Re-implement division for numeric values using the traditional "schoolbook"

algorithm.  This is a good deal slower than our old roundoff-error-prone
code for long inputs, so we keep the old code for use in the transcendental
functions, where everything is approximate anyway.  Also create a
user-accessible function div(numeric, numeric) to provide access to the
exact result of trunc(x/y) --- since the regular numeric / operator will
round off its result, simply computing that expression in SQL doesn't
reliably give the desired answer.  This fixes bug #3387 and various related
corner cases, and improves the usefulness of PG for high-precision integer
arithmetic.
This commit is contained in:
Tom Lane 2008-04-04 18:45:36 +00:00
parent b6f0ad4b0e
commit a0fad9762a
7 changed files with 470 additions and 32 deletions

View File

@ -1,4 +1,4 @@
<!-- $PostgreSQL: pgsql/doc/src/sgml/func.sgml,v 1.426 2008/04/04 16:57:21 momjian Exp $ -->
<!-- $PostgreSQL: pgsql/doc/src/sgml/func.sgml,v 1.427 2008/04/04 18:45:36 tgl Exp $ -->
<chapter id="functions">
<title>Functions and Operators</title>
@ -617,6 +617,9 @@
<indexterm>
<primary>degrees</primary>
</indexterm>
<indexterm>
<primary>div</primary>
</indexterm>
<indexterm>
<primary>exp</primary>
</indexterm>
@ -717,6 +720,15 @@
<entry><literal>28.6478897565412</literal></entry>
</row>
<row>
<entry><literal><function>div</function>(<parameter>y</parameter> <type>numeric</>,
<parameter>x</parameter> <type>numeric</>)</literal></entry>
<entry><type>numeric</></entry>
<entry>integer quotient of <parameter>y</parameter>/<parameter>x</parameter></entry>
<entry><literal>div(9,4)</literal></entry>
<entry><literal>2</literal></entry>
</row>
<row>
<entry><literal><function>exp</function>(<type>dp</type> or <type>numeric</type>)</literal></entry>
<entry>(same as input)</entry>

