mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-30 19:00:29 +08:00
Further performance improvements in sorting: reduce number of comparisons
during initial run formation by keeping both current run and next-run tuples in the same heap (yup, Knuth is smarter than I am). And, during merge passes, make use of available sort memory to load multiple tuples from any one input 'tape' at a time, thereby improving locality of access to the temp file.
This commit is contained in:
parent
2a5f3869a2
commit
cf627ab41a
@ -19,13 +19,16 @@
|
||||
* disk space as soon as each block is read from its "tape".
|
||||
*
|
||||
* We do not form the initial runs using Knuth's recommended replacement
|
||||
* selection method (Algorithm 5.4.1R), because it uses a fixed number of
|
||||
* records in memory at all times. Since we are dealing with tuples that
|
||||
* may vary considerably in size, we want to be able to vary the number of
|
||||
* records kept in memory to ensure full utilization of the allowed sort
|
||||
* memory space. This is easily done by keeping a variable-size heap in
|
||||
* which the records of the current run are stored, plus a variable-size
|
||||
* unsorted array holding records that must go into the next run.
|
||||
* selection data structure (Algorithm 5.4.1R), because it uses a fixed
|
||||
* number of records in memory at all times. Since we are dealing with
|
||||
* tuples that may vary considerably in size, we want to be able to vary
|
||||
* the number of records kept in memory to ensure full utilization of the
|
||||
* allowed sort memory space. So, we keep the tuples in a variable-size
|
||||
* heap, with the next record to go out at the top of the heap. Like
|
||||
* Algorithm 5.4.1R, each record is stored with the run number that it
|
||||
* must go into, and we use (run number, key) as the ordering key for the
|
||||
* heap. When the run number at the top of the heap changes, we know that
|
||||
* no more records of the prior run are left in the heap.
|
||||
*
|
||||
* The (approximate) amount of memory allowed for any one sort operation
|
||||
* is given in kilobytes by the external variable SortMem. Initially,
|
||||
@ -35,13 +38,32 @@
|
||||
* tuples just by scanning the tuple array sequentially. If we do exceed
|
||||
* SortMem, we construct a heap using Algorithm H and begin to emit tuples
|
||||
* into sorted runs in temporary tapes, emitting just enough tuples at each
|
||||
* step to get back within the SortMem limit. New tuples are added to the
|
||||
* heap if they can go into the current run, else they are temporarily added
|
||||
* to the unsorted array. Whenever the heap empties, we construct a new heap
|
||||
* from the current contents of the unsorted array, and begin a new run with a
|
||||
* new output tape (selected per Algorithm D). After the end of the input
|
||||
* is reached, we dump out remaining tuples in memory into a final run
|
||||
* (or two), then merge the runs using Algorithm D.
|
||||
* step to get back within the SortMem limit. Whenever the run number at
|
||||
* the top of the heap changes, we begin a new run with a new output tape
|
||||
* (selected per Algorithm D). After the end of the input is reached,
|
||||
* we dump out remaining tuples in memory into a final run (or two),
|
||||
* then merge the runs using Algorithm D.
|
||||
*
|
||||
* When merging runs, we use a heap containing just the frontmost tuple from
|
||||
* each source run; we repeatedly output the smallest tuple and insert the
|
||||
* next tuple from its source tape (if any). When the heap empties, the merge
|
||||
* is complete. The basic merge algorithm thus needs very little memory ---
|
||||
* only M tuples for an M-way merge, and M is at most six in the present code.
|
||||
* However, we can still make good use of our full SortMem allocation by
|
||||
* pre-reading additional tuples from each source tape. Without prereading,
|
||||
* our access pattern to the temporary file would be very erratic; on average
|
||||
* we'd read one block from each of M source tapes during the same time that
|
||||
* we're writing M blocks to the output tape, so there is no sequentiality of
|
||||
* access at all, defeating the read-ahead methods used by most Unix kernels.
|
||||
* Worse, the output tape gets written into a very random sequence of blocks
|
||||
* of the temp file, ensuring that things will be even worse when it comes
|
||||
* time to read that tape. A straightforward merge pass thus ends up doing a
|
||||
* lot of waiting for disk seeks. We can improve matters by prereading from
|
||||
* each source tape sequentially, loading about SortMem/M bytes from each tape
|
||||
* in turn. Then we run the merge algorithm, writing but not reading until
|
||||
* one of the preloaded tuple series runs out. Then we switch back to preread
|
||||
* mode, fill memory again, and repeat. This approach helps to localize both
|
||||
* read and write accesses.
|
||||
*
|
||||
* When the caller requests random access to the sort result, we form
|
||||
* the final sorted run on a logical tape which is then "frozen", so
|
||||
@ -55,7 +77,7 @@
|
||||
* Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/utils/sort/tuplesort.c,v 1.1 1999/10/17 22:15:05 tgl Exp $
|
||||
* $Header: /cvsroot/pgsql/src/backend/utils/sort/tuplesort.c,v 1.2 1999/10/30 17:27:15 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -129,30 +151,65 @@ struct Tuplesortstate
|
||||
* of memory space consumed.
|
||||
*/
|
||||
void * (*readtup) (Tuplesortstate *state, int tapenum, unsigned int len);
|
||||
/*
|
||||
* Obtain memory space occupied by a stored tuple. (This routine is
|
||||
* only needed in the FINALMERGE case, since copytup, writetup, and
|
||||
* readtup are expected to adjust availMem appropriately.)
|
||||
*/
|
||||
unsigned int (*tuplesize) (Tuplesortstate *state, void *tup);
|
||||
|
||||
/*
|
||||
* This array holds "unsorted" tuples during the input phases.
|
||||
* If we are able to complete the sort in memory, it holds the
|
||||
* final sorted result as well.
|
||||
* This array holds pointers to tuples in sort memory. If we are in
|
||||
* state INITIAL, the tuples are in no particular order; if we are in
|
||||
* state SORTEDINMEM, the tuples are in final sorted order; in states
|
||||
* BUILDRUNS and FINALMERGE, the tuples are organized in "heap" order
|
||||
* per Algorithm H. (Note that memtupcount only counts the tuples that
|
||||
* are part of the heap --- during merge passes, memtuples[] entries
|
||||
* beyond TAPERANGE are never in the heap and are used to hold
|
||||
* pre-read tuples.) In state SORTEDONTAPE, the array is not used.
