mirror of
https://git.postgresql.org/git/postgresql.git
synced 2024-11-27 07:21:09 +08:00
Add description of new features
This commit is contained in:
parent
7e63445d59
commit
bf028fa8a6
@ -427,9 +427,9 @@ concatenation also works with NULL fields.</strong></p>
|
||||
<p>We need to create the index on the column idxFTI. Keep in mind
|
||||
that the database will update the index when some action is taken.
|
||||
In this case we _need_ the index (The whole point of Full Text
|
||||
INDEXINGi ;-)), so don't worry about any indexing overhead. We will
|
||||
create an index based on the gist function. GiST is an index
|
||||
structure for Generalized Search Tree.</p>
|
||||
INDEXING ;-)), so don't worry about any indexing overhead. We will
|
||||
create an index based on the gist or gin function. GiST is an index
|
||||
structure for Generalized Search Tree, GIN is a inverted index (see <a href="tsearch2-ref.html#indexes">The tsearch2 Reference: Indexes</a>).</p>
|
||||
<pre>
|
||||
CREATE INDEX idxFTI_idx ON tblMessages USING gist(idxFTI);
|
||||
VACUUM FULL ANALYZE;
|
||||
|
@ -1,7 +1,6 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
<html>
|
||||
<head>
|
||||
<link type="text/css" rel="stylesheet" href="/~megera/postgres/gist/tsearch/tsearch.css">
|
||||
<title>tsearch2 guide</title>
|
||||
</head>
|
||||
<body>
|
||||
@ -9,16 +8,13 @@
|
||||
|
||||
<p align=center>
|
||||
Brandon Craig Rhodes<br>30 June 2003
|
||||
<br>Updated to 8.2 release by Oleg Bartunov, October 2006</br>
|
||||
<p>
|
||||
This Guide introduces the reader to the PostgreSQL tsearch2 module,
|
||||
version 2.
|
||||
More formal descriptions of the module's types and functions
|
||||
are provided in the <a href="tsearch2-ref.html">tsearch2 Reference</a>,
|
||||
which is a companion to this document.
|
||||
You can retrieve a beta copy of the tsearch2 module from the
|
||||
<a href="http://www.sai.msu.su/~megera/postgres/gist/">GiST for PostgreSQL</a>
|
||||
page — look under the section entitled <i>Development History</i>
|
||||
for the current version.
|
||||
<p>
|
||||
First we will examine the <tt>tsvector</tt> and <tt>tsquery</tt> types
|
||||
and how they are used to search documents;
|
||||
@ -32,15 +28,40 @@ you should be able to run the examples here exactly as they are typed.
|
||||
<hr>
|
||||
<h2>Table of Contents</h2>
|
||||
<blockquote>
|
||||
<a href="#intro">Introduction to FTS with tsearch2</a><br>
|
||||
<a href="#vectors_queries">Vectors and Queries</a><br>
|
||||
<a href="#simple_search">A Simple Search Engine</a><br>
|
||||
<a href="#weights">Ranking and Position Weights</a><br>
|
||||
<a href="#casting">Casting Vectors and Queries</a><br>
|
||||
<a href="#parsing_lexing">Parsing and Lexing</a><br>
|
||||
<a href="#ref">Additional information</a>
|
||||
</blockquote>
|
||||
|
||||
<hr>
|
||||
|
||||
|
||||
<h2><a name="intro">Introduction to FTS with tsearch2</a></h2>
|
||||
The purpose of FTS is to
|
||||
find <b>documents</b>, which satisfy <b>query</b> and optionally return
|
||||
them in some <b>order</b>.
|
||||
Most common case: Find documents containing all query terms and return them in order
|
||||
of their similarity to the query. Document in database can be
|
||||
any text attribute, or combination of text attributes from one or many tables
|
||||
(using joins).
|
||||
Text search operators existed for years, in PostgreSQL they are
|
||||
<tt><b>~,~*, LIKE, ILIKE</b></tt>, but they lack linguistic support,
|
||||
tends to be slow and have no relevance ranking. The idea behind tsearch2 is
|
||||
is rather simple - preprocess document at index time to save time at search stage.
|
||||
Preprocessing includes
|
||||
<ul>
|
||||
<li>document parsing onto words
|
||||
<li>linguistic - normalize words to obtain lexemes
|
||||
<li>store document in optimized for searching way
|
||||
</ul>
|
||||
Tsearch2, in a nutshell, provides FTS operator (contains) for two new data types,
|
||||
which represent document and query - <tt>tsquery @@ tsvector</tt>.
|
||||
|
||||
<P>
|
||||
<h2><a name=vectors_queries>Vectors and Queries</a></h2>
|
||||
|
||||
<blockquote>
|
||||
@ -79,6 +100,8 @@ Preparing your document index involves two steps:
|
||||
on the <tt>tsvector</tt> column of a table,
|
||||
which implements a form of the Berkeley
|
||||
<a href="http://gist.cs.berkeley.edu/"><i>Generalized Search Tree</i></a>.
|
||||
Since PostgreSQL 8.2 tsearch2 supports <a href="http://www.sigaev.ru/gin/">Gin</a> index,
|
||||
which is an inverted index, commonly used in search engines. It adds scalability to tsearch2.
|
||||
</ul>
|
||||
Once your documents are indexed,
|
||||
performing a search involves:
|
||||
@ -251,7 +274,7 @@ and give you an error to prevent this mistake:
|
||||
|
||||
<pre>
|
||||
=# <b>SELECT to_tsquery('the')</b>
|
||||
NOTICE: Query contains only stopword(s) or doesn't contain lexeme(s), ignored
|
||||
NOTICE: Query contains only stopword(s) or doesn't contain lexem(s), ignored
|
||||
to_tsquery
|
||||
------------
|
||||
|
||||
@ -483,8 +506,8 @@ The <tt>rank()</tt> function existed in older versions of OpenFTS,
|
||||
and has the feature that you can assign different weights
|
||||
to words from different sections of your document.
