mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-03-01 19:45:33 +08:00
Apply multiple multivariate MCV lists when possible
Until now we've only used a single multivariate MCV list per relation, covering the largest number of clauses. So for example given a query SELECT * FROM t WHERE a = 1 AND b =1 AND c = 1 AND d = 1 and extended statistics on (a,b) and (c,d), we'd only pick and use one of them. This commit improves this by repeatedly picking and applying the best statistics (matching the largest number of remaining clauses) until no additional statistics is applicable. This greedy algorithm is simple, but may not be optimal. A different choice of statistics may leave fewer clauses unestimated and/or give better estimates for some other reason. This can however happen only when there are overlapping statistics, and selecting one makes it impossible to use the other. E.g. with statistics on (a,b), (c,d), (b,c,d), we may pick either (a,b) and (c,d) or (b,c,d). But it's not clear which option is the best one. We however assume cases like this are rare, and the easiest solution is to define statistics covering the whole group of correlated columns. In the future we might support overlapping stats, using some of the clauses as conditions (in conditional probability sense). Author: Tomas Vondra Reviewed-by: Mark Dilger, Kyotaro Horiguchi Discussion: https://postgr.es/m/20191028152048.jc6pqv5hb7j77ocp@development
This commit is contained in:
parent
aaa6761876
commit
eae056c19e
@ -1148,9 +1148,13 @@ statext_is_compatible_clause(PlannerInfo *root, Node *clause, Index relid,
|
||||
* statext_mcv_clauselist_selectivity
|
||||
* Estimate clauses using the best multi-column statistics.
|
||||
*
|
||||
* Selects the best extended (multi-column) statistic on a table (measured by
|
||||
* the number of attributes extracted from the clauses and covered by it), and
|
||||
* computes the selectivity for the supplied clauses.
|
||||
* Applies available extended (multi-column) statistics on a table. There may
|
||||
* be multiple applicable statistics (with respect to the clauses), in which
|
||||
* case we use greedy approach. In each round we select the best statistic on
|
||||
* a table (measured by the number of attributes extracted from the clauses
|
||||
* and covered by it), and compute the selectivity for the supplied clauses.
|
||||
* We repeat this process with the remaining clauses (if any), until none of
|
||||
* the available statistics can be used.
|
||||
*
|
||||
* One of the main challenges with using MCV lists is how to extrapolate the
|
||||
* estimate to the data not covered by the MCV list. To do that, we compute
|
||||
@ -1194,11 +1198,6 @@ statext_is_compatible_clause(PlannerInfo *root, Node *clause, Index relid,
|
||||
* 'estimatedclauses' is an input/output parameter. We set bits for the
|
||||
* 0-based 'clauses' indexes we estimate for and also skip clause items that
|
||||
* already have a bit set.
|
||||
*
|
||||
* XXX If we were to use multiple statistics, this is where it would happen.
|
||||
* We would simply repeat this on a loop on the "remaining" clauses, possibly
|
||||
* using the already estimated clauses as conditions (and combining the values
|
||||
* using conditional probability formula).
|
||||
*/
|
||||
static Selectivity
|
||||
statext_mcv_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid,
|
||||
@ -1208,14 +1207,7 @@ statext_mcv_clauselist_selectivity(PlannerInfo *root, List *clauses, int varReli
|
||||
ListCell *l;
|
||||
Bitmapset **list_attnums;
|
||||
int listidx;
|
||||
StatisticExtInfo *stat;
|
||||
List *stat_clauses;
|
||||
Selectivity simple_sel,
|
||||
mcv_sel,
|
||||
mcv_basesel,
|
||||
mcv_totalsel,
|
||||
other_sel,
|
||||
sel;
|
||||
Selectivity sel = 1.0;
|
||||
|
||||
/* check if there's any stats that might be useful for us. */
|
||||
if (!has_stats_of_kind(rel->statlist, STATS_EXT_MCV))
|
||||
@ -1250,66 +1242,85 @@ statext_mcv_clauselist_selectivity(PlannerInfo *root, List *clauses, int varReli
|
||||
listidx++;
|
||||
}
|
||||
|
||||
/* find the best suited statistics object for these attnums */
|
||||
stat = choose_best_statistics(rel->statlist, STATS_EXT_MCV,
|
||||
list_attnums, list_length(clauses));
|
||||
|
||||
/* if no matching stats could be found then we've nothing to do */
|
||||
if (!stat)
|
||||
return 1.0;
|
||||
|
||||
/* Ensure choose_best_statistics produced an expected stats type. */
|
||||
Assert(stat->kind == STATS_EXT_MCV);
|
||||
|
||||
/* now filter the clauses to be estimated using the selected MCV */
|
||||
stat_clauses = NIL;
|
||||
|
||||
listidx = 0;
|
||||
foreach(l, clauses)
|
||||
/* apply as many extended statistics as possible */
|
||||
while (true)
|
||||
{
|
||||
/*
|
||||
* If the clause is compatible with the selected statistics, mark it
|
||||
* as estimated and add it to the list to estimate.
