Add fast path for validating UTF-8 text

Our previous validator used a traditional algorithm that performed
comparison and branching one byte at a time. It's useful in that
we always know exactly how many bytes we have validated, but that
precision comes at a cost. Input validation can show up prominently
in profiles of COPY FROM, and future improvements to COPY FROM such
as parallelism or faster line parsing will put more pressure on input
validation. Hence, add fast paths for both ASCII and multibyte UTF-8:

Use bitwise operations to check 16 bytes at a time for ASCII. If
that fails, use a "shift-based" DFA on those bytes to handle the
general case, including multibyte. These paths are relatively free
of branches and thus robust against all kinds of byte patterns. With
these algorithms, UTF-8 validation is several times faster, depending
on platform and the input byte distribution.

The previous coding in pg_utf8_verifystr() is retained for short
strings and for when the fast path returns an error.

Review, performance testing, and additional hacking by: Heikki
Linakangas, Vladimir Sitnikov, Amit Khandekar, Thomas Munro, and
Greg Stark

Discussion:
https://www.postgresql.org/message-id/CAFBsxsEV_SzH%2BOLyCiyon%3DiwggSyMh_eF6A3LU2tiWf3Cy2ZQg%40mail.gmail.com
This commit is contained in:
John Naylor 2021-10-19 16:43:14 -04:00
parent e2c52beecd
commit 911588a3f8
4 changed files with 570 additions and 0 deletions