|
||||
The <tt>rank_cd()</tt> uses a recent technique for weighting results
|
||||
but does not allow different weight to be given
|
||||
to different sections of your document.
|
||||
and also allows different weight to be given
|
||||
to different sections of your document (since 8.2).
|
||||
<p>
|
||||
Both ranking functions allow you to specify,
|
||||
as an optional last argument,
|
||||
@ -511,9 +534,6 @@ for details
|
||||
see the <a href="tsearch2-ref.html#ranking">section on ranking</a>
|
||||
in the Reference.
|
||||
<p>
|
||||
The <tt>rank()</tt> function offers more flexibility
|
||||
because it pays attention to the <i>weights</i>
|
||||
with which you have labelled lexeme positions.
|
||||
Currently tsearch2 supports four different weight labels:
|
||||
<tt>'D'</tt>, the default weight;
|
||||
and <tt>'A'</tt>, <tt>'B'</tt>, and <tt>'C'</tt>.
|
||||
@ -730,7 +750,7 @@ The main problem is that the apostrophe and backslash
|
||||
are important <i>both</i> to PostgreSQL when it is interpreting a string,
|
||||
<i>and</i> to the <tt>tsvector</tt> conversion function.
|
||||
You may want to review section
|
||||
<a href="http://www.postgresql.org/docs/view.php?version=7.3&idoc=0&file=sql-syntax.html#SQL-SYNTAX-STRINGS">1.1.2.1,
|
||||
<a href="http://www.postgresql.org/docs/current/static/sql-syntax.html#SQL-SYNTAX-STRINGS">
|
||||
“String Constants”</a>
|
||||
in the PostgreSQL documentation before proceeding.
|
||||
<p>
|
||||
@ -1051,6 +1071,14 @@ using the same scheme to determine the dictionary for each token,
|
||||
with the difference that the query parser recognizes as special
|
||||
the boolean operators that separate query words.
|
||||
|
||||
|
||||
<h2><a name="ref">Additional information</a></h2>
|
||||
More information about tsearch2 is available from
|
||||
<a href="http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2">tsearch2</a> page.
|
||||
Also, it's worth to check
|
||||
<a href="http://www.sai.msu.su/~megera/wiki/Tsearch2">tsearch2 wiki</a> pages.
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
||||
|
||||
|
@ -1,53 +1,74 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head>
|
||||
<link type="text/css" rel="stylesheet" href="tsearch2-ref_files/tsearch.txt"><title>tsearch2 reference</title></head>
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||
<html><head>
|
||||
|
||||
<title>tsearch2 reference</title></head>
|
||||
|
||||
<body>
|
||||
<h1 align="center">The tsearch2 Reference</h1>
|
||||
|
||||
<p align="center">
|
||||
Brandon Craig Rhodes<br>30 June 2003 (edited by Oleg Bartunov, 2 Aug 2003).
|
||||
</p><p>
|
||||
<br>Massive update for 8.2 release by Oleg Bartunov, October 2006
|
||||
</p>
|
||||
<p>
|
||||
This Reference documents the user types and functions
|
||||
of the tsearch2 module for PostgreSQL.
|
||||
An introduction to the module is provided
|
||||
by the <a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html">tsearch2 Guide</a>,
|
||||
by the <a href="http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html">tsearch2 Guide</a>,
|
||||
a companion document to this one.
|
||||
You can retrieve a beta copy of the tsearch2 module from the
|
||||
<a href="http://www.sai.msu.su/%7Emegera/postgres/gist/">GiST for PostgreSQL</a>
|
||||
page -- look under the section entitled <i>Development History</i>
|
||||
for the current version.
|
||||
</p>
|
||||
|
||||
</p><h2><a name="vq">Vectors and Queries</a></h2>
|
||||
<h2>Table of Contents</h2>
|
||||
<blockquote>
|
||||
<a href="#vq">Vectors and Queries</a><br>
|
||||
<a href="#vqo">Vector Operations</a><br>
|
||||
<a href="#qo">Query Operations</a><br>
|
||||
<a href="#fts">Full Text Search Operator</a><br>
|
||||
<a href="#configurations">Configurations</a><br>
|
||||
<a href="#testing">Testing</a><br>
|
||||
<a href="#parsers">Parsers</a><br>
|
||||
<a href="#dictionaries">Dictionaries</a><br>
|
||||
<a href="#ranking">Ranking</a><br>
|
||||
<a href="#headlines">Headlines</a><br>
|
||||
<a href="#indexes">Indexes</a><br>
|
||||
<a href="#tz">Thesaurus dictionary</a><br>
|
||||
</blockquote>
|
||||
|
||||
<a name="vq">Vectors and queries both store lexemes,
|
||||
|
||||
|
||||
|
||||
<h2><a name="vq">Vectors and Queries</a></h2>
|
||||
|
||||
Vectors and queries both store lexemes,
|
||||
but for different purposes.
|
||||
A <tt>tsvector</tt> stores the lexemes
|
||||
of the words that are parsed out of a document,
|
||||
and can also remember the position of each word.
|
||||
A <tt>tsquery</tt> specifies a boolean condition among lexemes.
|
||||
</a><p>
|
||||
<a name="vq">Any of the following functions with a <tt><i>configuration</i></tt> argument
|
||||
<p>
|
||||
Any of the following functions with a <tt><i>configuration</i></tt> argument
|
||||
can use either an integer <tt>id</tt> or textual <tt>ts_name</tt>
|
||||
to select a configuration;
|
||||
if the option is omitted, then the current configuration is used.
|
||||
For more information on the current configuration,
|
||||
read the next section on Configurations.
