Fix a pair of related issues with estimation of inequalities that involve

binary-compatible relabeling of one or both operands.  examine_variable
should avoid stripping RelabelType from non-variable expressions, so that
they will continue to have the correct type; and convert_to_scalar should
just use that type and ignore the other input type.  This isn't perfect
but it beats failing entirely.  Per example from Michael Fuhr.
This commit is contained in:
Tom Lane 2005-03-26 20:55:58 +00:00
parent d4f727808f
commit 90ce397ad6

View File

@ -15,7 +15,7 @@
* *
* *
* IDENTIFICATION * IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.169.4.2 2005/02/01 23:08:56 tgl Exp $ * $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.169.4.3 2005/03/26 20:55:58 tgl Exp $
* *
*------------------------------------------------------------------------- *-------------------------------------------------------------------------
*/ */
@ -2309,14 +2309,17 @@ convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
* constant-folding will ensure that any Const passed to the operator * constant-folding will ensure that any Const passed to the operator
* has been reduced to the correct type). However, the boundstypid is * has been reduced to the correct type). However, the boundstypid is
* the type of some variable that might be only binary-compatible with * the type of some variable that might be only binary-compatible with
* the declared type; in particular it might be a domain type. Must * the declared type; for example it might be a domain type. So we
* fold the variable type down to base type so we can recognize it. * ignore it and work with the valuetypid only.
* (But we can skip that lookup if the variable type matches the *
* const.) * XXX What's really going on here is that we assume that the scalar
* representations of binary-compatible types are enough alike that we
* can use a histogram generated with one type's operators to estimate
* selectivity for the other's. This is outright wrong in some cases ---
* in particular signed versus unsigned interpretation could trip us up.
* But it's useful enough in the majority of cases that we do it anyway.
* Should think about more rigorous ways to do it.
*/ */
if (boundstypid != valuetypid)
boundstypid = getBaseType(boundstypid);
switch (valuetypid) switch (valuetypid)
{ {
/* /*
@ -2337,8 +2340,8 @@ convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
case REGCLASSOID: case REGCLASSOID:
case REGTYPEOID: case REGTYPEOID:
*scaledvalue = convert_numeric_to_scalar(value, valuetypid); *scaledvalue = convert_numeric_to_scalar(value, valuetypid);
*scaledlobound = convert_numeric_to_scalar(lobound, boundstypid); *scaledlobound = convert_numeric_to_scalar(lobound, valuetypid);
*scaledhibound = convert_numeric_to_scalar(hibound, boundstypid); *scaledhibound = convert_numeric_to_scalar(hibound, valuetypid);
return true; return true;
/* /*
@ -2351,8 +2354,8 @@ convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
case NAMEOID: case NAMEOID:
{ {
unsigned char *valstr = convert_string_datum(value, valuetypid); unsigned char *valstr = convert_string_datum(value, valuetypid);
unsigned char *lostr = convert_string_datum(lobound, boundstypid); unsigned char *lostr = convert_string_datum(lobound, valuetypid);
unsigned char *histr = convert_string_datum(hibound, boundstypid); unsigned char *histr = convert_string_datum(hibound, valuetypid);
convert_string_to_scalar(valstr, scaledvalue, convert_string_to_scalar(valstr, scaledvalue,
lostr, scaledlobound, lostr, scaledlobound,
@ -2387,8 +2390,8 @@ convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
case TIMEOID: case TIMEOID:
case TIMETZOID: case TIMETZOID:
*scaledvalue = convert_timevalue_to_scalar(value, valuetypid); *scaledvalue = convert_timevalue_to_scalar(value, valuetypid);
*scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid); *scaledlobound = convert_timevalue_to_scalar(lobound, valuetypid);
*scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid); *scaledhibound = convert_timevalue_to_scalar(hibound, valuetypid);
return true; return true;
/* /*
@ -2398,8 +2401,8 @@ convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
case CIDROID: case CIDROID:
case MACADDROID: case MACADDROID:
*scaledvalue = convert_network_to_scalar(value, valuetypid); *scaledvalue = convert_network_to_scalar(value, valuetypid);
*scaledlobound = convert_network_to_scalar(lobound, boundstypid); *scaledlobound = convert_network_to_scalar(lobound, valuetypid);
*scaledhibound = convert_network_to_scalar(hibound, boundstypid); *scaledhibound = convert_network_to_scalar(hibound, valuetypid);
return true; return true;
} }
/* Don't know how to convert */ /* Don't know how to convert */
@ -2848,8 +2851,7 @@ convert_timevalue_to_scalar(Datum value, Oid typid)
