From 9df56f6d91c3d67b23925b8f8b70365636995b71 Mon Sep 17 00:00:00 2001 From: Simon Riggs Date: Fri, 22 Mar 2013 14:21:58 +0000 Subject: [PATCH] Add new README file for pages/checksums --- src/backend/storage/page/README | 52 +++++++++++++++++++++++++++++++++ 1 file changed, 52 insertions(+) create mode 100644 src/backend/storage/page/README diff --git a/src/backend/storage/page/README b/src/backend/storage/page/README new file mode 100644 index 0000000000..c42713c357 --- /dev/null +++ b/src/backend/storage/page/README @@ -0,0 +1,52 @@ +src/backend/storage/page/README + +Checksums +--------- + +Checksums on data pages are designed to detect corruption by the I/O system. +We do not protect buffers against uncorrectable memory errors, since these +have a very low measured incidence according to research on large server farms, +http://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf, discussed +2010/12/22 on -hackers list. + +Current implementation requires this be enabled system-wide at initdb time. + +The checksum is not valid at all times on a data page!! +The checksum is valid when the page leaves the shared pool and is checked +when it later re-enters the shared pool as a result of I/O. +We set the checksum on a buffer in the shared pool immediately before we +flush the buffer. As a result we implicitly invalidate the page's checksum +when we modify the page for a data change or even a hint. This means that +many or even most pages in shared buffers have invalid page checksums, +so be careful how you interpret the pd_checksum field. + +That means that WAL-logged changes to a page do NOT update the page checksum, +so full page images may not have a valid checksum. But those page images have +the WAL CRC covering them and so are verified separately from this +mechanism. WAL replay should not test the checksum of a full-page image. + +The best way to understand this is that WAL CRCs protect records entering the +WAL stream, and data page verification protects blocks entering the shared +buffer pool. They are similar in purpose, yet completely separate. Together +they ensure we are able to detect errors in data re-entering +PostgreSQL-controlled memory. Note also that the WAL checksum is a 32-bit CRC, +whereas the page checksum is only 16-bits. + +Any write of a data block can cause a torn page if the write is unsuccessful. +Full page writes protect us from that, which are stored in WAL. Setting hint +bits when a page is already dirty is OK because a full page write must already +have been written for it since the last checkpoint. Setting hint bits on an +otherwise clean page can allow torn pages; this doesn't normally matter since +they are just hints, but when the page has checksums, then losing a few bits +would cause the checksum to be invalid. So if we have full_page_writes = on +and checksums enabled then we must write a WAL record specifically so that we +record a full page image in WAL. Hint bits updates should be protected using +MarkBufferDirtyHint(), which is responsible for writing the full-page image +when necessary. + +New WAL records cannot be written during recovery, so hint bits set during +recovery must not dirty the page if the buffer is not already dirty, when +checksums are enabled. Systems in Hot-Standby mode may benefit from hint bits +being set, but with checksums enabled, a page cannot be dirtied after setting a +hint bit (due to the torn page risk). So, it must wait for full-page images +containing the hint bit updates to arrive from the master.