|
||||
</p>
|
||||
|
||||
</a></p><h3><a name="vq">Vector Operations</a></h3>
|
||||
<h3><a name="vqo">Vector Operations</a></h3>
|
||||
|
||||
<dl><dt>
|
||||
<a name="vq"> <tt>to_tsvector( <em>[</em><i>configuration</i>,<em>]</em>
|
||||
<i>document</i> TEXT) RETURNS tsvector</tt>
|
||||
</a></dt><dd>
|
||||
<a name="vq"> Parses a document into tokens,
|
||||
<tt>to_tsvector( <em>[</em><i>configuration</i>,<em>]</em>
|
||||
<i>document</i> TEXT) RETURNS TSVECTOR</tt>
|
||||
</dt><dd>
|
||||
Parses a document into tokens,
|
||||
reduces the tokens to lexemes,
|
||||
and returns a <tt>tsvector</tt> which lists the lexemes
|
||||
together with their positions in the document.
|
||||
For the best description of this process,
|
||||
see the section on </a><a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html#ps">Parsing and Stemming</a>
|
||||
see the section on <a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html#ps">Parsing and Stemming</a>
|
||||
in the accompanying tsearch2 Guide.
|
||||
</dd><dt>
|
||||
<tt>strip(<i>vector</i> tsvector) RETURNS tsvector</tt>
|
||||
<tt>strip(<i>vector</i> TSVECTOR) RETURNS TSVECTOR</tt>
|
||||
</dt><dd>
|
||||
Return a vector which lists the same lexemes
|
||||
as the given <tt><i>vector</i></tt>,
|
||||
@ -56,10 +77,10 @@ read the next section on Configurations.
|
||||
While the returned vector is thus useless for relevance ranking,
|
||||
it will usually be much smaller.
|
||||
</dd><dt>
|
||||
<tt>setweight(<i>vector</i> tsvector, <i>letter</i>) RETURNS tsvector</tt>
|
||||
<tt>setweight(<i>vector</i> TSVECTOR, <i>letter</i>) RETURNS TSVECTOR</tt>
|
||||
</dt><dd>
|
||||
This function returns a copy of the input vector
|
||||
in which every location has been labelled
|
||||
in which every location has been labeled
|
||||
with either the <tt><i>letter</i></tt>
|
||||
<tt>'A'</tt>, <tt>'B'</tt>, or <tt>'C'</tt>,
|
||||
or the default label <tt>'D'</tt>
|
||||
@ -68,11 +89,11 @@ read the next section on Configurations.
|
||||
These labels are retained when vectors are concatenated,
|
||||
allowing words from different parts of a document
|
||||
to be weighted differently by ranking functions.
|
||||
</dd><dt>
|
||||
<tt><i>vector1</i> || <i>vector2</i></tt>
|
||||
</dt><dt class="br">
|
||||
<tt>concat(<i>vector1</i> tsvector, <i>vector2</i> tsvector)
|
||||
RETURNS tsvector</tt>
|
||||
</dd>
|
||||
<dt>
|
||||
<tt><i>vector1</i> || <i>vector2</i></tt><BR>
|
||||
<tt>concat(<i>vector1</i> TSVECTOR, <i>vector2</i> TSVECTOR)
|
||||
RETURNS TSVECTOR</tt>
|
||||
</dt><dd>
|
||||
Returns a vector which combines the lexemes and position information
|
||||
in the two vectors given as arguments.
|
||||
@ -95,27 +116,81 @@ read the next section on Configurations.
|
||||
to the <tt>rank()</tt> function
|
||||
that assigns different weights to positions with different labels.
|
||||
</dd><dt>
|
||||
<tt>tsvector_size(<i>vector</i> tsvector) RETURNS INT4</tt>
|
||||
<tt>length(<i>vector</i> TSVECTOR) RETURNS INT4</tt>
|
||||
</dt><dd>
|
||||
Returns the number of lexemes stored in the vector.
|
||||
</dd><dt>
|
||||
<tt><i>text</i>::tsvector RETURNS tsvector</tt>
|
||||
<tt><i>text</i>::TSVECTOR RETURNS TSVECTOR</tt>
|
||||
</dt><dd>
|
||||
Directly casting text to a <tt>tsvector</tt>
|
||||
allows you to directly inject lexemes into a vector,
|
||||
with whatever positions and position weights you choose to specify.
|
||||
The <tt><i>text</i></tt> should be formatted
|
||||
like the vector would be printed by the output of a <tt>SELECT</tt>.
|
||||
See the <a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html#casting">Casting</a>
|
||||
See the <a href="http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html#casting">Casting</a>
|
||||
section in the Guide for details.
|
||||
</dd></dl>
|
||||
</dd><dt>
|
||||
<tt>tsearch2(<i>vector_column_name</i>[, (<i>my_filter_name</i> | <i>text_column_name1</i>) [...] ], <i>text_column_nameN</i>)</tt>
|
||||
</dt><dd>
|
||||
<tt>tsearch2()</tt> trigger used to automatically update <i>vector_column_name</i>, <i>my_filter_name</i>
|
||||
is the function name to preprocess <i>text_column_name</i>. There are can be many
|
||||
functions and text columns specified in <tt>tsearch2()</tt> trigger.
|
||||
The following rule used:
|
||||
function applied to all subsequent text columns until next function occurs.
|
||||
Example, function <tt>dropatsymbol</tt> replaces all entries of <tt>@</tt>
|
||||
sign by space.
|
||||
<pre>
|
||||
CREATE FUNCTION dropatsymbol(text) RETURNS text
|
||||
AS 'select replace($1, ''@'', '' '');'
|
||||
LANGUAGE SQL;
|
||||
|
||||
<h3>Query Operations</h3>
|
||||
CREATE TRIGGER tsvectorupdate BEFORE UPDATE OR INSERT
|
||||
ON tblMessages FOR EACH ROW EXECUTE PROCEDURE
|
||||
tsearch2(tsvector_column,dropatsymbol, strMessage);
|
||||
</pre>
|
||||
</dd>
|
||||
|
||||
<dl><dt>
|
||||
<tt>to_tsquery( <em>[</em><i>configuration</i>,<em>]</em>
|
||||
<i>querytext</i> text) RETURNS tsvector</tt>
|
||||
<dt>
|
||||
<tt>stat(<i>sqlquery</i> text [, <i>weight</i> text]) RETURNS SETOF statinfo</tt>
|
||||
</dt><dd>
|
||||
Here <tt>statinfo</tt> is a type, defined as
|
||||
<tt>
|
||||
CREATE TYPE statinfo as (<i>word</i> text, <i>ndoc</i> int4, <i>nentry</i> int4)
|
||||
</tt> and <i>sqlquery</i> is a query, which returns column <tt>tsvector</tt>.