View File

@ -14,7 +14,7 @@
* Copyright (c) 1998-2008, PostgreSQL Global Development Group
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/numeric.c,v 1.108 2008/01/01 19:45:52 momjian Exp $
* $PostgreSQL: pgsql/src/backend/utils/adt/numeric.c,v 1.109 2008/04/04 18:45:36 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -53,7 +53,7 @@
* NBASE that's less than sqrt(INT_MAX), in practice we are only interested
* in NBASE a power of ten, so that I/O conversions and decimal rounding
* are easy. Also, it's actually more efficient if NBASE is rather less than
* sqrt(INT_MAX), so that there is "headroom" for mul_var and div_var to
* sqrt(INT_MAX), so that there is "headroom" for mul_var and div_var_fast to
* postpone processing carries.
* ----------
*/
@ -90,6 +90,10 @@ typedef int16 NumericDigit;
/* ----------
* NumericVar is the format we use for arithmetic. The digit-array part
* is the same as the NumericData storage format, but the header is more
* complex.
*
* The value represented by a NumericVar is determined by the sign, weight,
* ndigits, and digits[] array.
* Note: the first digit of a NumericVar's value is assumed to be multiplied
@ -100,7 +104,7 @@ typedef int16 NumericDigit;
* NumericVar. digits points at the first digit in actual use (the one
* with the specified weight). We normally leave an unused digit or two
* (preset to zeroes) between buf and digits, so that there is room to store
* a carry out of the top digit without special pushups. We just need to
* a carry out of the top digit without reallocating space. We just need to
* decrement digits (and increment weight) to make room for the carry digit.
* (There is no such extra space in a numeric value stored in the database,
* only in a NumericVar in memory.)
@ -265,6 +269,8 @@ static void mul_var(NumericVar *var1, NumericVar *var2, NumericVar *result,
int rscale);
static void div_var(NumericVar *var1, NumericVar *var2, NumericVar *result,
int rscale, bool round);
static void div_var_fast(NumericVar *var1, NumericVar *var2, NumericVar *result,
int rscale, bool round);
static int select_div_scale(NumericVar *var1, NumericVar *var2);
static void mod_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
static void ceil_var(NumericVar *var, NumericVar *result);
@ -1419,6 +1425,52 @@ numeric_div(PG_FUNCTION_ARGS)
}
/*
* numeric_div_trunc() -
*
* Divide one numeric into another, truncating the result to an integer
*/
Datum
numeric_div_trunc(PG_FUNCTION_ARGS)
{
Numeric num1 = PG_GETARG_NUMERIC(0);
Numeric num2 = PG_GETARG_NUMERIC(1);
NumericVar arg1;
NumericVar arg2;
NumericVar result;
Numeric res;
/*
* Handle NaN
*/
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
PG_RETURN_NUMERIC(make_result(&const_nan));
/*
* Unpack the arguments
*/
init_var(&arg1);
init_var(&arg2);
init_var(&result);
set_var_from_num(num1, &arg1);
set_var_from_num(num2, &arg2);
/*
* Do the divide and return the result
*/
div_var(&arg1, &arg2, &result, 0, false);
res = make_result(&result);
free_var(&arg1);
free_var(&arg2);
free_var(&result);
PG_RETURN_NUMERIC(res);
}
/*
* numeric_mod() -
*
@ -4036,12 +4088,291 @@ mul_var(NumericVar *var1, NumericVar *var2, NumericVar *result,
/*
* div_var() -
*
* Division on variable level. Quotient of var1 / var2 is stored
* in result. Result is rounded to no more than rscale fractional digits.
* Division on variable level. Quotient of var1 / var2 is stored in result.
* The quotient is figured to exactly rscale fractional digits.
* If round is true, it is rounded at the rscale'th digit; if false, it
* is truncated (towards zero) at that digit.
*/
static void
div_var(NumericVar *var1, NumericVar *var2, NumericVar *result,
int rscale, bool round)
{
int div_ndigits;
int res_ndigits;
int res_sign;
int res_weight;
int carry;
int borrow;
int divisor1;
int divisor2;
NumericDigit *dividend;
NumericDigit *divisor;
NumericDigit *res_digits;
int i;
int j;
/* copy these values into local vars for speed in inner loop */
int var1ndigits = var1->ndigits;
int var2ndigits = var2->ndigits;
/*
* First of all division by zero check; we must not be handed an
* unnormalized divisor.
*/
if (var2ndigits == 0 || var2->digits[0] == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/*
* Now result zero check
*/
if (var1ndigits == 0)
{
zero_var(result);
result->dscale = rscale;
return;
}
/*
* Determine the result sign, weight and number of digits to calculate.
* The weight figured here is correct if the emitted quotient has no
* leading zero digits; otherwise strip_var() will fix things up.
*/
if (var1->sign == var2->sign)
res_sign = NUMERIC_POS;
else
res_sign = NUMERIC_NEG;
res_weight = var1->weight - var2->weight;
/* The number of accurate result digits we need to produce: */
res_ndigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS;