View File

@ -1750,11 +1750,226 @@ pg_utf8_verifychar(const unsigned char *s, int len)
return l;
}
/*
* The fast path of the UTF-8 verifier uses a deterministic finite automaton
* (DFA) for multibyte characters. In a traditional table-driven DFA, the
* input byte and current state are used to compute an index into an array of
* state transitions. Since the address of the next transition is dependent
* on this computation, there is latency in executing the load instruction,
* and the CPU is not kept busy.
*
* Instead, we use a "shift-based" DFA as described by Per Vognsen:
*
* https://gist.github.com/pervognsen/218ea17743e1442e59bb60d29b1aa725
*
* In a shift-based DFA, the input byte is an index into array of integers
* whose bit pattern encodes the state transitions. To compute the next
* state, we simply right-shift the integer by the current state and apply a
* mask. In this scheme, the address of the transition only depends on the
* input byte, so there is better pipelining.
*
* The naming convention for states and transitions was adopted from a UTF-8
* to UTF-16/32 transcoder, whose table is reproduced below:
*
* https://github.com/BobSteagall/utf_utils/blob/6b7a465265de2f5fa6133d653df0c9bdd73bbcf8/src/utf_utils.cpp
*
* ILL ASC CR1 CR2 CR3 L2A L3A L3B L3C L4A L4B L4C CLASS / STATE
* ==========================================================================
* err, END, err, err, err, CS1, P3A, CS2, P3B, P4A, CS3, P4B, | BGN/END
* err, err, err, err, err, err, err, err, err, err, err, err, | ERR
* |
* err, err, END, END, END, err, err, err, err, err, err, err, | CS1
* err, err, CS1, CS1, CS1, err, err, err, err, err, err, err, | CS2
* err, err, CS2, CS2, CS2, err, err, err, err, err, err, err, | CS3
* |
* err, err, err, err, CS1, err, err, err, err, err, err, err, | P3A
* err, err, CS1, CS1, err, err, err, err, err, err, err, err, | P3B
* |
* err, err, err, CS2, CS2, err, err, err, err, err, err, err, | P4A
* err, err, CS2, err, err, err, err, err, err, err, err, err, | P4B
*
* In the most straightforward implementation, a shift-based DFA for UTF-8
* requires 64-bit integers to encode the transitions, but with an SMT solver
* it's possible to find state numbers such that the transitions fit within
* 32-bit integers, as Dougall Johnson demonstrated:
*
* https://gist.github.com/dougallj/166e326de6ad4cf2c94be97a204c025f
*
* This packed representation is the reason for the seemingly odd choice of
* state values below.
*/
/* Error */
#define ERR 0
/* Begin */
#define BGN 11
/* Continuation states, expect 1/2/3 continuation bytes */
#define CS1 16
#define CS2 1
#define CS3 5
/* Leading byte was E0/ED, expect 1 more continuation byte */
#define P3A 6
#define P3B 20
/* Leading byte was F0/F4, expect 2 more continuation bytes */
#define P4A 25
#define P4B 30
/* Begin and End are the same state */
#define END BGN
/* the encoded state transitions for the lookup table */
/* ASCII */
#define ASC (END << BGN)
/* 2-byte lead */
#define L2A (CS1 << BGN)
/* 3-byte lead */
#define L3A (P3A << BGN)
#define L3B (CS2 << BGN)
#define L3C (P3B << BGN)
/* 4-byte lead */
#define L4A (P4A << BGN)
#define L4B (CS3 << BGN)
#define L4C (P4B << BGN)
/* continuation byte */
#define CR1 (END << CS1) | (CS1 << CS2) | (CS2 << CS3) | (CS1 << P3B) | (CS2 << P4B)
#define CR2 (END << CS1) | (CS1 << CS2) | (CS2 << CS3) | (CS1 << P3B) | (CS2 << P4A)
#define CR3 (END << CS1) | (CS1 << CS2) | (CS2 << CS3) | (CS1 << P3A) | (CS2 << P4A)
/* invalid byte */
#define ILL ERR
static const uint32 Utf8Transition[256] =
{
/* ASCII */
ILL, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
/* continuation bytes */
/* 80..8F */
CR1, CR1, CR1, CR1, CR1, CR1, CR1, CR1,
CR1, CR1, CR1, CR1, CR1, CR1, CR1, CR1,
/* 90..9F */
CR2, CR2, CR2, CR2, CR2, CR2, CR2, CR2,
CR2, CR2, CR2, CR2, CR2, CR2, CR2, CR2,
/* A0..BF */
CR3, CR3, CR3, CR3, CR3, CR3, CR3, CR3,
CR3, CR3, CR3, CR3, CR3, CR3, CR3, CR3,
CR3, CR3, CR3, CR3, CR3, CR3, CR3, CR3,
CR3, CR3, CR3, CR3, CR3, CR3, CR3, CR3,
/* leading bytes */
/* C0..DF */
ILL, ILL, L2A, L2A, L2A, L2A, L2A, L2A,
L2A, L2A, L2A, L2A, L2A, L2A, L2A, L2A,
L2A, L2A, L2A, L2A, L2A, L2A, L2A, L2A,
L2A, L2A, L2A, L2A, L2A, L2A, L2A, L2A,
/* E0..EF */
L3A, L3B, L3B, L3B, L3B, L3B, L3B, L3B,
L3B, L3B, L3B, L3B, L3B, L3C, L3B, L3B,
/* F0..FF */
L4A, L4B, L4B, L4B, L4C, ILL, ILL, ILL,
ILL, ILL, ILL, ILL, ILL, ILL, ILL, ILL
};
static void
utf8_advance(const unsigned char *s, uint32 *state, int len)
{
/* Note: We deliberately don't check the state's value here. */
while (len > 0)
{
/*
* It's important that the mask value is 31: In most instruction sets,
* a shift by a 32-bit operand is understood to be a shift by its mod
* 32, so the compiler should elide the mask operation.
*/
*state = Utf8Transition[*s++] >> (*state & 31);
len--;
}
*state &= 31;
}
static int
pg_utf8_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
const int orig_len = len;
uint32 state = BGN;
/*
* Sixteen seems to give the best balance of performance across different
* byte distributions.
*/
#define STRIDE_LENGTH 16
if (len >= STRIDE_LENGTH)
{
while (len >= STRIDE_LENGTH)
{
/*
* If the chunk is all ASCII, we can skip the full UTF-8 check,
* but we must first check for a non-END state, which means the
* previous chunk ended in the middle of a multibyte sequence.
*/
if (state != END || !is_valid_ascii(s, STRIDE_LENGTH))
utf8_advance(s, &state, STRIDE_LENGTH);
s += STRIDE_LENGTH;
len -= STRIDE_LENGTH;
}
/*
* The error state persists, so we only need to check for it here. In
* case of error we start over from the beginning with the slow path
* so we can count the valid bytes.
*/
if (state == ERR)
{
len = orig_len;
s = start;
}
/*
* We treat all other states as success, but it's possible the fast
* path exited in the middle of a multibyte sequence, since that
* wouldn't have caused an error. Before checking the remaining bytes,
* walk backwards to find the last byte that could have been the start
* of a valid sequence.
*/
while (s > start)
{
s--;
len++;
if (!IS_HIGHBIT_SET(*s) || pg_utf_mblen(s) > 1)
break;
}
}
/* check remaining bytes */
while (len > 0)
{
int l;