|
||||
<P>
|
||||
This returns statistics (the number of documents <i>ndoc</i> and total number <i>nentry</i> of <i>word</i>
|
||||
in the collection) about column <i>vector</i> <tt>tsvector</tt>.
|
||||
Useful to check how good is your configuration and
|
||||
to find stop-words candidates.For example, find top 10 most frequent words:
|
||||
<pre>
|
||||
=# select * from stat('select vector from apod') order by ndoc desc, nentry desc,word limit 10;
|
||||
</pre>
|
||||
Optionally, one can specify <i>weight</i> to obtain statistics about words with specific weight.
|
||||
<pre>
|
||||
=# select * from stat('select vector from apod','a') order by ndoc desc, nentry desc,word limit 10;
|
||||
</pre>
|
||||
|
||||
</dd>
|
||||
<dt>
|
||||
<tt>TSVECTOR < TSVECTOR</tt><BR>
|
||||
<tt>TSVECTOR <= TSVECTOR</tt><BR>
|
||||
<tt>TSVECTOR = TSVECTOR</tt><BR>
|
||||
<tt>TSVECTOR >= TSVECTOR</tt><BR>
|
||||
<tt>TSVECTOR > TSVECTOR</tt>
|
||||
</dt><dd>
|
||||
All btree operations defined for <tt>tsvector</tt> type. <tt>tsvectors</tt> compares
|
||||
with each other using lexicographical order.
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
<h3><a name="qo">Query Operations</a></h3>
|
||||
|
||||
<dl>
|
||||
<dt>
|
||||
<tt>to_tsquery( <em>[</em><i>configuration</i>,<em>]</em>
|
||||
<i>querytext</i> text) RETURNS TSQUERY[A</tt>
|
||||
</dt>
|
||||
<dd>
|
||||
Parses a query,
|
||||
which should be single words separated by the boolean operators
|
||||
"<tt>&</tt>" and,
|
||||
@ -123,14 +198,27 @@ read the next section on Configurations.
|
||||
and "<tt>!</tt>" not,
|
||||
which can be grouped using parenthesis.
|
||||
Each word is reduced to a lexeme using the current
|
||||
or specified configuration.
|
||||
or specified configuration.
|
||||
Weight class can be assigned to each lexeme entry
|
||||
to restrict search region
|
||||
(see <tt>setweight</tt> for explanation), for example
|
||||
"<tt>fat:a & rats</tt>".
|
||||
</dd><dt>
|
||||
<dt>
|
||||
<tt>plainto_tsquery( <em>[</em><i>configuration</i>,<em>]</em>
|
||||
<i>querytext</i> text) RETURNS TSQUERY</tt>
|
||||
</dt>
|
||||
<dd>
|
||||
Transforms unformatted text to tsquery. It is the same as to_tsquery,
|
||||
but assumes "<tt>&</tt>" boolean operator between words and doesn't
|
||||
recognizes weight classes.
|
||||
</dd><dt>
|
||||
|
||||
</dd><dt>
|
||||
<tt>querytree(<i>query</i> tsquery) RETURNS text</tt>
|
||||
<tt>querytree(<i>query</i> TSQUERY) RETURNS text</tt>
|
||||
</dt><dd>
|
||||
This might return a textual representation of the given query.
|
||||
This returns a query which actually used in searching in GiST index.
|
||||
</dd><dt>
|
||||
<tt><i>text</i>::tsquery RETURNS tsquery</tt>
|
||||
<tt><i>text</i>::TSQUERY RETURNS TSQUERY</tt>
|
||||
</dt><dd>
|
||||
Directly casting text to a <tt>tsquery</tt>
|
||||
allows you to directly inject lexemes into a query,
|
||||
@ -139,7 +227,117 @@ read the next section on Configurations.
|
||||
like the query would be printed by the output of a <tt>SELECT</tt>.
|
||||
See the <a href="http://www.sai.msu.su/%7Emegera/postgres/gist/tsearch/V2/docs/tsearch2-guide.html#casting">Casting</a>
|
||||
section in the Guide for details.
|
||||
</dd></dl>
|
||||
</dd>
|
||||
<dt>
|
||||
<tt>numnode(<i>query</i> TSQUERY) RETURNS INTEGER</tt>
|
||||
</dt><dd>
|
||||
This returns the number of nodes in query tree
|
||||
</dd><dt>
|
||||
<tt>TSQUERY && TSQUERY RETURNS TSQUERY</tt>
|
||||
</dt><dd>
|
||||
AND-ed TSQUERY
|
||||
</dd><dt>
|
||||
<tt>TSQUERY || TSQUERY RETURNS TSQUERY</tt>
|
||||
</dt> <dd>
|
||||
OR-ed TSQUERY
|
||||
</dd><dt>
|
||||
<tt>!! TSQUERY RETURNS TSQUERY</tt>
|
||||
</dt> <dd>
|
||||
negation of TSQUERY
|
||||
</dd>
|
||||
<dt>
|
||||
<tt>TSQUERY < TSQUERY</tt><BR>
|
||||
<tt>TSQUERY <= TSQUERY</tt><BR>
|
||||
<tt>TSQUERY = TSQUERY</tt><BR>
|
||||
<tt>TSQUERY >= TSQUERY</tt><BR>
|
||||
<tt>TSQUERY > TSQUERY</tt>
|
||||
</dt><dd>
|
||||
All btree operations defined for <tt>tsquery</tt> type. <tt>tsqueries</tt> compares
|
||||
with each other using lexicographical order.