|
||||
*/
|
||||
void **memtuples; /* array of pointers to palloc'd tuples */
|
||||
int memtupcount; /* number of tuples currently present */
|
||||
int memtupsize; /* allocated length of memtuples array */
|
||||
|
||||
/*
|
||||
* This array holds the partially-sorted "heap" of tuples that will go
|
||||
* out in the current run during BUILDRUNS state. While completing
|
||||
* the sort, we use it to merge runs of tuples from input tapes.
|
||||
* It is never allocated unless we need to use tapes.
|
||||
* While building initial runs, this array holds the run number for each
|
||||
* tuple in memtuples[]. During merge passes, we re-use it to hold the
|
||||
* input tape number that each tuple in the heap was read from, or to hold
|
||||
* the index of the next tuple pre-read from the same tape in the case of
|
||||
* pre-read entries. This array is never allocated unless we need to use
|
||||
* tapes. Whenever it is allocated, it has the same length as
|
||||
* memtuples[].
|
||||
*/
|
||||
void **heaptuples; /* array of pointers to palloc'd tuples */
|
||||
int heaptupcount; /* number of tuples currently present */
|
||||
int heaptupsize; /* allocated length of heaptuples array */
|
||||
int *memtupindex; /* index value associated with memtuples[i] */
|
||||
|
||||
/*
|
||||
* While merging, this array holds the actual number of the input tape
|
||||
* that each tuple in heaptuples[] came from.
|
||||
* While building initial runs, this is the current output run number
|
||||
* (starting at 0). Afterwards, it is the number of initial runs we made.
|
||||
*/
|
||||
int *heapsrctapes;
|
||||
int currentRun;
|
||||
|
||||
/*
|
||||
* These variables are only used during merge passes. mergeactive[i]
|
||||
* is true if we are reading an input run from (actual) tape number i
|
||||
* and have not yet exhausted that run. mergenext[i] is the memtuples
|
||||
* index of the next pre-read tuple (next to be loaded into the heap)
|
||||
* for tape i, or 0 if we are out of pre-read tuples. mergelast[i]
|
||||
* similarly points to the last pre-read tuple from each tape.
|
||||
* mergeavailmem[i] is the amount of unused space allocated for tape i.
|
||||
* mergefreelist and mergefirstfree keep track of unused locations
|
||||
* in the memtuples[] array. memtupindex[] links together pre-read
|
||||
* tuples for each tape as well as recycled locations in mergefreelist.
|
||||
* It is OK to use 0 as a null link in these lists, because memtuples[0]
|
||||
* is part of the merge heap and is never a pre-read tuple.
|
||||
*/
|
||||
bool mergeactive[MAXTAPES]; /* Active input run source? */
|
||||
int mergenext[MAXTAPES]; /* first preread tuple for each source */
|
||||
int mergelast[MAXTAPES]; /* last preread tuple for each source */
|
||||
long mergeavailmem[MAXTAPES]; /* availMem for prereading tapes */
|
||||
long spacePerTape; /* actual per-tape target usage */
|
||||
int mergefreelist; /* head of freelist of recycled slots */
|
||||
int mergefirstfree; /* first slot never used in this merge */
|
||||
|
||||
/*
|
||||
* Variables for Algorithm D. Note that destTape is a "logical" tape
|
||||
@ -166,8 +223,6 @@ struct Tuplesortstate
|
||||
int tp_dummy[MAXTAPES]; /* # of dummy runs for each tape (D[]) */
|
||||
int tp_tapenum[MAXTAPES]; /* Actual tape numbers (TAPE[]) */
|
||||
|
||||
bool multipleRuns; /* T if we have created more than 1 run */
|
||||
|
||||
/*
|
||||
* These variables are used after completion of sorting to keep track
|
||||
* of the next tuple to return. (In the tape case, the tape's current
|
||||
@ -202,6 +257,7 @@ struct Tuplesortstate
|
||||
#define COPYTUP(state,tup) ((*(state)->copytup) (state, tup))
|
||||
#define WRITETUP(state,tape,tup) ((*(state)->writetup) (state, tape, tup))
|
||||
#define READTUP(state,tape,len) ((*(state)->readtup) (state, tape, len))
|
||||
#define TUPLESIZE(state,tup) ((*(state)->tuplesize) (state, tup))
|
||||
#define LACKMEM(state) ((state)->availMem < 0)
|
||||
#define USEMEM(state,amt) ((state)->availMem -= (amt))
|
||||
#define FREEMEM(state,amt) ((state)->availMem += (amt))
|
||||
@ -239,7 +295,7 @@ struct Tuplesortstate
|
||||
*
|
||||
* We count space requested for tuples against the SortMem limit.
|
||||
* Fixed-size space (primarily the LogicalTapeSet I/O buffers) is not
|
||||
* counted, nor do we count the variable-size memtuples and heaptuples
|
||||
* counted, nor do we count the variable-size memtuples and memtupindex
|
||||
* arrays. (Even though those could grow pretty large, they should be
|
||||
* small compared to the tuples proper, so this is not unreasonable.)
