mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-24 18:55:04 +08:00
pgbench: Allow \setrandom to generate Gaussian/exponential distributions.
Mitsumasa KONDO and Fabien COELHO, with further wordsmithing by me.
This commit is contained in:
parent
e280c630a8
commit
ed802e7dc3
@ -98,6 +98,8 @@ static int pthread_join(pthread_t th, void **thread_return);
|
||||
#define LOG_STEP_SECONDS 5 /* seconds between log messages */
|
||||
#define DEFAULT_NXACTS 10 /* default nxacts */
|
||||
|
||||
#define MIN_GAUSSIAN_THRESHOLD 2.0 /* minimum threshold for gauss */
|
||||
|
||||
int nxacts = 0; /* number of transactions per client */
|
||||
int duration = 0; /* duration in seconds */
|
||||
|
||||
@ -471,6 +473,76 @@ getrand(TState *thread, int64 min, int64 max)
|
||||
return min + (int64) ((max - min + 1) * pg_erand48(thread->random_state));
|
||||
}
|
||||
|
||||
/*
|
||||
* random number generator: exponential distribution from min to max inclusive.
|
||||
* the threshold is so that the density of probability for the last cut-off max
|
||||
* value is exp(-threshold).
|
||||
*/
|
||||
static int64
|
||||
getExponentialRand(TState *thread, int64 min, int64 max, double threshold)
|
||||
{
|
||||
double cut, uniform, rand;
|
||||
Assert(threshold > 0.0);
|
||||
cut = exp(-threshold);
|
||||
/* erand in [0, 1), uniform in (0, 1] */
|
||||
uniform = 1.0 - pg_erand48(thread->random_state);
|
||||
/*
|
||||
* inner expresion in (cut, 1] (if threshold > 0),
|
||||
* rand in [0, 1)
|
||||
*/
|
||||
Assert((1.0 - cut) != 0.0);
|
||||
rand = - log(cut + (1.0 - cut) * uniform) / threshold;
|
||||
/* return int64 random number within between min and max */
|
||||
return min + (int64)((max - min + 1) * rand);
|
||||
}
|
||||
|
||||
/* random number generator: gaussian distribution from min to max inclusive */
|
||||
static int64
|
||||
getGaussianRand(TState *thread, int64 min, int64 max, double threshold)
|
||||
{
|
||||
double stdev;
|
||||
double rand;
|
||||
|
||||
/*
|
||||
* Get user specified random number from this loop, with
|
||||
* -threshold < stdev <= threshold
|
||||
*
|
||||
* This loop is executed until the number is in the expected range.
|
||||
*
|
||||
* As the minimum threshold is 2.0, the probability of looping is low:
|
||||
* sqrt(-2 ln(r)) <= 2 => r >= e^{-2} ~ 0.135, then when taking the average
|
||||
* sinus multiplier as 2/pi, we have a 8.6% looping probability in the
|
||||
* worst case. For a 5.0 threshold value, the looping probability
|
||||
* is about e^{-5} * 2 / pi ~ 0.43%.
|
||||
*/
|
||||
do
|
||||
{
|
||||
/*
|
||||
* pg_erand48 generates [0,1), but for the basic version of the
|
||||
* Box-Muller transform the two uniformly distributed random numbers
|
||||
* are expected in (0, 1] (see http://en.wikipedia.org/wiki/Box_muller)
|
||||
*/
|
||||
double rand1 = 1.0 - pg_erand48(thread->random_state);
|
||||
double rand2 = 1.0 - pg_erand48(thread->random_state);
|
||||
|
||||
/* Box-Muller basic form transform */
|
||||
double var_sqrt = sqrt(-2.0 * log(rand1));
|
||||
stdev = var_sqrt * sin(2.0 * M_PI * rand2);
|
||||
|
||||
/*
|
||||
* we may try with cos, but there may be a bias induced if the previous
|
||||
* value fails the test. To be on the safe side, let us try over.
|
||||
*/
|
||||
}
|
||||
while (stdev < -threshold || stdev >= threshold);
|
||||
|
||||
/* stdev is in [-threshold, threshold), normalization to [0,1) */
|
||||
rand = (stdev + threshold) / (threshold * 2.0);
|
||||
|
||||
/* return int64 random number within between min and max */
|
||||
return min + (int64)((max - min + 1) * rand);
|
||||
}
|
||||
|
||||
/* call PQexec() and exit() on failure */
|
||||
static void
|
||||
executeStatement(PGconn *con, const char *sql)
|
||||
@ -1319,6 +1391,7 @@ top:
|
||||
char *var;
|
||||
int64 min,
|
||||
max;
|
||||
double threshold = 0;
|
||||
char res[64];
|
||||
|
||||
if (*argv[2] == ':')
|
||||
@ -1364,11 +1437,11 @@ top:
|
||||
}
|
||||
|
||||
/*
|
||||
* getrand() needs to be able to subtract max from min and add one
|
||||
* to the result without overflowing. Since we know max > min, we
|
||||
* can detect overflow just by checking for a negative result. But
|
||||
* we must check both that the subtraction doesn't overflow, and
|
||||
* that adding one to the result doesn't overflow either.