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
<h3>Query rewriting</h3>
|
||||
Query rewriting is a set of functions and operators for tsquery type.
|
||||
It allows to control search at query time without reindexing (opposite to thesaurus), for example,
|
||||
expand search using synonyms (new york, big apple, nyc, gotham).
|
||||
<P>
|
||||
<tt><b>rewrite()</b></tt> function changes original <i>query</i> by replacing <i>target</i> by <i>sample</i>.
|
||||
There are three possibilities to use <tt>rewrite()</tt> function. Notice, that arguments of <tt>rewrite()</tt>
|
||||
function can be column names of type <tt>tsquery</tt>.
|
||||
<pre>
|
||||
create table rw (q TSQUERY, t TSQUERY, s TSQUERY);
|
||||
insert into rw values('a & b','a', 'c');
|
||||
</pre>
|
||||
<dl>
|
||||
<dt> <tt>rewrite (<i>query</i> TSQUERY, <i>target</i> TSQUERY, <i>sample</i> TSQUERY) RETURNS TSQUERY</tt>
|
||||
</dt>
|
||||
<dd>
|
||||
<pre>
|
||||
=# select rewrite('a & b'::TSQUERY, 'a'::TSQUERY, 'c'::TSQUERY);
|
||||
rewrite
|
||||
-----------
|
||||
'c' & 'b'
|
||||
</pre>
|
||||
</dd>
|
||||
<dt> <tt>rewrite (ARRAY[<i>query</i> TSQUERY, <i>target</i> TSQUERY, <i>sample</i> TSQUERY]) RETURNS TSQUERY</tt>
|
||||
</dt>
|
||||
<dd>
|
||||
<pre>
|
||||
=# select rewrite(ARRAY['a & b'::TSQUERY, t,s]) from rw;
|
||||
rewrite
|
||||
-----------
|
||||
'c' & 'b'
|
||||
</pre>
|
||||
</dd>
|
||||
<dt> <tt>rewrite (<i>query</i> TSQUERY,'select <i>target</i> ,<i>sample</i> from test'::text) RETURNS TSQUERY</tt>
|
||||
</dt>
|
||||
<dd>
|
||||
<pre>
|
||||
=# select rewrite('a & b'::TSQUERY, 'select t,s from rw'::text);
|
||||
rewrite
|
||||
-----------
|
||||
'c' & 'b'
|
||||
</pre>
|
||||
</dd>
|
||||
</dl>
|
||||
Two operators defined for <tt>tsquery</tt> type:
|
||||
<dl>
|
||||
<dt><tt>TSQUERY @ TSQUERY</tt></dt>
|
||||
<dd>
|
||||
Returns <tt>TRUE</tt> if right agrument might contained in left argument.
|
||||
</dd>
|
||||
<dt><tt>TSQUERY ~ TSQUERY</tt></dt>
|
||||
<dd>
|
||||
Returns <tt>TRUE</tt> if left agrument might contained in right argument.
|
||||
</dd>
|
||||
</dl>
|
||||
To speed up these operators one can use GiST index with <tt>gist_tp_tsquery_ops</tt> opclass.
|
||||
<pre>
|
||||
create index qq on test_tsquery using gist (keyword gist_tp_tsquery_ops);
|
||||
</pre>
|
||||
|
||||
<h2><a name="fts">Full Text Search operator</a></h2>
|
||||
|
||||
<dl><dt>
|
||||
<tt>TSQUERY @@ TSVECTOR</tt><br>
|
||||
<tt>TSVECTOR @@ TSQUERY</tt>
|
||||
</dt>
|
||||
<dd>
|
||||
Returns <tt>TRUE</tt> if <tt>TSQUERY</tt> contained in <tt>TSVECTOR</tt> and
|
||||
<tt>FALSE</tt> otherwise.
|
||||
<pre>
|
||||
=# select 'cat & rat':: tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
|
||||
?column?
|
||||
----------
|
||||
t
|
||||
=# select 'fat & cow':: tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
|
||||
?column?
|
||||
----------
|
||||
f
|
||||
</pre>
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
<h2><a name="configurations">Configurations</a></h2>
|
||||
|
||||
@ -147,7 +345,7 @@ A configuration specifies all of the equipment necessary
|
||||
to transform a document into a <tt>tsvector</tt>:
|
||||
the parser that breaks its text into tokens,
|
||||
and the dictionaries which then transform each token into a lexeme.
|
||||
Every call to <tt>to_tsvector()</tt> (described above)
|
||||
Every call to <tt>to_tsvector(), to_tsquery()</tt> (described above)
|
||||
uses a configuration to perform its processing.
|
||||
Three configurations come with tsearch2:
|
||||
|
||||
@ -157,7 +355,10 @@ Three configurations come with tsearch2:
|
||||
and the <i>simple</i> dictionary for all others.
|
||||
</li><li><b>default_russian</b> -- Indexes words and numbers,
|
||||
using the <i>en_stem</i> English Snowball stemmer for Latin-alphabet words
|
||||
and the <i>ru_stem</i> Russian Snowball dictionary for all others.
|
||||
and the <i>ru_stem</i> Russian Snowball dictionary for all others. It's default
|
||||
for <tt>ru_RU.KOI8-R</tt> locale.
|
||||
</li><li><b>utf8_russian</b> -- the same as <b>default_russian</b> but
|
||||
for <tt>ru_RU.UTF-8</tt> locale.
|
||||
</li><li><b>simple</b> -- Processes both words and numbers
|
||||
with the <i>simple</i> dictionary,
|
||||
which neither discards any stop words nor alters them.