|
||||
*/
|
||||
if (list_attnums[listidx] != NULL &&
|
||||
bms_is_subset(list_attnums[listidx], stat->keys))
|
||||
StatisticExtInfo *stat;
|
||||
List *stat_clauses;
|
||||
Selectivity simple_sel,
|
||||
mcv_sel,
|
||||
mcv_basesel,
|
||||
mcv_totalsel,
|
||||
other_sel,
|
||||
stat_sel;
|
||||
|
||||
/* find the best suited statistics object for these attnums */
|
||||
stat = choose_best_statistics(rel->statlist, STATS_EXT_MCV,
|
||||
list_attnums, list_length(clauses));
|
||||
|
||||
/* if no (additional) matching stats could be found then we've nothing to do */
|
||||
if (!stat)
|
||||
break;
|
||||
|
||||
/* Ensure choose_best_statistics produced an expected stats type. */
|
||||
Assert(stat->kind == STATS_EXT_MCV);
|
||||
|
||||
/* now filter the clauses to be estimated using the selected MCV */
|
||||
stat_clauses = NIL;
|
||||
|
||||
listidx = 0;
|
||||
foreach(l, clauses)
|
||||
{
|
||||
stat_clauses = lappend(stat_clauses, (Node *) lfirst(l));
|
||||
*estimatedclauses = bms_add_member(*estimatedclauses, listidx);
|
||||
/*
|
||||
* If the clause is compatible with the selected statistics, mark it
|
||||
* as estimated and add it to the list to estimate.
|
||||
*/
|
||||
if (list_attnums[listidx] != NULL &&
|
||||
bms_is_subset(list_attnums[listidx], stat->keys))
|
||||
{
|
||||
stat_clauses = lappend(stat_clauses, (Node *) lfirst(l));
|
||||
*estimatedclauses = bms_add_member(*estimatedclauses, listidx);
|
||||
|
||||
bms_free(list_attnums[listidx]);
|
||||
list_attnums[listidx] = NULL;
|
||||
}
|
||||
|
||||
listidx++;
|
||||
}
|
||||
|
||||
listidx++;
|
||||
/*
|
||||
* First compute "simple" selectivity, i.e. without the extended
|
||||
* statistics, and essentially assuming independence of the
|
||||
* columns/clauses. We'll then use the various selectivities computed from
|
||||
* MCV list to improve it.
|
||||
*/
|
||||
simple_sel = clauselist_selectivity_simple(root, stat_clauses, varRelid,
|
||||
jointype, sjinfo, NULL);
|
||||
|
||||
/*
|
||||
* Now compute the multi-column estimate from the MCV list, along with the
|
||||
* other selectivities (base & total selectivity).
|
||||
*/
|
||||
mcv_sel = mcv_clauselist_selectivity(root, stat, stat_clauses, varRelid,
|
||||
jointype, sjinfo, rel,
|
||||
&mcv_basesel, &mcv_totalsel);
|
||||
|
||||
/* Estimated selectivity of values not covered by MCV matches */
|
||||
other_sel = simple_sel - mcv_basesel;
|
||||
CLAMP_PROBABILITY(other_sel);
|
||||
|
||||
/* The non-MCV selectivity can't exceed the 1 - mcv_totalsel. */
|
||||
if (other_sel > 1.0 - mcv_totalsel)
|
||||
other_sel = 1.0 - mcv_totalsel;
|
||||
|
||||
/* Overall selectivity is the combination of MCV and non-MCV estimates. */
|
||||
stat_sel = mcv_sel + other_sel;
|
||||
CLAMP_PROBABILITY(stat_sel);
|
||||
|
||||
/* Factor the estimate from this MCV to the oveall estimate. */
|
||||
sel *= stat_sel;
|
||||
}
|
||||
|
||||
/*
|
||||
* First compute "simple" selectivity, i.e. without the extended
|
||||
* statistics, and essentially assuming independence of the
|
||||
* columns/clauses. We'll then use the various selectivities computed from
|
||||
* MCV list to improve it.
|
||||
*/
|
||||
simple_sel = clauselist_selectivity_simple(root, stat_clauses, varRelid,
|
||||
jointype, sjinfo, NULL);
|
||||
|
||||
/*
|
||||
* Now compute the multi-column estimate from the MCV list, along with the
|
||||
* other selectivities (base & total selectivity).