|
||||
* Generate random number functions need to be able to subtract
|
||||
* max from min and add one to the result without overflowing.
|
||||
* Since we know max > min, we can detect overflow just by checking
|
||||
* for a negative result. But we must check both that the subtraction
|
||||
* doesn't overflow, and that adding one to the result doesn't overflow either.
|
||||
*/
|
||||
if (max - min < 0 || (max - min) + 1 < 0)
|
||||
{
|
||||
@ -1377,10 +1450,64 @@ top:
|
||||
return true;
|
||||
}
|
||||
|
||||
if (argc == 4 || /* uniform without or with "uniform" keyword */
|
||||
(argc == 5 && pg_strcasecmp(argv[4], "uniform") == 0))
|
||||
{
|
||||
#ifdef DEBUG
|
||||
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getrand(thread, min, max));
|
||||
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getrand(thread, min, max));
|
||||
#endif
|
||||
snprintf(res, sizeof(res), INT64_FORMAT, getrand(thread, min, max));
|
||||
snprintf(res, sizeof(res), INT64_FORMAT, getrand(thread, min, max));
|
||||
}
|
||||
else if (argc == 6 &&
|
||||
((pg_strcasecmp(argv[4], "gaussian") == 0) ||
|
||||
(pg_strcasecmp(argv[4], "exponential") == 0)))
|
||||
{
|
||||
if (*argv[5] == ':')
|
||||
{
|
||||
if ((var = getVariable(st, argv[5] + 1)) == NULL)
|
||||
{
|
||||
fprintf(stderr, "%s: invalid threshold number %s\n", argv[0], argv[5]);
|
||||
st->ecnt++;
|
||||
return true;
|
||||
}
|
||||
threshold = strtod(var, NULL);
|
||||
}
|
||||
else
|
||||
threshold = strtod(argv[5], NULL);
|
||||
|
||||
if (pg_strcasecmp(argv[4], "gaussian") == 0)
|
||||
{
|
||||
if (threshold < MIN_GAUSSIAN_THRESHOLD)
|
||||
{
|
||||
fprintf(stderr, "%s: gaussian threshold must be at least %f\n,", argv[5], MIN_GAUSSIAN_THRESHOLD);
|
||||
st->ecnt++;
|
||||
return true;
|
||||
}
|
||||
#ifdef DEBUG
|
||||
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getGaussianRand(thread, min, max, threshold));
|
||||
#endif
|
||||
snprintf(res, sizeof(res), INT64_FORMAT, getGaussianRand(thread, min, max, threshold));
|
||||
}
|
||||
else if (pg_strcasecmp(argv[4], "exponential") == 0)
|
||||
{
|
||||
if (threshold <= 0.0)
|
||||
{
|
||||
fprintf(stderr, "%s: exponential threshold must be strictly positive\n,", argv[5]);
|
||||
st->ecnt++;
|
||||
return true;
|
||||
}
|
||||
#ifdef DEBUG
|
||||
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getExponentialRand(thread, min, max, threshold));
|
||||
#endif
|
||||
snprintf(res, sizeof(res), INT64_FORMAT, getExponentialRand(thread, min, max, threshold));
|
||||
}
|
||||
}
|
||||
else /* this means an error somewhere in the parsing phase... */
|
||||
{
|
||||
fprintf(stderr, "%s: unexpected arguments\n", argv[0]);
|
||||
st->ecnt++;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!putVariable(st, argv[0], argv[1], res))
|
||||
{
|
||||
@ -1914,15 +2041,51 @@ process_commands(char *buf)
|
||||
|
||||
if (pg_strcasecmp(my_commands->argv[0], "setrandom") == 0)
|
||||
{
|
||||
/* parsing:
|
||||
* \setrandom variable min max [uniform]
|
||||
* \setrandom variable min max (gaussian|exponential) threshold
|
||||
*/
|
||||
|
||||
if (my_commands->argc < 4)
|
||||
{
|
||||
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
|
||||
exit(1);
|
||||
}
|
||||
/* argc >= 4 */
|
||||
|
||||
for (j = 4; j < my_commands->argc; j++)
|
||||
fprintf(stderr, "%s: extra argument \"%s\" ignored\n",
|
||||
my_commands->argv[0], my_commands->argv[j]);
|
||||
if (my_commands->argc == 4 || /* uniform without/with "uniform" keyword */
|
||||
(my_commands->argc == 5 &&
|
||||
pg_strcasecmp(my_commands->argv[4], "uniform") == 0))
|
||||
{
|
||||
/* nothing to do */
|
||||
}
|
||||
else if (/* argc >= 5 */
|
||||
(pg_strcasecmp(my_commands->argv[4], "gaussian") == 0) ||
|
||||
(pg_strcasecmp(my_commands->argv[4], "exponential") == 0))
|
||||
{
|
||||
if (my_commands->argc < 6)
|
||||
{
|
||||
fprintf(stderr, "%s(%s): missing threshold argument\n", my_commands->argv[0], my_commands->argv[4]);
|
||||
exit(1);
|
||||
}
|
||||
else if (my_commands->argc > 6)
|
||||
{
|
||||
fprintf(stderr, "%s(%s): too many arguments (extra:",
|
||||
my_commands->argv[0], my_commands->argv[4]);
|
||||
for (j = 6; j < my_commands->argc; j++)
|
||||
fprintf(stderr, " %s", my_commands->argv[j]);
|
||||
fprintf(stderr, ")\n");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else /* cannot parse, unexpected arguments */