|
||||
@ -239,7 +440,8 @@ Here:
|
||||
</li><li>description - human readable name of tok_type
|
||||
</li><li>token - parser's token
|
||||
</li><li>dict_name - dictionary used for the token
|
||||
</li><li>tsvector - final result</li></ul>
|
||||
</li><li>tsvector - final result</li>
|
||||
</ul>
|
||||
|
||||
|
||||
<h2><a name="parsers">Parsers</a></h2>
|
||||
@ -300,20 +502,40 @@ the current parser is used when this argument is omitted.
|
||||
|
||||
<h2><a name="dictionaries">Dictionaries</a></h2>
|
||||
|
||||
Dictionaries take textual tokens as input,
|
||||
usually those produced by a parser,
|
||||
and return lexemes which are usually some reduced form of the token.
|
||||
Dictionary is a program, which accepts lexeme(s), usually those produced by a parser,
|
||||
on input and returns:
|
||||
<ul>
|
||||
<li>array of lexeme(s) if input lexeme is known to the dictionary
|
||||
<li>void array - dictionary knows lexeme, but it's stop word.
|
||||
<li> NULL - dictionary doesn't recognized input lexeme
|
||||
</ul>
|
||||
Usually, dictionaries used for normalization of words ( ispell, stemmer dictionaries),
|
||||
but see, for example, <tt>intdict</tt> dictionary (available from
|
||||
<a href="http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/">Tsearch2</a> home page,
|
||||
which controls indexing of integers.
|
||||
|
||||
<P>
|
||||
Among the dictionaries which come installed with tsearch2 are:
|
||||
|
||||
<ul>
|
||||
<li><b>simple</b> simply folds uppercase letters to lowercase
|
||||
before returning the word.
|
||||
</li><li><b>en_stem</b> runs an English Snowball stemmer on each word
|
||||
</li>
|
||||
<li><b>ispell_template</b> - template for ispell dictionaries.
|
||||
</li>
|
||||
<li><b>en_stem</b> runs an English Snowball stemmer on each word
|
||||
that attempts to reduce the various forms of a verb or noun
|
||||
to a single recognizable form.
|
||||
</li><li><b>ru_stem</b> runs a Russian Snowball stemmer on each word.
|
||||
</li></ul>
|
||||
</li><li><b>ru_stem_koi8</b>, <b>ru_stem_utf8</b> runs a Russian Snowball stemmer on each word.
|
||||
</li>
|
||||
<li><b>synonym</b> - simple lexeme-to-lexeme replacement
|
||||
</li>
|
||||
<li><b>thesaurus_template</b> - template for <a href="#tz">thesaurus dictionary</a>. It's
|
||||
phrase-to-phrase replacement
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<P>
|
||||
Each dictionary is defined by an entry in the <tt>pg_ts_dict</tt> table:
|
||||
|
||||
<pre>CREATE TABLE pg_ts_dict (
|
||||
@ -332,6 +554,12 @@ it specifies a file from which stop words should be read.
|
||||
The <tt>dict_comment</tt> is a human-readable description of the dictionary.
|
||||
The other fields are internal function identifiers
|
||||
useful only to developers trying to implement their own dictionaries.
|
||||
|
||||
<blockquote>
|
||||
<b>WARNING:</b> Data files, used by dictionaries, should be in <tt>server_encoding</tt> to
|
||||
avoid possible problems !
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
The argument named <tt><i>dictionary</i></tt>
|
||||
in each of the following functions
|
||||
@ -355,6 +583,27 @@ if omitted then the current dictionary is used.
|
||||
from which an inflected form could arise.
|
||||
</dd></dl>
|
||||
|
||||
<h3>Using dictionaries template</h3>
|
||||
Templates used to define new dictionaries, for example,
|
||||
<pre>
|
||||
INSERT INTO pg_ts_dict
|
||||
(SELECT 'en_ispell', dict_init,
|
||||
'DictFile="/usr/local/share/dicts/ispell/english.dict",'
|
||||
'AffFile="/usr/local/share/dicts/ispell/english.aff",'
|
||||
'StopFile="/usr/local/share/dicts/english.stop"',
|
||||
dict_lexize
|
||||
FROM pg_ts_dict
|
||||
WHERE dict_name = 'ispell_template');
|
||||
</pre>
|
||||
|
||||
<h3>Working with stop words</h3>
|
||||
Ispell and snowball stemmers treat stop words differently:
|
||||
<ul>
|
||||
<li>ispell - normalize word and then lookups normalized form in stop-word file
|
||||
<li>snowball stemmer - first, it lookups word in stop-word file and then does it job.
|
||||
The reason - to minimize possible 'noise'.
|
||||
</ul>
|
||||
|
||||
<h2><a name="ranking">Ranking</a></h2>
|
||||
|
||||
Ranking attempts to measure how relevant documents are to particular queries
|
||||
@ -364,26 +613,18 @@ Note that this information is only available in unstripped vectors --
|
||||
ranking functions will only return a useful result
|
||||
for a <tt>tsvector</tt> which still has position information!
|
||||
<p>
|
||||
Both of these ranking functions
|
||||
take an integer <i>normalization</i> option
|
||||
that specifies whether a document's length should impact its rank.
|
||||
This is often desirable,
|
||||
since a hundred-word document with five instances of a search word
|
||||
is probably more relevant than a thousand-word document with five instances.
|
||||
The option can have the values:
|
||||
|
||||
</p><ul>
|
||||
<li><tt>0</tt> (the default) ignores document length.
|
||||
</li><li><tt>1</tt> divides the rank by the logarithm of the length.
|
||||
</li><li><tt>2</tt> divides the rank by the length itself.
|
||||
</li></ul>
|
||||
Notice, that ranking functions supplied are just an examples and
|
||||
doesn't belong to the tsearch2 core, you can
|
||||
write your very own ranking function and/or combine additional
|
||||
factors to fit your specific interest.