|
||||
*
|
||||
@ -271,11 +327,11 @@ static void selectnewtape(Tuplesortstate *state);
|
||||
static void mergeruns(Tuplesortstate *state);
|
||||
static void mergeonerun(Tuplesortstate *state);
|
||||
static void beginmerge(Tuplesortstate *state);
|
||||
static void beginrun(Tuplesortstate *state);
|
||||
static void mergepreread(Tuplesortstate *state);
|
||||
static void dumptuples(Tuplesortstate *state, bool alltuples);
|
||||
static void tuplesort_heap_insert(Tuplesortstate *state, void *tuple,
|
||||
int tapenum);
|
||||
static void tuplesort_heap_siftup(Tuplesortstate *state);
|
||||
int tupleindex, bool checkIndex);
|
||||
static void tuplesort_heap_siftup(Tuplesortstate *state, bool checkIndex);
|
||||
static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK);
|
||||
static void markrunend(Tuplesortstate *state, int tapenum);
|
||||
static int qsort_comparetup(const void *a, const void *b);
|
||||
@ -285,12 +341,14 @@ static void *copytup_heap(Tuplesortstate *state, void *tup);
|
||||
static void writetup_heap(Tuplesortstate *state, int tapenum, void *tup);
|
||||
static void *readtup_heap(Tuplesortstate *state, int tapenum,
|
||||
unsigned int len);
|
||||
static unsigned int tuplesize_heap(Tuplesortstate *state, void *tup);
|
||||
static int comparetup_index(Tuplesortstate *state,
|
||||
const void *a, const void *b);
|
||||
static void *copytup_index(Tuplesortstate *state, void *tup);
|
||||
static void writetup_index(Tuplesortstate *state, int tapenum, void *tup);
|
||||
static void *readtup_index(Tuplesortstate *state, int tapenum,
|
||||
unsigned int len);
|
||||
static unsigned int tuplesize_index(Tuplesortstate *state, void *tup);
|
||||
|
||||
/*
|
||||
* Since qsort(3) will not pass any context info to qsort_comparetup(),
|
||||
@ -332,10 +390,9 @@ tuplesort_begin_common(bool randomAccess)
|
||||
state->memtupsize = 1024; /* initial guess */
|
||||
state->memtuples = (void **) palloc(state->memtupsize * sizeof(void *));
|
||||
|
||||
state->heaptuples = NULL; /* until and unless needed */
|
||||
state->heaptupcount = 0;
|
||||
state->heaptupsize = 0;
|
||||
state->heapsrctapes = NULL;
|
||||
state->memtupindex = NULL; /* until and unless needed */
|
||||
|
||||
state->currentRun = 0;
|
||||
|
||||
/* Algorithm D variables will be initialized by inittapes, if needed */
|
||||
|
||||
@ -359,6 +416,7 @@ tuplesort_begin_heap(TupleDesc tupDesc,
|
||||
state->copytup = copytup_heap;
|
||||
state->writetup = writetup_heap;
|
||||
state->readtup = readtup_heap;
|
||||
state->tuplesize = tuplesize_heap;
|
||||
|
||||
state->tupDesc = tupDesc;
|
||||
state->nKeys = nkeys;
|
||||
@ -378,6 +436,7 @@ tuplesort_begin_index(Relation indexRel,
|
||||
state->copytup = copytup_index;
|
||||
state->writetup = writetup_index;
|
||||
state->readtup = readtup_index;
|
||||
state->tuplesize = tuplesize_index;
|
||||
|
||||
state->indexRel = indexRel;
|
||||
state->enforceUnique = enforceUnique;
|
||||
@ -403,14 +462,8 @@ tuplesort_end(Tuplesortstate *state)
|
||||
pfree(state->memtuples[i]);
|
||||
pfree(state->memtuples);
|
||||
}
|
||||
if (state->heaptuples)
|
||||
{
|
||||
for (i = 0; i < state->heaptupcount; i++)
|
||||
pfree(state->heaptuples[i]);
|
||||
pfree(state->heaptuples);
|
||||
}
|
||||
if (state->heapsrctapes)
|
||||
pfree(state->heapsrctapes);
|
||||
if (state->memtupindex)
|
||||
pfree(state->memtupindex);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -450,7 +503,6 @@ tuplesort_puttuple(Tuplesortstate *state, void *tuple)
|
||||
* Nope; time to switch to tape-based operation.
|
||||
*/
|
||||
inittapes(state);
|
||||
beginrun(state);
|
||||
/*
|
||||
* Dump tuples until we are back under the limit.
|
||||
*/
|
||||
@ -458,36 +510,23 @@ tuplesort_puttuple(Tuplesortstate *state, void *tuple)
|
||||
break;
|
||||
case TSS_BUILDRUNS:
|
||||
/*
|
||||
* Insert the copied tuple into the heap if it can go into the
|
||||
* current run; otherwise add it to the unsorted array, whence
|
||||
* it will go into the next run.
|
||||
*
|
||||
* The tuple can go into the current run if it is >= the first
|
||||
* not-yet-output tuple. (Actually, it could go into the current
|
||||
* run if it is >= the most recently output tuple ... but that
|
||||
* would require keeping around the tuple we last output, and
|
||||
* it's simplest to let writetup free the tuple when written.)
|
||||
* Insert the copied tuple into the heap, with run number
|
||||
* currentRun if it can go into the current run, else run
|
||||
* number currentRun+1. The tuple can go into the current run
|
||||
* if it is >= the first not-yet-output tuple. (Actually,
|
||||
* it could go into the current run if it is >= the most recently
|
||||
* output tuple ... but that would require keeping around the
|
||||
* tuple we last output, and it's simplest to let writetup free
|
||||
* each tuple as soon as it's written.)
|
||||
*
|
||||
* Note there will always be at least one tuple in the heap
|
||||
* at this point; see dumptuples.
|
||||
*/
|
||||
Assert(state->heaptupcount > 0);
|
||||
if (COMPARETUP(state, tuple, state->heaptuples[0]) >= 0)
|
||||
{
|
||||
tuplesort_heap_insert(state, tuple, 0);
|
||||
}
|
||||
Assert(state->memtupcount > 0);
|
||||
if (COMPARETUP(state, tuple, state->memtuples[0]) >= 0)
|
||||
tuplesort_heap_insert(state, tuple, state->currentRun, true);
|
||||
else
|
||||
{
|
||||
if (state->memtupcount >= state->memtupsize)
|
||||
{
|
||||
/* Grow the unsorted array as needed. */
|
||||
state->memtupsize *= 2;
|
||||
state->memtuples = (void **)
|
||||
repalloc(state->memtuples,
|
||||
state->memtupsize * sizeof(void *));
|
||||
}
|
||||
state->memtuples[state->memtupcount++] = tuple;
|
||||
}
|
||||
tuplesort_heap_insert(state, tuple, state->currentRun+1, true);
|
||||
/*
|
||||
* If we are over the memory limit, dump tuples till we're under.