/* ... but always at least 1 */
res_ndigits = Max(res_ndigits, 1);
/* If rounding needed, figure one more digit to ensure correct result */
if (round)
res_ndigits++;
/*
* The working dividend normally requires res_ndigits + var2ndigits
* digits, but make it at least var1ndigits so we can load all of var1
* into it. (There will be an additional digit dividend[0] in the
* dividend space, but for consistency with Knuth's notation we don't
* count that in div_ndigits.)
*/
div_ndigits = res_ndigits + var2ndigits;
div_ndigits = Max(div_ndigits, var1ndigits);
/*
* We need a workspace with room for the working dividend (div_ndigits+1
* digits) plus room for the possibly-normalized divisor (var2ndigits
* digits). It is convenient also to have a zero at divisor[0] with
* the actual divisor data in divisor[1 .. var2ndigits]. Transferring the
* digits into the workspace also allows us to realloc the result (which
* might be the same as either input var) before we begin the main loop.
* Note that we use palloc0 to ensure that divisor[0], dividend[0], and
* any additional dividend positions beyond var1ndigits, start out 0.
*/
dividend = (NumericDigit *)
palloc0((div_ndigits + var2ndigits + 2) * sizeof(NumericDigit));
divisor = dividend + (div_ndigits + 1);
memcpy(dividend + 1, var1->digits, var1ndigits * sizeof(NumericDigit));
memcpy(divisor + 1, var2->digits, var2ndigits * sizeof(NumericDigit));
/*
* Now we can realloc the result to hold the generated quotient digits.
*/
alloc_var(result, res_ndigits);
res_digits = result->digits;
if (var2ndigits == 1)
{
/*
* If there's only a single divisor digit, we can use a fast path
* (cf. Knuth section 4.3.1 exercise 16).
*/
divisor1 = divisor[1];
carry = 0;
for (i = 0; i < res_ndigits; i++)
{
carry = carry * NBASE + dividend[i + 1];
res_digits[i] = carry / divisor1;
carry = carry % divisor1;
}
}
else
{
/*
* The full multiple-place algorithm is taken from Knuth volume 2,
* Algorithm 4.3.1D.
*
* We need the first divisor digit to be >= NBASE/2. If it isn't,
* make it so by scaling up both the divisor and dividend by the
* factor "d". (The reason for allocating dividend[0] above is to
* leave room for possible carry here.)
*/
if (divisor[1] < HALF_NBASE)
{
int d = NBASE / (divisor[1] + 1);
carry = 0;
for (i = var2ndigits; i > 0; i--)
{
carry += divisor[i] * d;
divisor[i] = carry % NBASE;
carry = carry / NBASE;
}
Assert(carry == 0);
carry = 0;
/* at this point only var1ndigits of dividend can be nonzero */
for (i = var1ndigits; i >= 0; i--)
{
carry += dividend[i] * d;
dividend[i] = carry % NBASE;
carry = carry / NBASE;
}
Assert(carry == 0);
Assert(divisor[1] >= HALF_NBASE);
}
/* First 2 divisor digits are used repeatedly in main loop */
divisor1 = divisor[1];
divisor2 = divisor[2];
/*
* Begin the main loop. Each iteration of this loop produces the
* j'th quotient digit by dividing dividend[j .. j + var2ndigits]
* by the divisor; this is essentially the same as the common manual
* procedure for long division.
*/
for (j = 0; j < res_ndigits; j++)
{
/* Estimate quotient digit from the first two dividend digits */
int next2digits = dividend[j] * NBASE + dividend[j+1];
int qhat;
/*
* If next2digits are 0, then quotient digit must be 0 and there's
* no need to adjust the working dividend. It's worth testing
* here to fall out ASAP when processing trailing zeroes in
* a dividend.
*/
if (next2digits == 0)
{
res_digits[j] = 0;
continue;
}
if (dividend[j] == divisor1)
qhat = NBASE - 1;
else
qhat = next2digits / divisor1;
/*
* Adjust quotient digit if it's too large. Knuth proves that
* after this step, the quotient digit will be either correct
* or just one too large. (Note: it's OK to use dividend[j+2]
* here because we know the divisor length is at least 2.)
*/
while (divisor2 * qhat >
(next2digits - qhat * divisor1) * NBASE + dividend[j+2])
qhat--;
/* As above, need do nothing more when quotient digit is 0 */
if (qhat > 0)
{
/*
* Multiply the divisor by qhat, and subtract that from the
* working dividend. "carry" tracks the multiplication,
* "borrow" the subtraction (could we fold these together?)
*/
carry = 0;
borrow = 0;
for (i = var2ndigits; i >= 0; i--)
{
carry += divisor[i] * qhat;
borrow -= carry % NBASE;
carry = carry / NBASE;
borrow += dividend[j + i];
if (borrow < 0)
{
dividend[j + i] = borrow + NBASE;
borrow = -1;
}
else
{
dividend[j + i] = borrow;
borrow = 0;
}
}
Assert(carry == 0);
/*
* If we got a borrow out of the top dividend digit, then
* indeed qhat was one too large. Fix it, and add back the
* divisor to correct the working dividend. (Knuth proves
* that this will occur only about 3/NBASE of the time; hence,
* it's a good idea to test this code with small NBASE to be
* sure this section gets exercised.)
*/
if (borrow)
{
qhat--;
carry = 0;