|
||||
</p>
|
||||
|
||||
The two ranking functions currently available are:
|
||||
|
||||
<dl><dt>
|
||||
<tt>CREATE FUNCTION rank(<br>
|
||||
<em>[</em> <i>weights</i> float4[], <em>]</em>
|
||||
<i>vector</i> tsvector, <i>query</i> tsquery,
|
||||
<i>vector</i> TSVECTOR, <i>query</i> TSQUERY,
|
||||
<em>[</em> <i>normalization</i> int4 <em>]</em><br>
|
||||
) RETURNS float4</tt>
|
||||
</dt><dd>
|
||||
@ -399,8 +640,8 @@ The two ranking functions currently available are:
|
||||
and make them more or less important than words in the document body.
|
||||
</dd><dt>
|
||||
<tt>CREATE FUNCTION rank_cd(<br>
|
||||
<em>[</em> <i>K</i> int4, <em>]</em>
|
||||
<i>vector</i> tsvector, <i>query</i> tsquery,
|
||||
<em>[</em> <i>weights</i> float4[], <em>]</em>
|
||||
<i>vector</i> TSVECTOR, <i>query</i> TSQUERY,
|
||||
<em>[</em> <i>normalization</i> int4 <em>]</em><br>
|
||||
) RETURNS float4</tt>
|
||||
</dt><dd>
|
||||
@ -409,20 +650,51 @@ The two ranking functions currently available are:
|
||||
as described in Clarke, Cormack, and Tudhope's
|
||||
"<a href="http://citeseer.nj.nec.com/clarke00relevance.html">Relevance Ranking for One to Three Term Queries</a>"
|
||||
in the 1999 <i>Information Processing and Management</i>.
|
||||
The value <i>K</i> is one of the values from their formula,
|
||||
and defaults to <i>K</i>=4.
|
||||
The examples in their paper <i>K</i>=16;
|
||||
we can roughly describe the term
|
||||
as stating how far apart two search terms can fall
|
||||
before the formula begins penalizing them for lack of proximity.
|
||||
</dd></dl>
|
||||
</dd>
|
||||
<dt>
|
||||
<tt>CREATE FUNCTION get_covers(vector TSVECTOR, query TSQUERY) RETURNS text</tt>
|
||||
</dt>
|
||||
<dd>
|
||||
Returns <tt>extents</tt>, which are a shortest and non-nested sequences of words, which satisfy a query.
|
||||
Extents (covers) used in <tt>rank_cd</tt> algorithm for fast calculation of proximity ranking.
|
||||
In example below there are two extents - <tt><b>{1</b>...<b>}1</b> and <b>{2</b> ...<b>}2</b></tt>.
|
||||
<pre>
|
||||
=# select get_covers('1:1,2,10 2:4'::tsvector,'1& 2');
|
||||
get_covers
|
||||
----------------------
|
||||
1 {1 1 {2 2 }1 1 }2
|
||||
</pre>
|
||||
</dd>
|
||||
|
||||
</dl>
|
||||
|
||||
<p>
|
||||
Both of these (<tt>rank(), rank_cd()</tt>) ranking functions
|
||||
take an integer <i>normalization</i> option
|
||||
that specifies whether a document's length should impact its rank.
|
||||
This is often desirable,
|
||||
since a hundred-word document with five instances of a search word
|
||||
is probably more relevant than a thousand-word document with five instances.
|
||||
The option can have the values, which could be combined using "|" ( 2|4) to
|
||||
take into account several factors:
|
||||
|
||||
</p>
|
||||
<ul>
|
||||
<li><tt>0</tt> (the default) ignores document length.</li>
|
||||
<li><tt>1</tt> divides the rank by the 1 + logarithm of the length </li>
|
||||
<li><tt>2</tt> divides the rank by the length itself.</li>
|
||||
<li><tt>4</tt> divides the rank by the mean harmonic distance between extents</li>
|
||||
<li><tt>8</tt> divides the rank by the number of unique words in document</li>
|
||||
<li><tt>16</tt> divides the rank by 1 + logarithm of the number of unique words in document
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<h2><a name="headlines">Headlines</a></h2>
|
||||
|
||||
<dl><dt>
|
||||
<tt>CREATE FUNCTION headline(<br>
|
||||
<em>[</em> <i>id</i> int4, <em>|</em> <i>ts_name</i> text, <em>]</em>
|
||||
<i>document</i> text, <i>query</i> tsquery,
|
||||
<i>document</i> text, <i>query</i> TSQUERY,
|
||||
<em>[</em> <i>options</i> text <em>]</em><br>
|
||||
) RETURNS text</tt>
|
||||
</dt><dd>
|
||||
@ -448,10 +720,123 @@ The two ranking functions currently available are:
|
||||
with a word which has this many characters or less.
|
||||
The default value of <tt>3</tt> should eliminate most English
|
||||
conjunctions and articles.
|
||||
</li><li><tt>HighlightAll</tt> --
|
||||
boolean flag, if TRUE, than the whole document will be highlighted.
|
||||
</li></ul>
|
||||
Any unspecified options receive these defaults:
|
||||
<pre>StartSel=<b>, StopSel=</b>, MaxWords=35, MinWords=15, ShortWord=3
|
||||
<pre>StartSel=<b>, StopSel=</b>, MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE
|
||||
</pre>
|
||||
</dd></dl>
|
||||
|
||||
|
||||
<h2><a name="indexes">Indexes</a></h2>
|
||||
Tsearch2 supports indexed access to tsvector in order to further speedup FTS. Notice, indexes are not mandatory for FTS !
|
||||
<ul>
|
||||
<li> RD-Tree (Russian Doll Tree, matryoshka), based on GiST (Generalized Search Tree)
|
||||
<pre>
|
||||
=# create index fts_idx on apod using gist(fts);
|
||||
</pre>
|
||||
<li>GIN - Generalized Inverted Index
|
||||
<pre>
|
||||
=# create index fts_idx on apod using gin(fts);
|
||||
</pre>
|
||||
</ul>
|
||||
<b>GiST</b> index is very good for online update, but is not as scalable as <b>GIN</b> index,
|
||||
which, in turn, isn't good for updates. Both indexes support concurrency and recovery.