|
||||
*/
|
||||
@ -529,7 +568,7 @@ tuplesort_performsort(Tuplesortstate *state)
|
||||
* Finish tape-based sort. First, flush all tuples remaining
|
||||
* in memory out to tape; then merge until we have a single
|
||||
* remaining run (or, if !randomAccess, one run per tape).
|
||||
* Note that mergeruns sets the correct status.
|
||||
* Note that mergeruns sets the correct state->status.
|
||||
*/
|
||||
dumptuples(state, true);
|
||||
mergeruns(state);
|
||||
@ -675,17 +714,35 @@ tuplesort_gettuple(Tuplesortstate *state, bool forward,
|
||||
/*
|
||||
* This code should match the inner loop of mergeonerun().
|
||||
*/
|
||||
if (state->heaptupcount > 0)
|
||||
if (state->memtupcount > 0)
|
||||
{
|
||||
int srcTape = state->heapsrctapes[0];
|
||||
int srcTape = state->memtupindex[0];
|
||||
unsigned int tuplen;
|
||||
int tupIndex;
|
||||
void *newtup;
|
||||
|
||||
tup = state->heaptuples[0];
|
||||
tuplesort_heap_siftup(state);
|
||||
if ((tuplen = getlen(state, srcTape, true)) != 0)
|
||||
tup = state->memtuples[0];
|
||||
/* returned tuple is no longer counted in our memory space */
|
||||
tuplen = TUPLESIZE(state, tup);
|
||||
state->availMem += tuplen;
|
||||
state->mergeavailmem[srcTape] += tuplen;
|
||||
tuplesort_heap_siftup(state, false);
|
||||
if ((tupIndex = state->mergenext[srcTape]) == 0)
|
||||
{
|
||||
void *newtup = READTUP(state, srcTape, tuplen);
|
||||
tuplesort_heap_insert(state, newtup, srcTape);
|
||||
/* out of preloaded data on this tape, try to read more */
|
||||
mergepreread(state);
|
||||
/* if still no data, we've reached end of run on this tape */
|
||||
if ((tupIndex = state->mergenext[srcTape]) == 0)
|
||||
return tup;
|
||||
}
|
||||
/* pull next preread tuple from list, insert in heap */
|
||||
newtup = state->memtuples[tupIndex];
|
||||
state->mergenext[srcTape] = state->memtupindex[tupIndex];
|
||||
if (state->mergenext[srcTape] == 0)
|
||||
state->mergelast[srcTape] = 0;
|
||||
state->memtupindex[tupIndex] = state->mergefreelist;
|
||||
state->mergefreelist = tupIndex;
|
||||
tuplesort_heap_insert(state, newtup, srcTape, false);
|
||||
return tup;
|
||||
}
|
||||
return NULL;
|
||||
@ -704,18 +761,31 @@ tuplesort_gettuple(Tuplesortstate *state, bool forward,
|
||||
static void
|
||||
inittapes(Tuplesortstate *state)
|
||||
{
|
||||
int j;
|
||||
int ntuples,
|
||||
j;
|
||||
|
||||
state->tapeset = LogicalTapeSetCreate(MAXTAPES);
|
||||
|
||||
/*
|
||||
* Initialize heaptuples array slightly larger than current memtuples
|
||||
* usage; memtupcount is probably a good guess at how many tuples we
|
||||
* will be able to have in the heap at once.
|
||||
* Allocate the memtupindex array, same size as memtuples.
|
||||
*/
|
||||
state->heaptupcount = 0;
|
||||
state->heaptupsize = state->memtupcount + state->memtupcount / 4;
|
||||
state->heaptuples = (void **) palloc(state->heaptupsize * sizeof(void *));
|
||||
state->memtupindex = (int *) palloc(state->memtupsize * sizeof(int));
|
||||
|
||||
/*
|
||||
* Convert the unsorted contents of memtuples[] into a heap.
|
||||
* Each tuple is marked as belonging to run number zero.
|
||||
*
|
||||
* NOTE: we pass false for checkIndex since there's no point in
|
||||
* comparing indexes in this step, even though we do intend the
|
||||
* indexes to be part of the sort key...
|
||||
*/
|
||||
ntuples = state->memtupcount;
|
||||
state->memtupcount = 0; /* make the heap empty */
|
||||
for (j = 0; j < ntuples; j++)
|
||||
tuplesort_heap_insert(state, state->memtuples[j], 0, false);
|
||||
Assert(state->memtupcount == ntuples);
|
||||
|
||||
state->currentRun = 0;
|
||||
|
||||
/*
|
||||
* Initialize variables of Algorithm D (step D1).
|
||||
@ -733,8 +803,6 @@ inittapes(Tuplesortstate *state)
|
||||
state->Level = 1;
|
||||
state->destTape = 0;
|
||||
|
||||
state->multipleRuns = false;
|
||||
|
||||
state->status = TSS_BUILDRUNS;
|
||||
}
|
||||
|
||||
@ -750,9 +818,6 @@ selectnewtape(Tuplesortstate *state)
|
||||
int j;
|
||||
int a;
|
||||
|
||||
/* We now have at least two initial runs */
|
||||
state->multipleRuns = true;
|
||||
|
||||
/* Step D3: advance j (destTape) */
|
||||
if (state->tp_dummy[state->destTape] < state->tp_dummy[state->destTape+1])
|
||||
{
|
||||
@ -791,13 +856,13 @@ mergeruns(Tuplesortstate *state)
|
||||
svDummy;
|
||||
|
||||
Assert(state->status == TSS_BUILDRUNS);
|
||||
Assert(state->memtupcount == 0 && state->heaptupcount == 0);
|
||||
Assert(state->memtupcount == 0);
|
||||
/*
|
||||
* If we produced only one initial run (quite likely if the total
|
||||
* data volume is between 1X and 2X SortMem), we can just use that
|
||||
* tape as the finished output, rather than doing a useless merge.