View File

@ -699,4 +699,57 @@ extern int mic2latin_with_table(const unsigned char *mic, unsigned char *p,
extern WCHAR *pgwin32_message_to_UTF16(const char *str, int len, int *utf16len);
#endif
/*
* Verify a chunk of bytes for valid ASCII.
*
* Returns false if the input contains any zero bytes or bytes with the
* high-bit set. Input len must be a multiple of 8.
*/
static inline bool
is_valid_ascii(const unsigned char *s, int len)
{
uint64 chunk,
highbit_cum = UINT64CONST(0),
zero_cum = UINT64CONST(0x8080808080808080);
Assert(len % sizeof(chunk) == 0);
while (len > 0)
{
memcpy(&chunk, s, sizeof(chunk));
/*
* Capture any zero bytes in this chunk.
*
* First, add 0x7f to each byte. This sets the high bit in each byte,
* unless it was a zero. If any resulting high bits are zero, the
* corresponding high bits in the zero accumulator will be cleared.
*
* If none of the bytes in the chunk had the high bit set, the max
* value each byte can have after the addition is 0x7f + 0x7f = 0xfe,
* and we don't need to worry about carrying over to the next byte. If
* any input bytes did have the high bit set, it doesn't matter
* because we check for those separately.
*/
zero_cum &= (chunk + UINT64CONST(0x7f7f7f7f7f7f7f7f));
/* Capture any set bits in this chunk. */
highbit_cum |= chunk;
s += sizeof(chunk);
len -= sizeof(chunk);
}
/* Check if any high bits in the high bit accumulator got set. */
if (highbit_cum & UINT64CONST(0x8080808080808080))
return false;
/* Check if any high bits in the zero accumulator got cleared. */
if (zero_cum != UINT64CONST(0x8080808080808080))
return false;
return true;
}
#endif /* PG_WCHAR_H */