|
||||
*/
|
||||
mcv_sel = mcv_clauselist_selectivity(root, stat, stat_clauses, varRelid,
|
||||
jointype, sjinfo, rel,
|
||||
&mcv_basesel, &mcv_totalsel);
|
||||
|
||||
/* Estimated selectivity of values not covered by MCV matches */
|
||||
other_sel = simple_sel - mcv_basesel;
|
||||
CLAMP_PROBABILITY(other_sel);
|
||||
|
||||
/* The non-MCV selectivity can't exceed the 1 - mcv_totalsel. */
|
||||
if (other_sel > 1.0 - mcv_totalsel)
|
||||
other_sel = 1.0 - mcv_totalsel;
|
||||
|
||||
/* Overall selectivity is the combination of MCV and non-MCV estimates. */
|
||||
sel = mcv_sel + other_sel;
|
||||
CLAMP_PROBABILITY(sel);
|
||||
|
||||
return sel;
|
||||
}
|
||||
|
||||
|
@ -836,6 +836,63 @@ SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND
|
||||
1 | 0
|
||||
(1 row)
|
||||
|
||||
-- check the ability to use multiple MCV lists
|
||||
CREATE TABLE mcv_lists_multi (
|
||||
a INTEGER,
|
||||
b INTEGER,
|
||||
c INTEGER,
|
||||
d INTEGER
|
||||
);
|
||||
INSERT INTO mcv_lists_multi (a, b, c, d)
|
||||
SELECT
|
||||
mod(i,5),
|
||||
mod(i,5),
|
||||
mod(i,7),
|
||||
mod(i,7)
|
||||
FROM generate_series(1,5000) s(i);
|
||||
ANALYZE mcv_lists_multi;
|
||||
-- estimates without any mcv statistics
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE a = 0 AND b = 0');
|
||||
estimated | actual
|
||||
-----------+--------
|
||||
200 | 1000
|
||||
(1 row)
|
||||
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE c = 0 AND d = 0');
|
||||
estimated | actual
|
||||
-----------+--------
|
||||
102 | 714
|
||||
(1 row)
|
||||
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE a = 0 AND b = 0 AND c = 0 AND d = 0');
|
||||
estimated | actual
|
||||
-----------+--------
|
||||
4 | 142
|
||||
(1 row)
|
||||
|
||||
-- create separate MCV statistics
|
||||
CREATE STATISTICS mcv_lists_multi_1 (mcv) ON a, b FROM mcv_lists_multi;
|
||||
CREATE STATISTICS mcv_lists_multi_2 (mcv) ON c, d FROM mcv_lists_multi;
|
||||
ANALYZE mcv_lists_multi;
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE a = 0 AND b = 0');
|
||||
estimated | actual
|
||||
-----------+--------
|
||||
1000 | 1000
|
||||
(1 row)
|
||||
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE c = 0 AND d = 0');
|
||||
estimated | actual
|
||||
-----------+--------
|
||||
714 | 714
|
||||
(1 row)
|
||||
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE a = 0 AND b = 0 AND c = 0 AND d = 0');
|
||||
estimated | actual
|
||||
-----------+--------
|
||||
143 | 142
|
||||
(1 row)
|
||||
|
||||
DROP TABLE mcv_lists_multi;
|
||||
-- Permission tests. Users should not be able to see specific data values in
|
||||
-- the extended statistics, if they lack permission to see those values in
|
||||
-- the underlying table.
|
||||
|
@ -535,6 +535,41 @@ SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND
|
||||
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND b AND NOT c');
|
||||
|
||||
-- check the ability to use multiple MCV lists
|
||||
CREATE TABLE mcv_lists_multi (
|
||||
a INTEGER,
|
||||
b INTEGER,
|
||||
c INTEGER,
|
||||
d INTEGER
|
||||
);
|
||||
|
||||
INSERT INTO mcv_lists_multi (a, b, c, d)
|
||||
SELECT
|
||||
mod(i,5),
|
||||
mod(i,5),
|
||||
mod(i,7),
|
||||
mod(i,7)
|
||||
FROM generate_series(1,5000) s(i);
|
||||
|
||||
ANALYZE mcv_lists_multi;
|
||||
|
||||
-- estimates without any mcv statistics
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE a = 0 AND b = 0');
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE c = 0 AND d = 0');
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE a = 0 AND b = 0 AND c = 0 AND d = 0');
|
||||
|
||||
-- create separate MCV statistics
|
||||
CREATE STATISTICS mcv_lists_multi_1 (mcv) ON a, b FROM mcv_lists_multi;
|
||||
CREATE STATISTICS mcv_lists_multi_2 (mcv) ON c, d FROM mcv_lists_multi;
|
||||
|
||||
ANALYZE mcv_lists_multi;
|
||||
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE a = 0 AND b = 0');
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE c = 0 AND d = 0');
|
||||
SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_multi WHERE a = 0 AND b = 0 AND c = 0 AND d = 0');
|
||||
|
||||
DROP TABLE mcv_lists_multi;
|
||||
|
||||
-- Permission tests. Users should not be able to see specific data values in
|
||||
-- the extended statistics, if they lack permission to see those values in
|
||||
-- the underlying table.
|
||||
|
Loading…
Reference in New Issue
Block a user