|
||||
*/
|
||||
if (! state->multipleRuns)
|
||||
if (state->currentRun == 1)
|
||||
{
|
||||
state->result_tape = state->tp_tapenum[state->destTape];
|
||||
/* must freeze and rewind the finished output tape */
|
||||
@ -896,8 +961,10 @@ mergeonerun(Tuplesortstate *state)
|
||||
{
|
||||
int destTape = state->tp_tapenum[TAPERANGE];
|
||||
int srcTape;
|
||||
unsigned int tuplen;
|
||||
int tupIndex;
|
||||
void *tup;
|
||||
long priorAvail,
|
||||
spaceFreed;
|
||||
|
||||
/*
|
||||
* Start the merge by loading one tuple from each active source tape
|
||||
@ -910,18 +977,34 @@ mergeonerun(Tuplesortstate *state)
|
||||
* writing it out, and replacing it with next tuple from same tape
|
||||
* (if there is another one).
|
||||
*/
|
||||
while (state->heaptupcount > 0)
|
||||
while (state->memtupcount > 0)
|
||||
{
|
||||
WRITETUP(state, destTape, state->heaptuples[0]);
|
||||
srcTape = state->heapsrctapes[0];
|
||||
tuplesort_heap_siftup(state);
|
||||
if ((tuplen = getlen(state, srcTape, true)) != 0)
|
||||
/* write the tuple to destTape */
|
||||
priorAvail = state->availMem;
|
||||
srcTape = state->memtupindex[0];
|
||||
WRITETUP(state, destTape, state->memtuples[0]);
|
||||
/* writetup adjusted total free space, now fix per-tape space */
|
||||
spaceFreed = state->availMem - priorAvail;
|
||||
state->mergeavailmem[srcTape] += spaceFreed;
|
||||
/* compact the heap */
|
||||
tuplesort_heap_siftup(state, false);
|
||||
if ((tupIndex = state->mergenext[srcTape]) == 0)
|
||||
{
|
||||
tup = READTUP(state, srcTape, tuplen);
|
||||
tuplesort_heap_insert(state, tup, srcTape);
|
||||
/* out of preloaded data on this tape, try to read more */
|
||||
mergepreread(state);
|
||||
/* if still no data, we've reached end of run on this tape */
|
||||
if ((tupIndex = state->mergenext[srcTape]) == 0)
|
||||
continue;
|
||||
}
|
||||
/* pull next preread tuple from list, insert in heap */
|
||||
tup = state->memtuples[tupIndex];
|
||||
state->mergenext[srcTape] = state->memtupindex[tupIndex];
|
||||
if (state->mergenext[srcTape] == 0)
|
||||
state->mergelast[srcTape] = 0;
|
||||
state->memtupindex[tupIndex] = state->mergefreelist;
|
||||
state->mergefreelist = tupIndex;
|
||||
tuplesort_heap_insert(state, tup, srcTape, false);
|
||||
}
|
||||
|
||||
/*
|
||||
* When the heap empties, we're done. Write an end-of-run marker
|
||||
* on the output tape, and increment its count of real runs.
|
||||
@ -933,21 +1016,31 @@ mergeonerun(Tuplesortstate *state)
|
||||
/*
|
||||
* beginmerge - initialize for a merge pass
|
||||
*
|
||||
* We load the first tuple from each nondummy input run into the heap.
|
||||
* We also decrease the counts of real and dummy runs for each tape.
|
||||
* We decrease the counts of real and dummy runs for each tape, and mark
|
||||
* which tapes contain active input runs in mergeactive[]. Then, load
|
||||
* as many tuples as we can from each active input tape, and finally
|
||||
* fill the merge heap with the first tuple from each active tape.
|
||||
*/
|
||||
static void
|
||||
beginmerge(Tuplesortstate *state)
|
||||
{
|
||||
int activeTapes;
|
||||
int tapenum;
|
||||
int srcTape;
|
||||
unsigned int tuplen;
|
||||
void *tup;
|
||||
|
||||
Assert(state->heaptuples != NULL && state->heaptupcount == 0);
|
||||
if (state->heapsrctapes == NULL)
|
||||
state->heapsrctapes = (int *) palloc(MAXTAPES * sizeof(int));
|
||||
/* Heap should be empty here */
|
||||
Assert(state->memtupcount == 0);
|
||||
|
||||
/* Clear merge-pass state variables */
|
||||
memset(state->mergeactive, 0, sizeof(state->mergeactive));
|
||||
memset(state->mergenext, 0, sizeof(state->mergenext));
|
||||
memset(state->mergelast, 0, sizeof(state->mergelast));
|
||||
memset(state->mergeavailmem, 0, sizeof(state->mergeavailmem));
|
||||
state->mergefreelist = 0; /* nothing in the freelist */
|
||||
state->mergefirstfree = MAXTAPES; /* first slot available for preread */
|
||||
|
||||
/* Adjust run counts and mark the active tapes */
|
||||
activeTapes = 0;
|
||||
for (tapenum = 0; tapenum < TAPERANGE; tapenum++)
|
||||
{
|
||||
if (state->tp_dummy[tapenum] > 0)
|
||||
@ -959,34 +1052,135 @@ beginmerge(Tuplesortstate *state)
|
||||
Assert(state->tp_runs[tapenum] > 0);
|
||||
state->tp_runs[tapenum]--;
|
||||
srcTape = state->tp_tapenum[tapenum];
|
||||
tuplen = getlen(state, srcTape, false);
|
||||
tup = READTUP(state, srcTape, tuplen);
|
||||
tuplesort_heap_insert(state, tup, srcTape);
|
||||
state->mergeactive[srcTape] = true;
|
||||
activeTapes++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize space allocation to let each active input tape have
|
||||
* an equal share of preread space.