View File

@ -72,6 +72,175 @@ $$;
--
-- UTF-8
--
-- The description column must be unique.
CREATE TABLE utf8_verification_inputs (inbytes bytea, description text PRIMARY KEY);
insert into utf8_verification_inputs values
('\x66006f', 'NUL byte'),
('\xaf', 'bare continuation'),
('\xc5', 'missing second byte in 2-byte char'),
('\xc080', 'smallest 2-byte overlong'),
('\xc1bf', 'largest 2-byte overlong'),
('\xc280', 'next 2-byte after overlongs'),
('\xdfbf', 'largest 2-byte'),
('\xe9af', 'missing third byte in 3-byte char'),
('\xe08080', 'smallest 3-byte overlong'),
('\xe09fbf', 'largest 3-byte overlong'),
('\xe0a080', 'next 3-byte after overlong'),
('\xed9fbf', 'last before surrogates'),
('\xeda080', 'smallest surrogate'),
('\xedbfbf', 'largest surrogate'),
('\xee8080', 'next after surrogates'),
('\xefbfbf', 'largest 3-byte'),
('\xf1afbf', 'missing fourth byte in 4-byte char'),
('\xf0808080', 'smallest 4-byte overlong'),
('\xf08fbfbf', 'largest 4-byte overlong'),
('\xf0908080', 'next 4-byte after overlong'),
('\xf48fbfbf', 'largest 4-byte'),
('\xf4908080', 'smallest too large'),
('\xfa9a9a8a8a', '5-byte');
-- Test UTF-8 verification slow path
select description, (test_conv(inbytes, 'utf8', 'utf8')).* from utf8_verification_inputs;
description | result | errorat | error
------------------------------------+------------+--------------+----------------------------------------------------------------
NUL byte | \x66 | \x006f | invalid byte sequence for encoding "UTF8": 0x00
bare continuation | \x | \xaf | invalid byte sequence for encoding "UTF8": 0xaf
missing second byte in 2-byte char | \x | \xc5 | invalid byte sequence for encoding "UTF8": 0xc5
smallest 2-byte overlong | \x | \xc080 | invalid byte sequence for encoding "UTF8": 0xc0 0x80
largest 2-byte overlong | \x | \xc1bf | invalid byte sequence for encoding "UTF8": 0xc1 0xbf
next 2-byte after overlongs | \xc280 | |
largest 2-byte | \xdfbf | |
missing third byte in 3-byte char | \x | \xe9af | invalid byte sequence for encoding "UTF8": 0xe9 0xaf
smallest 3-byte overlong | \x | \xe08080 | invalid byte sequence for encoding "UTF8": 0xe0 0x80 0x80
largest 3-byte overlong | \x | \xe09fbf | invalid byte sequence for encoding "UTF8": 0xe0 0x9f 0xbf
next 3-byte after overlong | \xe0a080 | |
last before surrogates | \xed9fbf | |
smallest surrogate | \x | \xeda080 | invalid byte sequence for encoding "UTF8": 0xed 0xa0 0x80
largest surrogate | \x | \xedbfbf | invalid byte sequence for encoding "UTF8": 0xed 0xbf 0xbf
next after surrogates | \xee8080 | |
largest 3-byte | \xefbfbf | |
missing fourth byte in 4-byte char | \x | \xf1afbf | invalid byte sequence for encoding "UTF8": 0xf1 0xaf 0xbf
smallest 4-byte overlong | \x | \xf0808080 | invalid byte sequence for encoding "UTF8": 0xf0 0x80 0x80 0x80
largest 4-byte overlong | \x | \xf08fbfbf | invalid byte sequence for encoding "UTF8": 0xf0 0x8f 0xbf 0xbf
next 4-byte after overlong | \xf0908080 | |
largest 4-byte | \xf48fbfbf | |
smallest too large | \x | \xf4908080 | invalid byte sequence for encoding "UTF8": 0xf4 0x90 0x80 0x80
5-byte | \x | \xfa9a9a8a8a | invalid byte sequence for encoding "UTF8": 0xfa
(23 rows)
-- Test UTF-8 verification with ASCII padding appended to provide
-- coverage for algorithms that work on multiple bytes at a time.
-- The error message for a sequence starting with a 4-byte lead
-- will contain all 4 bytes if they are present, so various
-- expressions below add 3 ASCII bytes to the end to ensure
-- consistent error messages.
-- The number 64 below needs to be at least the value of STRIDE_LENGTH in wchar.c.
-- Test multibyte verification in fast path
with test_bytes as (
select
inbytes,
description,
(test_conv(inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from utf8_verification_inputs
), test_padded as (
select
description,
(test_conv(inbytes || repeat('.', 64)::bytea, 'utf8', 'utf8')).error
from test_bytes
)
select
description,
b.error as orig_error,
p.error as error_after_padding
from test_padded p
join test_bytes b
using (description)
where p.error is distinct from b.error
order by description;
description | orig_error | error_after_padding
-------------+------------+---------------------
(0 rows)
-- Test ASCII verification in fast path where incomplete
-- UTF-8 sequences fall at the end of the preceding chunk.
with test_bytes as (
select
inbytes,
description,
(test_conv(inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from utf8_verification_inputs
), test_padded as (
select
description,
(test_conv(repeat('.', 64 - length(inbytes))::bytea || inbytes || repeat('.', 64)::bytea, 'utf8', 'utf8')).error
from test_bytes
)
select
description,
b.error as orig_error,
p.error as error_after_padding
from test_padded p
join test_bytes b
using (description)
where p.error is distinct from b.error
order by description;
description | orig_error | error_after_padding
-------------+------------+---------------------
(0 rows)
-- Test cases where UTF-8 sequences within short text
-- come after the fast path returns.
with test_bytes as (
select
inbytes,
description,
(test_conv(inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from utf8_verification_inputs
), test_padded as (
select
description,
(test_conv(repeat('.', 64)::bytea || inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from test_bytes
)
select
description,
b.error as orig_error,
p.error as error_after_padding
from test_padded p
join test_bytes b
using (description)
where p.error is distinct from b.error
order by description;
description | orig_error | error_after_padding
-------------+------------+---------------------
(0 rows)
-- Test cases where incomplete UTF-8 sequences fall at the
-- end of the part checked by the fast path.
with test_bytes as (
select
inbytes,
description,
(test_conv(inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from utf8_verification_inputs
), test_padded as (
select
description,
(test_conv(repeat('.', 64 - length(inbytes))::bytea || inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from test_bytes
)
select
description,
b.error as orig_error,
p.error as error_after_padding
from test_padded p
join test_bytes b
using (description)
where p.error is distinct from b.error
order by description;
description | orig_error | error_after_padding
-------------+------------+---------------------
(0 rows)
CREATE TABLE utf8_inputs (inbytes bytea, description text);
insert into utf8_inputs values
('\x666f6f', 'valid, pure ASCII'),