|
||||
{
|
||||
fprintf(stderr, "%s: unexpected arguments (bad:", my_commands->argv[0]);
|
||||
for (j = 4; j < my_commands->argc; j++)
|
||||
fprintf(stderr, " %s", my_commands->argv[j]);
|
||||
fprintf(stderr, ")\n");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (pg_strcasecmp(my_commands->argv[0], "set") == 0)
|
||||
{
|
||||
|
@ -748,8 +748,8 @@ pgbench <optional> <replaceable>options</> </optional> <replaceable>dbname</>
|
||||
|
||||
<varlistentry>
|
||||
<term>
|
||||
<literal>\setrandom <replaceable>varname</> <replaceable>min</> <replaceable>max</></literal>
|
||||
</term>
|
||||
<literal>\setrandom <replaceable>varname</> <replaceable>min</> <replaceable>max</> [ uniform | [ { gaussian | exponential } <replaceable>threshold</> ] ]</literal>
|
||||
</term>
|
||||
|
||||
<listitem>
|
||||
<para>
|
||||
@ -760,10 +760,65 @@ pgbench <optional> <replaceable>options</> </optional> <replaceable>dbname</>
|
||||
having an integer value.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
By default, or when <literal>uniform</> is specified, all values in the
|
||||
range are drawn with equal probability. Specifiying <literal>gaussian</>
|
||||
or <literal>exponential</> options modifies this behavior; each
|
||||
requires a mandatory threshold which determines the precise shape of the
|
||||
distribution.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
For a Gaussian distribution, the interval is mapped onto a standard
|
||||
normal distribution (the classical bell-shaped Gaussian curve) truncated
|
||||
at <literal>-threshold</> on the left and <literal>+threshold</>
|
||||
on the right.
|
||||
To be precise, if <literal>PHI(x)</> is the cumulative distribution
|
||||
function of the standard normal distribution, with mean <literal>mu</>
|
||||
defined as <literal>(max + min) / 2.0</>, then value <replaceable>i</>
|
||||
between <replaceable>min</> and <replaceable>max</> inclusive is drawn
|
||||
with probability:
|
||||
<literal>
|
||||
(PHI(2.0 * threshold * (i - min - mu + 0.5) / (max - min + 1)) -
|
||||
PHI(2.0 * threshold * (i - min - mu - 0.5) / (max - min + 1))) /
|
||||
(2.0 * PHI(threshold) - 1.0)
|
||||
</>
|
||||
Intuitively, the larger the <replaceable>threshold</>, the more
|
||||
frequently values close to the middle of the interval are drawn, and the
|
||||
less frequently values close to the <replaceable>min</> and
|
||||
<replaceable>max</> bounds.
|
||||
About 67% of values are drawn from the middle <literal>1.0 / threshold</>
|
||||
and 95% in the middle <literal>2.0 / threshold</>; for instance, if
|
||||
<replaceable>threshold</> is 4.0, 67% of values are drawn from the middle
|
||||
quarter and 95% from the middle half of the interval.
|
||||
The minimum <replaceable>threshold</> is 2.0 for performance of
|
||||
the Box-Muller transform.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
For an exponential distribution, the <replaceable>threshold</>
|
||||
parameter controls the distribution by truncating a quickly-decreasing
|
||||
exponential distribution at <replaceable>threshold</>, and then
|
||||
projecting onto integers between the bounds.
|
||||
To be precise, value <replaceable>i</> between <replaceable>min</> and
|
||||
<replaceable>max</> inclusive is drawn with probability:
|
||||
<literal>(exp(-threshold*(i-min)/(max+1-min)) -
|
||||
exp(-threshold*(i+1-min)/(max+1-min))) / (1.0 - exp(-threshold))</>.
|
||||
Intuitively, the larger the <replaceable>threshold</>, the more
|
||||
frequently values close to <replaceable>min</> are accessed, and the
|
||||
less frequently values close to <replaceable>max</> are accessed.
|
||||
The closer to 0 the threshold, the flatter (more uniform) the access
|
||||
distribution.
|
||||
A crude approximation of the distribution is that the most frequent 1%
|
||||
values in the range, close to <replaceable>min</>, are drawn
|
||||
<replaceable>threshold</>% of the time.
|
||||
The <replaceable>threshold</> value must be strictly positive.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
Example:
|
||||
<programlisting>
|
||||
\setrandom aid 1 :naccounts
|
||||
\setrandom aid 1 :naccounts gaussian 5.0
|
||||
</programlisting></para>
|
||||
</listitem>
|
||||
</varlistentry>
|
||||
|
Loading…
Reference in New Issue
Block a user