|
||||
*/
|
||||
Assert(activeTapes > 0);
|
||||
state->spacePerTape = state->availMem / activeTapes;
|
||||
for (srcTape = 0; srcTape < MAXTAPES; srcTape++)
|
||||
{
|
||||
if (state->mergeactive[srcTape])
|
||||
state->mergeavailmem[srcTape] = state->spacePerTape;
|
||||
}
|
||||
|
||||
/*
|
||||
* Preread as many tuples as possible (and at least one) from each
|
||||
* active tape
|
||||
*/
|
||||
mergepreread(state);
|
||||
|
||||
/* Load the merge heap with the first tuple from each input tape */
|
||||
for (srcTape = 0; srcTape < MAXTAPES; srcTape++)
|
||||
{
|
||||
int tupIndex = state->mergenext[srcTape];
|
||||
void *tup;
|
||||
|
||||
if (tupIndex)
|
||||
{
|
||||
tup = state->memtuples[tupIndex];
|
||||
state->mergenext[srcTape] = state->memtupindex[tupIndex];
|
||||
if (state->mergenext[srcTape] == 0)
|
||||
state->mergelast[srcTape] = 0;
|
||||
state->memtupindex[tupIndex] = state->mergefreelist;
|
||||
state->mergefreelist = tupIndex;
|
||||
tuplesort_heap_insert(state, tup, srcTape, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* beginrun - start a new initial run
|
||||
* mergepreread - load tuples from merge input tapes
|
||||
*
|
||||
* The tuples presently in the unsorted memory array are moved into
|
||||
* the heap.
|
||||
* This routine exists to improve sequentiality of reads during a merge pass,
|
||||
* as explained in the header comments of this file. Load tuples from each
|
||||
* active source tape until the tape's run is exhausted or it has used up
|
||||
* its fair share of available memory. In any case, we guarantee that there
|
||||
* is at one preread tuple available from each unexhausted input tape.
|
||||
*/
|
||||
static void
|
||||
beginrun(Tuplesortstate *state)
|
||||
mergepreread(Tuplesortstate *state)
|
||||
{
|
||||
int i;
|
||||
int srcTape;
|
||||
unsigned int tuplen;
|
||||
void *tup;
|
||||
int tupIndex;
|
||||
long priorAvail,
|
||||
spaceUsed;
|
||||
|
||||
Assert(state->heaptupcount == 0 && state->memtupcount > 0);
|
||||
for (i = 0; i < state->memtupcount; i++)
|
||||
tuplesort_heap_insert(state, state->memtuples[i], 0);
|
||||
state->memtupcount = 0;
|
||||
for (srcTape = 0; srcTape < MAXTAPES; srcTape++)
|
||||
{
|
||||
if (! state->mergeactive[srcTape])
|
||||
continue;
|
||||
/*
|
||||
* Skip reading from any tape that still has at least half
|
||||
* of its target memory filled with tuples (threshold fraction
|
||||
* may need adjustment?). This avoids reading just a few tuples
|
||||
* when the incoming runs are not being consumed evenly.
|
||||
*/
|
||||
if (state->mergenext[srcTape] != 0 &&
|
||||
state->mergeavailmem[srcTape] <= state->spacePerTape / 2)
|
||||
continue;
|
||||
/*
|
||||
* Read tuples from this tape until it has used up its free memory,
|
||||
* but ensure that we have at least one.
|
||||
*/
|
||||
priorAvail = state->availMem;
|
||||
state->availMem = state->mergeavailmem[srcTape];
|
||||
while (! LACKMEM(state) || state->mergenext[srcTape] == 0)
|
||||
{
|
||||
/* read next tuple, if any */
|
||||
if ((tuplen = getlen(state, srcTape, true)) == 0)
|
||||
{
|
||||
state->mergeactive[srcTape] = false;
|
||||
break;
|
||||
}
|
||||
tup = READTUP(state, srcTape, tuplen);
|
||||
/* find or make a free slot in memtuples[] for it */
|
||||
tupIndex = state->mergefreelist;
|
||||
if (tupIndex)
|
||||
state->mergefreelist = state->memtupindex[tupIndex];
|
||||
else
|
||||
{
|
||||
tupIndex = state->mergefirstfree++;
|
||||
/* Might need to enlarge arrays! */
|
||||
if (tupIndex >= state->memtupsize)
|
||||
{
|
||||
state->memtupsize *= 2;
|
||||
state->memtuples = (void **)
|
||||
repalloc(state->memtuples,
|
||||
state->memtupsize * sizeof(void *));
|
||||
state->memtupindex = (int *)
|
||||
repalloc(state->memtupindex,
|
||||
state->memtupsize * sizeof(int));
|
||||
}
|
||||
}
|
||||
/* store tuple, append to list for its tape */
|
||||
state->memtuples[tupIndex] = tup;
|
||||
state->memtupindex[tupIndex] = 0;
|
||||
if (state->mergelast[srcTape])
|
||||
state->memtupindex[state->mergelast[srcTape]] = tupIndex;
|
||||
else
|
||||
state->mergenext[srcTape] = tupIndex;
|
||||
state->mergelast[srcTape] = tupIndex;
|
||||
}
|
||||
/* update per-tape and global availmem counts */
|
||||
spaceUsed = state->mergeavailmem[srcTape] - state->availMem;
|
||||
state->mergeavailmem[srcTape] = state->availMem;
|
||||
state->availMem = priorAvail - spaceUsed;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* dumptuples - remove tuples from heap and write to tape
|
||||
*
|
||||
* This is used during initial-run building, but not during merging.
|
||||
*
|
||||
* When alltuples = false, dump only enough tuples to get under the
|
||||
* availMem limit (and leave at least one tuple in the heap in any case,
|
||||
* since puttuple assumes it always has a tuple to compare to).
|
||||
@ -994,37 +1188,42 @@ beginrun(Tuplesortstate *state)
|
||||
* When alltuples = true, dump everything currently in memory.
|
||||
* (This case is only used at end of input data.)
|
||||
*
|
||||
* If we empty the heap, then start a new run using the tuples that
|
||||
* have accumulated in memtuples[] (if any).
|
||||
* If we empty the heap, close out the current run and return (this should
|
||||
* only happen at end of input data). If we see that the tuple run number
|
||||
* at the top of the heap has changed, start a new run.