for (i = var2ndigits; i >= 0; i--)
{
carry += dividend[j + i] + divisor[i];
if (carry >= NBASE)
{
dividend[j + i] = carry - NBASE;
carry = 1;
}
else
{
dividend[j + i] = carry;
carry = 0;
}
}
/* A carry should occur here to cancel the borrow above */
Assert(carry == 1);
}
}
/* And we're done with this quotient digit */
res_digits[j] = qhat;
}
}
pfree(dividend);
/*
* Finally, round or truncate the result to the requested precision.
*/
result->weight = res_weight;
result->sign = res_sign;
/* Round or truncate to target rscale (and set result->dscale) */
if (round)
round_var(result, rscale);
else
trunc_var(result, rscale);
/* Strip leading and trailing zeroes */
strip_var(result);
}
/*
* div_var_fast() -
*
* This has the same API as div_var, but is implemented using the division
* algorithm from the "FM" library, rather than Knuth's schoolbook-division
* approach. This is significantly faster but can produce inaccurate
* results, because it sometimes has to propagate rounding to the left,
* and so we can never be entirely sure that we know the requested digits
* exactly. We compute DIV_GUARD_DIGITS extra digits, but there is
* no certainty that that's enough. We use this only in the transcendental
* function calculation routines, where everything is approximate anyway.
*/
static void
div_var_fast(NumericVar *var1, NumericVar *var2, NumericVar *result,
int rscale, bool round)
{
int div_ndigits;
int res_sign;
@ -4367,30 +4698,21 @@ static void
mod_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
{
NumericVar tmp;
int rscale;
init_var(&tmp);
/* ---------
* We do this using the equation
* mod(x,y) = x - trunc(x/y)*y
* We set rscale the same way numeric_div and numeric_mul do
* to get the right answer from the equation. The final result,
* however, need not be displayed to more precision than the inputs.
* div_var can be persuaded to give us trunc(x/y) directly.
* ----------
*/
rscale = select_div_scale(var1, var2);
div_var(var1, var2, &tmp, 0, false);
div_var(var1, var2, &tmp, rscale, false);
trunc_var(&tmp, 0);
mul_var(var2, &tmp, &tmp, var2->dscale + tmp.dscale);
mul_var(var2, &tmp, &tmp, var2->dscale);
sub_var(var1, &tmp, result);
round_var(result, Max(var1->dscale, var2->dscale));
free_var(&tmp);
}
@ -4497,7 +4819,7 @@ sqrt_var(NumericVar *arg, NumericVar *result, int rscale)
for (;;)
{
div_var(&tmp_arg, result, &tmp_val, local_rscale, true);
div_var_fast(&tmp_arg, result, &tmp_val, local_rscale, true);
add_var(result, &tmp_val, result);
mul_var(result, &const_zero_point_five, result, local_rscale);
@ -4587,7 +4909,7 @@ exp_var(NumericVar *arg, NumericVar *result, int rscale)
/* Compensate for input sign, and round to requested rscale */
if (xneg)
div_var(&const_one, result, result, rscale, true);
div_var_fast(&const_one, result, result, rscale, true);
else
round_var(result, rscale);
@ -4652,7 +4974,7 @@ exp_var_internal(NumericVar *arg, NumericVar *result, int rscale)
add_var(&ni, &const_one, &ni);
mul_var(&xpow, &x, &xpow, local_rscale);
mul_var(&ifac, &ni, &ifac, 0);
div_var(&xpow, &ifac, &elem, local_rscale, true);
div_var_fast(&xpow, &ifac, &elem, local_rscale, true);
if (elem.ndigits == 0)
break;
@ -4736,7 +5058,7 @@ ln_var(NumericVar *arg, NumericVar *result, int rscale)
*/
sub_var(&x, &const_one, result);
add_var(&x, &const_one, &elem);
div_var(result, &elem, result, local_rscale, true);
div_var_fast(result, &elem, result, local_rscale, true);
set_var_from_var(result, &xx);
mul_var(result, result, &x, local_rscale);
@ -4746,7 +5068,7 @@ ln_var(NumericVar *arg, NumericVar *result, int rscale)
{
add_var(&ni, &const_two, &ni);
mul_var(&xx, &x, &xx, local_rscale);
div_var(&xx, &ni, &elem, local_rscale, true);
div_var_fast(&xx, &ni, &elem, local_rscale, true);
if (elem.ndigits == 0)
break;
@ -4816,7 +5138,7 @@ log_var(NumericVar *base, NumericVar *num, NumericVar *result)
/* Select scale for division result */
rscale = select_div_scale(&ln_num, &ln_base);
div_var(&ln_num, &ln_base, result, rscale, true);
div_var_fast(&ln_num, &ln_base, result, rscale, true);
free_var(&ln_num);
free_var(&ln_base);
@ -4990,7 +5312,7 @@ power_var_int(NumericVar *base, int exp, NumericVar *result, int rscale)
/* Compensate for input sign, and round to requested rscale */
if (neg)
div_var(&const_one, result, result, rscale, true);
div_var_fast(&const_one, result, result, rscale, true);
else
round_var(result, rscale);
}
@ -5361,8 +5683,8 @@ round_var(NumericVar *var, int rscale)
/*
* trunc_var
*
* Truncate the value of a variable at rscale decimal digits after the
* decimal point. NOTE: we allow rscale < 0 here, implying
* Truncate (towards zero) the value of a variable at rscale decimal digits
* after the decimal point. NOTE: we allow rscale < 0 here, implying
* truncation before the decimal point.
*/
static void