|
||||
|
||||
<h2><a name="tz">Thesaurus dictionary</a></h2>
|
||||
|
||||
<P>
|
||||
Thesaurus - is a collection of words with included information about the relationships of words and phrases,
|
||||
i.e., broader terms (BT), narrower terms (NT), preferred terms, non-preferred, related terms,etc.</p>
|
||||
<p>Basically,thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally,
|
||||
preserves them for indexing. Thesaurus used when indexing, so any changes in thesaurus require reindexing.
|
||||
Tsearch2's <tt>thesaurus</tt> dictionary (TZ) is an extension of <tt>synonym</tt> dictionary
|
||||
with <b>phrase</b> support. Thesaurus is a plain file of the following format:
|
||||
<pre>
|
||||
# this is a comment
|
||||
sample word(s) : indexed word(s)
|
||||
...............................
|
||||
</pre>
|
||||
<ul>
|
||||
<li><strong>Colon</strong> (:) symbol used as a delimiter.</li>
|
||||
<li>Use asterisk (<b>*</b>) at the beginning of <tt>indexed word</tt> to skip subdictionary.
|
||||
It's still required, that <tt>sample words</tt> should be known.</li>
|
||||
<li>thesaurus dictionary looks for the most longest match</li></ul>
|
||||
<P>
|
||||
TZ uses <strong>subdictionary</strong> (should be defined in tsearch2 configuration)
|
||||
to normalize thesaurus text. It's possible to define only <strong>one dictionary</strong>.
|
||||
Notice, that subdictionary produces an error, if it couldn't recognize word.
|
||||
In that case, you should remove definition line with this word or teach subdictionary to know it.
|
||||
</p>
|
||||
<p>Stop-words recognized by subdictionary replaced by 'stop-word placeholder', i.e.,
|
||||
important only their position.
|
||||
To break possible ties thesaurus applies the last definition. For example, consider
|
||||
thesaurus (with simple subdictionary) rules with pattern 'swsw'
|
||||
('s' designates stop-word and 'w' - known word): </p>
|
||||
<pre>
|
||||
a one the two : swsw
|
||||
the one a two : swsw2
|
||||
</pre>
|
||||
<p>Words 'a' and 'the' are stop-words defined in the configuration of a subdictionary.
|
||||
Thesaurus considers texts 'the one the two' and 'that one then two' as equal and will use definition
|
||||
'swsw2'.</p>
|
||||
<p>As a normal dictionary, it should be assigned to the specific lexeme types.
|
||||
Since TZ has a capability to recognize phrases it must remember its state and interact with parser.
|
||||
TZ use these assignments to check if it should handle next word or stop accumulation.
|
||||
Compiler of TZ should take care about proper configuration to avoid confusion.
|
||||
For example, if TZ is assigned to handle only <tt>lword</tt> lexeme, then TZ definition like
|
||||
' one 1:11' will not works, since lexeme type <tt>digit</tt> doesn't assigned to the TZ.</p>
|
||||
|
||||
<h3>Configuration</h3>
|
||||
|
||||
<dl><dt>tsearch2</dt><dd></dd></dl><p>tsearch2 comes with thesaurus template, which could be used to define new dictionary: </p>
|
||||
<pre class="real">INSERT INTO pg_ts_dict
|
||||
(SELECT 'tz_simple', dict_init,
|
||||
'DictFile="/path/to/tz_simple.txt",'
|
||||
'Dictionary="en_stem"',
|
||||
dict_lexize
|
||||
FROM pg_ts_dict
|
||||
WHERE dict_name = 'thesaurus_template');
|
||||
|
||||
</pre>
|
||||
<p>Here: </p>
|
||||
<ul>
|
||||
<li><tt>tz_simple</tt> - is the dictionary name</li>
|
||||
<li><tt>DictFile="/path/to/tz_simple.txt"</tt> - is the location of thesaurus file</li>
|
||||
<li><tt>Dictionary="en_stem"</tt> defines dictionary (snowball english stemmer) to use for thesaurus normalization. Notice, that <em>en_stem</em> dictionary has it's own configuration (stop-words, for example).</li>
|
||||
</ul>
|
||||
<p>Now, it's possible to use <tt>tz_simple</tt> in pg_ts_cfgmap, for example: </p>
|
||||
<pre>
|
||||
update pg_ts_cfgmap set dict_name='{tz_simple,en_stem}' where ts_name = 'default_russian' and
|
||||
tok_alias in ('lhword', 'lword', 'lpart_hword');
|
||||
</pre>
|
||||
<h3>Examples</h3>
|
||||
<p>tz_simple: </p>
|
||||
<pre>
|
||||
one : 1
|
||||
two : 2
|
||||
one two : 12
|
||||
the one : 1
|
||||
one 1 : 11
|
||||
</pre>
|
||||
<p>To see, how thesaurus works, one could use <tt>to_tsvector</tt>, <tt>to_tsquery</tt> or <tt>plainto_tsquery</tt> functions: </p><pre class="real">=# select plainto_tsquery('default_russian',' one day is oneday');
|
||||
plainto_tsquery
|
||||
------------------------
|
||||
'1' & 'day' & 'oneday'
|
||||
|
||||
=# select plainto_tsquery('default_russian','one two day is oneday');
|
||||
plainto_tsquery
|
||||
-------------------------
|
||||
'12' & 'day' & 'oneday'
|
||||
|
||||
=# select plainto_tsquery('default_russian','the one');
|
||||
NOTICE: Thesaurus: word 'the' is recognized as stop-word, assign any stop-word (rule 3)
|
||||
plainto_tsquery
|
||||
-----------------
|
||||
'1'
|
||||
</pre>
|
||||
|
||||
Additional information about thesaurus dictionary is available from
|
||||
<a href="http://www.sai.msu.su/~megera/wiki/Thesaurus_dictionary">Wiki</a> page.
|
||||
</body></html>
|
||||
|
Loading…
Reference in New Issue
Block a user