|
||||
*/
|
||||
static void
|
||||
dumptuples(Tuplesortstate *state, bool alltuples)
|
||||
{
|
||||
while (alltuples ||
|
||||
(LACKMEM(state) &&
|
||||
(state->heaptupcount > 0 || state->memtupcount > 0)))
|
||||
(LACKMEM(state) && state->memtupcount > 1))
|
||||
{
|
||||
/*
|
||||
* Dump the heap's frontmost entry, and sift up to remove it
|
||||
* from the heap.
|
||||
*/
|
||||
Assert(state->heaptupcount > 0);
|
||||
Assert(state->memtupcount > 0);
|
||||
WRITETUP(state, state->tp_tapenum[state->destTape],
|
||||
state->heaptuples[0]);
|
||||
tuplesort_heap_siftup(state);
|
||||
state->memtuples[0]);
|
||||
tuplesort_heap_siftup(state, true);
|
||||
/*
|
||||
* If the heap is now empty, we've finished a run.
|
||||
* If the heap is empty *or* top run number has changed,
|
||||
* we've finished the current run.
|
||||
*/
|
||||
if (state->heaptupcount == 0)
|
||||
if (state->memtupcount == 0 ||
|
||||
state->currentRun != state->memtupindex[0])
|
||||
{
|
||||
markrunend(state, state->tp_tapenum[state->destTape]);
|
||||
state->currentRun++;
|
||||
state->tp_runs[state->destTape]++;
|
||||
state->tp_dummy[state->destTape]--; /* per Alg D step D2 */
|
||||
/*
|
||||
* Done if heap is empty, else prepare for new run.
|
||||
*/
|
||||
if (state->memtupcount == 0)
|
||||
break; /* all input data has been written to tape */
|
||||
/* Select new output tape and start a new run */
|
||||
break;
|
||||
Assert(state->currentRun == state->memtupindex[0]);
|
||||
selectnewtape(state);
|
||||
beginrun(state);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1119,88 +1318,102 @@ tuplesort_restorepos(Tuplesortstate *state)
|
||||
|
||||
/*
|
||||
* Heap manipulation routines, per Knuth's Algorithm 5.2.3H.
|
||||
*
|
||||
* The heap lives in state->memtuples[], with parallel data storage
|
||||
* for indexes in state->memtupindex[]. If checkIndex is true, use
|
||||
* the tuple index as the front of the sort key; otherwise, no.
|
||||
*/
|
||||
|
||||
#define HEAPCOMPARE(tup1,index1,tup2,index2) \
|
||||
(checkIndex && (index1 != index2) ? index1 - index2 : \
|
||||
COMPARETUP(state, tup1, tup2))
|
||||
|
||||
/*
|
||||
* Insert a new tuple into an empty or existing heap, maintaining the
|
||||
* heap invariant. The heap lives in state->heaptuples[]. Also, if
|
||||
* state->heapsrctapes is not NULL, we store each tuple's source tapenum
|
||||
* in the corresponding element of state->heapsrctapes[].
|
||||
* heap invariant.
|
||||
*/
|
||||
static void
|
||||
tuplesort_heap_insert(Tuplesortstate *state, void *tuple,
|
||||
int tapenum)
|
||||
int tupleindex, bool checkIndex)
|
||||
{
|
||||
void **memtuples;
|
||||
int *memtupindex;
|
||||
int j;
|
||||
|
||||
/*
|
||||
* Make sure heaptuples[] can handle another entry.
|
||||
* NOTE: we do not enlarge heapsrctapes[]; it's supposed
|
||||
* to be big enough when created.
|
||||
* Make sure memtuples[] can handle another entry.
|
||||
*/
|
||||
if (state->heaptupcount >= state->heaptupsize)
|
||||
if (state->memtupcount >= state->memtupsize)
|
||||
{
|
||||
/* Grow the unsorted array as needed. */
|
||||
state->heaptupsize *= 2;
|
||||
state->heaptuples = (void **)
|
||||
repalloc(state->heaptuples,
|
||||
state->heaptupsize * sizeof(void *));
|
||||
state->memtupsize *= 2;
|
||||
state->memtuples = (void **)
|
||||
repalloc(state->memtuples,
|
||||
state->memtupsize * sizeof(void *));
|
||||
state->memtupindex = (int *)
|
||||
repalloc(state->memtupindex,
|
||||
state->memtupsize * sizeof(int));
|
||||
}
|
||||
memtuples = state->memtuples;
|
||||
memtupindex = state->memtupindex;
|
||||
/*
|
||||
* Sift-up the new entry, per Knuth 5.2.3 exercise 16.
|
||||
* Note that Knuth is using 1-based array indexes, not 0-based.
|
||||
*/
|
||||
j = state->heaptupcount++;
|
||||
while (j > 0) {
|
||||
j = state->memtupcount++;
|
||||
while (j > 0)
|
||||
{
|
||||
int i = (j-1) >> 1;
|
||||
|
||||
if (COMPARETUP(state, tuple, state->heaptuples[i]) >= 0)
|
||||
if (HEAPCOMPARE(tuple, tupleindex,
|
||||
memtuples[i], memtupindex[i]) >= 0)
|
||||
break;
|
||||
state->heaptuples[j] = state->heaptuples[i];
|
||||
if (state->heapsrctapes)
|
||||
state->heapsrctapes[j] = state->heapsrctapes[i];
|
||||
memtuples[j] = memtuples[i];
|
||||
memtupindex[j] = memtupindex[i];
|
||||
j = i;
|
||||
}
|
||||
state->heaptuples[j] = tuple;
|
||||
if (state->heapsrctapes)
|
||||
state->heapsrctapes[j] = tapenum;
|
||||
memtuples[j] = tuple;
|
||||
memtupindex[j] = tupleindex;
|
||||
}
|
||||
|
||||
/*
|
||||
* The tuple at state->heaptuples[0] has been removed from the heap.
|
||||
* Decrement heaptupcount, and sift up to maintain the heap invariant.
|
||||
* The tuple at state->memtuples[0] has been removed from the heap.
|
||||
* Decrement memtupcount, and sift up to maintain the heap invariant.