View File

@ -37,7 +37,7 @@
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/catalog/catversion.h,v 1.444 2008/03/23 00:24:19 tgl Exp $
* $PostgreSQL: pgsql/src/include/catalog/catversion.h,v 1.445 2008/04/04 18:45:36 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -53,6 +53,6 @@
*/
/* yyyymmddN */
#define CATALOG_VERSION_NO 200803222
#define CATALOG_VERSION_NO 200804041
#endif

View File

@ -7,7 +7,7 @@
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/catalog/pg_proc.h,v 1.486 2008/04/04 16:57:21 momjian Exp $
* $PostgreSQL: pgsql/src/include/catalog/pg_proc.h,v 1.487 2008/04/04 18:45:36 tgl Exp $
*
* NOTES
* The script catalog/genbki.sh reads this file and generates .bki
@ -1115,7 +1115,7 @@ DESCR("does not match LIKE expression");
DATA(insert OID = 860 ( bpchar PGNSP PGUID 12 1 0 f f t f i 1 1042 "18" _null_ _null_ _null_ char_bpchar - _null_ _null_ ));
DESCR("convert char to char()");
DATA(insert OID = 861 ( current_database PGNSP PGUID 12 1 0 f f t f i 0 19 "" _null_ _null_ _null_ current_database - _null_ _null_ ));
DATA(insert OID = 861 ( current_database PGNSP PGUID 12 1 0 f f t f s 0 19 "" _null_ _null_ _null_ current_database - _null_ _null_ ));
DESCR("returns the current database");
DATA(insert OID = 817 ( current_query PGNSP PGUID 12 1 0 f f f f v 0 25 "" _null_ _null_ _null_ current_query - _null_ _null_ ));
DESCR("returns the currently executing query");
@ -2573,6 +2573,10 @@ DATA(insert OID = 1745 ( float4 PGNSP PGUID 12 1 0 f f t f i 1 700 "1700" _n
DESCR("(internal)");
DATA(insert OID = 1746 ( float8 PGNSP PGUID 12 1 0 f f t f i 1 701 "1700" _null_ _null_ _null_ numeric_float8 - _null_ _null_ ));
DESCR("(internal)");
DATA(insert OID = 1973 ( div PGNSP PGUID 12 1 0 f f t f i 2 1700 "1700 1700" _null_ _null_ _null_ numeric_div_trunc - _null_ _null_ ));
DESCR("trunc(x/y)");
DATA(insert OID = 1980 ( numeric_div_trunc PGNSP PGUID 12 1 0 f f t f i 2 1700 "1700 1700" _null_ _null_ _null_ numeric_div_trunc - _null_ _null_ ));
DESCR("trunc(x/y)");
DATA(insert OID = 2170 ( width_bucket PGNSP PGUID 12 1 0 f f t f i 4 23 "1700 1700 1700 23" _null_ _null_ _null_ width_bucket_numeric - _null_ _null_ ));
DESCR("bucket number of operand in equidepth histogram");

