec * hist_weight + heursel * (1.0 - hist_weight);
}
}
/* In any case, don't believe extremely small or large estimates. */
if (selec < 0.0001)
selec = 0.0001;
else if (selec > 0.9999)
selec = 0.9999;
/*
* If we have most-common-values info, add up the fractions of the MCV
* entries that satisfy MCV OP PATTERN. These fractions contribute

View File

@ -8,7 +8,7 @@
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.43 2008/01/01 19:45:59 momjian Exp $
* $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.44 2008/03/09 00:32:09 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -112,7 +112,8 @@ extern double mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
double *sumcommonp);
extern double histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
Datum constval, bool varonleft,
int min_hist_size, int n_skip);
int min_hist_size, int n_skip,
int *hist_size);
extern Pattern_Prefix_Status pattern_fixed_prefix(Const *patt,
Pattern_Type ptype,