|
||||
*/
|
||||
static void
|
||||
tuplesort_heap_siftup(Tuplesortstate *state)
|
||||
tuplesort_heap_siftup(Tuplesortstate *state, bool checkIndex)
|
||||
{
|
||||
void **heaptuples = state->heaptuples;
|
||||
void **memtuples = state->memtuples;
|
||||
int *memtupindex = state->memtupindex;
|
||||
void *tuple;
|
||||
int i,
|
||||
int tupindex,
|
||||
i,
|
||||
n;
|
||||
|
||||
if (--state->heaptupcount <= 0)
|
||||
if (--state->memtupcount <= 0)
|
||||
return;
|
||||
n = state->heaptupcount;
|
||||
tuple = heaptuples[n]; /* tuple that must be reinserted */
|
||||
n = state->memtupcount;
|
||||
tuple = memtuples[n]; /* tuple that must be reinserted */
|
||||
tupindex = memtupindex[n];
|
||||
i = 0; /* i is where the "hole" is */
|
||||
for (;;) {
|
||||
for (;;)
|
||||
{
|
||||
int j = 2*i + 1;
|
||||
|
||||
if (j >= n)
|
||||
break;
|
||||
if (j+1 < n &&
|
||||
COMPARETUP(state, heaptuples[j], heaptuples[j+1]) > 0)
|
||||
HEAPCOMPARE(memtuples[j], memtupindex[j],
|
||||
memtuples[j+1], memtupindex[j+1]) > 0)
|
||||
j++;
|
||||
if (COMPARETUP(state, tuple, heaptuples[j]) <= 0)
|
||||
if (HEAPCOMPARE(tuple, tupindex,
|
||||
memtuples[j], memtupindex[j]) <= 0)
|
||||
break;
|
||||
heaptuples[i] = heaptuples[j];
|
||||
if (state->heapsrctapes)
|
||||
state->heapsrctapes[i] = state->heapsrctapes[j];
|
||||
memtuples[i] = memtuples[j];
|
||||
memtupindex[i] = memtupindex[j];
|
||||
i = j;
|
||||
}
|
||||
heaptuples[i] = tuple;
|
||||
if (state->heapsrctapes)
|
||||
state->heapsrctapes[i] = state->heapsrctapes[n];
|
||||
memtuples[i] = tuple;
|
||||
memtupindex[i] = tupindex;
|
||||
}
|
||||
|
||||
|
||||
@ -1252,6 +1465,7 @@ comparetup_heap(Tuplesortstate *state, const void *a, const void *b)
|
||||
{
|
||||
HeapTuple ltup = (HeapTuple) a;
|
||||
HeapTuple rtup = (HeapTuple) b;
|
||||
TupleDesc tupDesc = state->tupDesc;
|
||||
int nkey;
|
||||
|
||||
for (nkey = 0; nkey < state->nKeys; nkey++)
|
||||
@ -1265,11 +1479,11 @@ comparetup_heap(Tuplesortstate *state, const void *a, const void *b)
|
||||
|
||||
lattr = heap_getattr(ltup,
|
||||
scanKey->sk_attno,
|
||||
state->tupDesc,
|
||||
tupDesc,
|
||||
&isnull1);
|
||||
rattr = heap_getattr(rtup,
|
||||
scanKey->sk_attno,
|
||||
state->tupDesc,
|
||||
tupDesc,
|
||||
&isnull2);
|
||||
if (isnull1)
|
||||
{
|
||||
@ -1351,6 +1565,14 @@ readtup_heap(Tuplesortstate *state, int tapenum, unsigned int len)
|
||||
return (void *) tuple;
|
||||
}
|
||||
|
||||
static unsigned int
|
||||
tuplesize_heap(Tuplesortstate *state, void *tup)
|
||||
{
|
||||
HeapTuple tuple = (HeapTuple) tup;
|
||||
|
||||
return HEAPTUPLESIZE + tuple->t_len;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Routines specialized for IndexTuple case
|
||||
@ -1368,16 +1590,17 @@ comparetup_index(Tuplesortstate *state, const void *a, const void *b)
|
||||
IndexTuple rtup = (IndexTuple) b;
|
||||
TupleDesc itdesc = state->indexRel->rd_att;
|
||||
bool equal_isnull = false;
|
||||
Datum lattr,
|
||||
rattr;
|
||||
bool isnull1,
|
||||
isnull2;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < itdesc->natts; i++)
|
||||
for (i = 1; i <= itdesc->natts; i++)
|
||||
{
|
||||
lattr = index_getattr(ltup, i + 1, itdesc, &isnull1);
|
||||
rattr = index_getattr(rtup, i + 1, itdesc, &isnull2);
|
||||
Datum lattr,
|
||||
rattr;
|
||||
bool isnull1,
|
||||
isnull2;
|
||||
|
||||
lattr = index_getattr(ltup, i, itdesc, &isnull1);
|
||||
rattr = index_getattr(rtup, i, itdesc, &isnull2);
|
||||
|
||||
if (isnull1)
|
||||
{
|
||||
@ -1389,11 +1612,11 @@ comparetup_index(Tuplesortstate *state, const void *a, const void *b)
|
||||
else if (isnull2)
|
||||
return -1;
|
||||
|
||||
if (_bt_invokestrat(state->indexRel, i + 1,
|
||||
if (_bt_invokestrat(state->indexRel, i,
|
||||
BTGreaterStrategyNumber,
|
||||
lattr, rattr))
|
||||
return 1;
|
||||
if (_bt_invokestrat(state->indexRel, i + 1,
|
||||
if (_bt_invokestrat(state->indexRel, i,
|
||||
BTGreaterStrategyNumber,
|
||||
rattr, lattr))
|
||||
return -1;
|
||||
@ -1463,3 +1686,12 @@ readtup_index(Tuplesortstate *state, int tapenum, unsigned int len)
|
||||
elog(ERROR, "tuplesort: unexpected end of data");
|
||||
return (void *) tuple;
|
||||
}
|
||||
|
||||
static unsigned int
|
||||
tuplesize_index(Tuplesortstate *state, void *tup)
|
||||
{
|
||||
IndexTuple tuple = (IndexTuple) tup;
|
||||
unsigned int tuplen = IndexTupleSize(tuple);
|
||||
|
||||
return tuplen;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user