View File

@ -74,6 +74,139 @@ $$;
--
-- UTF-8
--
-- The description column must be unique.
CREATE TABLE utf8_verification_inputs (inbytes bytea, description text PRIMARY KEY);
insert into utf8_verification_inputs values
('\x66006f', 'NUL byte'),
('\xaf', 'bare continuation'),
('\xc5', 'missing second byte in 2-byte char'),
('\xc080', 'smallest 2-byte overlong'),
('\xc1bf', 'largest 2-byte overlong'),
('\xc280', 'next 2-byte after overlongs'),
('\xdfbf', 'largest 2-byte'),
('\xe9af', 'missing third byte in 3-byte char'),
('\xe08080', 'smallest 3-byte overlong'),
('\xe09fbf', 'largest 3-byte overlong'),
('\xe0a080', 'next 3-byte after overlong'),
('\xed9fbf', 'last before surrogates'),
('\xeda080', 'smallest surrogate'),
('\xedbfbf', 'largest surrogate'),
('\xee8080', 'next after surrogates'),
('\xefbfbf', 'largest 3-byte'),
('\xf1afbf', 'missing fourth byte in 4-byte char'),
('\xf0808080', 'smallest 4-byte overlong'),
('\xf08fbfbf', 'largest 4-byte overlong'),
('\xf0908080', 'next 4-byte after overlong'),
('\xf48fbfbf', 'largest 4-byte'),
('\xf4908080', 'smallest too large'),
('\xfa9a9a8a8a', '5-byte');
-- Test UTF-8 verification slow path
select description, (test_conv(inbytes, 'utf8', 'utf8')).* from utf8_verification_inputs;
-- Test UTF-8 verification with ASCII padding appended to provide
-- coverage for algorithms that work on multiple bytes at a time.
-- The error message for a sequence starting with a 4-byte lead
-- will contain all 4 bytes if they are present, so various
-- expressions below add 3 ASCII bytes to the end to ensure
-- consistent error messages.
-- The number 64 below needs to be at least the value of STRIDE_LENGTH in wchar.c.
-- Test multibyte verification in fast path
with test_bytes as (
select
inbytes,
description,
(test_conv(inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from utf8_verification_inputs
), test_padded as (
select
description,
(test_conv(inbytes || repeat('.', 64)::bytea, 'utf8', 'utf8')).error
from test_bytes
)
select
description,
b.error as orig_error,
p.error as error_after_padding
from test_padded p
join test_bytes b
using (description)
where p.error is distinct from b.error
order by description;
-- Test ASCII verification in fast path where incomplete
-- UTF-8 sequences fall at the end of the preceding chunk.
with test_bytes as (
select
inbytes,
description,
(test_conv(inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from utf8_verification_inputs
), test_padded as (
select
description,
(test_conv(repeat('.', 64 - length(inbytes))::bytea || inbytes || repeat('.', 64)::bytea, 'utf8', 'utf8')).error
from test_bytes
)
select
description,
b.error as orig_error,
p.error as error_after_padding
from test_padded p
join test_bytes b
using (description)
where p.error is distinct from b.error
order by description;
-- Test cases where UTF-8 sequences within short text
-- come after the fast path returns.
with test_bytes as (
select
inbytes,
description,
(test_conv(inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from utf8_verification_inputs
), test_padded as (
select
description,
(test_conv(repeat('.', 64)::bytea || inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from test_bytes
)
select
description,
b.error as orig_error,
p.error as error_after_padding
from test_padded p
join test_bytes b
using (description)
where p.error is distinct from b.error
order by description;
-- Test cases where incomplete UTF-8 sequences fall at the
-- end of the part checked by the fast path.
with test_bytes as (
select
inbytes,
description,
(test_conv(inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from utf8_verification_inputs
), test_padded as (
select
description,
(test_conv(repeat('.', 64 - length(inbytes))::bytea || inbytes || repeat('.', 3)::bytea, 'utf8', 'utf8')).error
from test_bytes
)
select
description,
b.error as orig_error,
p.error as error_after_padding
from test_padded p
join test_bytes b
using (description)
where p.error is distinct from b.error
order by description;
CREATE TABLE utf8_inputs (inbytes bytea, description text);
insert into utf8_inputs values
('\x666f6f', 'valid, pure ASCII'),