View File

@ -7,7 +7,7 @@
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/utils/builtins.h,v 1.311 2008/04/04 16:57:21 momjian Exp $
* $PostgreSQL: pgsql/src/include/utils/builtins.h,v 1.312 2008/04/04 18:45:36 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -845,6 +845,7 @@ extern Datum numeric_add(PG_FUNCTION_ARGS);
extern Datum numeric_sub(PG_FUNCTION_ARGS);
extern Datum numeric_mul(PG_FUNCTION_ARGS);
extern Datum numeric_div(PG_FUNCTION_ARGS);
extern Datum numeric_div_trunc(PG_FUNCTION_ARGS);
extern Datum numeric_mod(PG_FUNCTION_ARGS);
extern Datum numeric_inc(PG_FUNCTION_ARGS);
extern Datum numeric_smaller(PG_FUNCTION_ARGS);

View File

@ -1260,3 +1260,84 @@ SELECT * FROM num_input_test;
-555.50
(5 rows)
--
-- Test some corner cases for division
--
select 999999999999999999999::numeric/1000000000000000000000;
?column?
------------------------
1.00000000000000000000
(1 row)
select div(999999999999999999999::numeric,1000000000000000000000);
div
-----
0
(1 row)
select mod(999999999999999999999::numeric,1000000000000000000000);
mod
-----------------------
999999999999999999999
(1 row)
select div(-9999999999999999999999::numeric,1000000000000000000000);
div
-----
-9
(1 row)
select mod(-9999999999999999999999::numeric,1000000000000000000000);
mod
------------------------
-999999999999999999999
(1 row)
select div(-9999999999999999999999::numeric,1000000000000000000000)*1000000000000000000000 + mod(-9999999999999999999999::numeric,1000000000000000000000);
?column?
-------------------------
-9999999999999999999999
(1 row)
select mod (70.0,70) ;
mod
-----
0.0
(1 row)
select div (70.0,70) ;
div
-----
1
(1 row)
select 70.0 / 70 ;
?column?
------------------------
1.00000000000000000000
(1 row)
select 12345678901234567890 % 123;
?column?
----------
78
(1 row)
select 12345678901234567890 / 123;
?column?
--------------------
100371373180768845
(1 row)
select div(12345678901234567890, 123);
div
--------------------
100371373180768844
(1 row)
select div(12345678901234567890, 123) * 123 + 12345678901234567890 % 123;
?column?
----------------------
12345678901234567890
(1 row)

View File

@ -805,3 +805,21 @@ INSERT INTO num_input_test(n1) VALUES ('');
INSERT INTO num_input_test(n1) VALUES (' N aN ');
SELECT * FROM num_input_test;
--
-- Test some corner cases for division
--
select 999999999999999999999::numeric/1000000000000000000000;
select div(999999999999999999999::numeric,1000000000000000000000);
select mod(999999999999999999999::numeric,1000000000000000000000);
select div(-9999999999999999999999::numeric,1000000000000000000000);
select mod(-9999999999999999999999::numeric,1000000000000000000000);
select div(-9999999999999999999999::numeric,1000000000000000000000)*1000000000000000000000 + mod(-9999999999999999999999::numeric,1000000000000000000000);
select mod (70.0,70) ;
select div (70.0,70) ;
select 70.0 / 70 ;
select 12345678901234567890 % 123;
select 12345678901234567890 / 123;
select div(12345678901234567890, 123);
select div(12345678901234567890, 123) * 123 + 12345678901234567890 % 123;