* *
* Outputs: (these are valid only if TRUE is returned) * Outputs: (these are valid only if TRUE is returned)
* *vardata: gets information about variable (see examine_variable) * *vardata: gets information about variable (see examine_variable)
* *other: gets other clause argument, stripped of binary relabeling, * *other: gets other clause argument, aggressively reduced to a constant
* and aggressively reduced to a constant
* *varonleft: set TRUE if variable is on the left, FALSE if on the right * *varonleft: set TRUE if variable is on the left, FALSE if on the right
* *
* Returns TRUE if a variable is identified, otherwise FALSE. * Returns TRUE if a variable is identified, otherwise FALSE.
@ -2939,7 +2941,8 @@ get_join_variables(Query *root, List *args,
* varRelid: see specs for restriction selectivity functions * varRelid: see specs for restriction selectivity functions
* *
* Outputs: *vardata is filled as follows: * Outputs: *vardata is filled as follows:
* var: the input expression (with any binary relabeling stripped) * var: the input expression (with any binary relabeling stripped, if
* it is or contains a variable; but otherwise the type is preserved)
* rel: RelOptInfo for relation containing variable; NULL if expression * rel: RelOptInfo for relation containing variable; NULL if expression
* contains no Vars (NOTE this could point to a RelOptInfo of a * contains no Vars (NOTE this could point to a RelOptInfo of a
* subquery, not one in the current query). * subquery, not one in the current query).
@ -2955,27 +2958,29 @@ static void
examine_variable(Query *root, Node *node, int varRelid, examine_variable(Query *root, Node *node, int varRelid,
VariableStatData *vardata) VariableStatData *vardata)
{ {
Node *basenode;
Relids varnos; Relids varnos;
RelOptInfo *onerel; RelOptInfo *onerel;
/* Make sure we don't return dangling pointers in vardata */ /* Make sure we don't return dangling pointers in vardata */
MemSet(vardata, 0, sizeof(VariableStatData)); MemSet(vardata, 0, sizeof(VariableStatData));
/* Ignore any binary-compatible relabeling */ /* Look inside any binary-compatible relabeling */
if (IsA(node, RelabelType)) if (IsA(node, RelabelType))
node = (Node *) ((RelabelType *) node)->arg; basenode = (Node *) ((RelabelType *) node)->arg;
else
vardata->var = node; basenode = node;
/* Fast path for a simple Var */ /* Fast path for a simple Var */
if (IsA(node, Var) && if (IsA(basenode, Var) &&
(varRelid == 0 || varRelid == ((Var *) node)->varno)) (varRelid == 0 || varRelid == ((Var *) basenode)->varno))
{ {
Var *var = (Var *) node; Var *var = (Var *) basenode;
Oid relid; Oid relid;
vardata->var = basenode; /* return Var without relabeling */
vardata->rel = find_base_rel(root, var->varno); vardata->rel = find_base_rel(root, var->varno);
vardata->atttype = var->vartype; vardata->atttype = var->vartype;
vardata->atttypmod = var->vartypmod; vardata->atttypmod = var->vartypmod;
@ -3009,7 +3014,7 @@ examine_variable(Query *root, Node *node, int varRelid,
* membership. Note that when varRelid isn't zero, only vars of that * membership. Note that when varRelid isn't zero, only vars of that
* relation are considered "real" vars. * relation are considered "real" vars.
*/ */
varnos = pull_varnos(node); varnos = pull_varnos(basenode);
onerel = NULL; onerel = NULL;
@ -3024,6 +3029,7 @@ examine_variable(Query *root, Node *node, int varRelid,
onerel = find_base_rel(root, onerel = find_base_rel(root,
(varRelid ? varRelid : bms_singleton_member(varnos))); (varRelid ? varRelid : bms_singleton_member(varnos)));
vardata->rel = onerel; vardata->rel = onerel;
node = basenode; /* strip any relabeling */
} }
/* else treat it as a constant */ /* else treat it as a constant */
break; break;
@ -3032,11 +3038,13 @@ examine_variable(Query *root, Node *node, int varRelid,
{ {
/* treat it as a variable of a join relation */ /* treat it as a variable of a join relation */
vardata->rel = find_join_rel(root, varnos); vardata->rel = find_join_rel(root, varnos);
node = basenode; /* strip any relabeling */
} }
else if (bms_is_member(varRelid, varnos)) else if (bms_is_member(varRelid, varnos))
{ {
/* ignore the vars belonging to other relations */ /* ignore the vars belonging to other relations */
vardata->rel = find_base_rel(root, varRelid); vardata->rel = find_base_rel(root, varRelid);
node = basenode; /* strip any relabeling */
/* note: no point in expressional-index search here */ /* note: no point in expressional-index search here */
} }
/* else treat it as a constant */ /* else treat it as a constant */
@ -3045,6 +3053,7 @@ examine_variable(Query *root, Node *node, int varRelid,
bms_free(varnos); bms_free(varnos);
vardata->var = node;
vardata->atttype = exprType(node); vardata->atttype = exprType(node);
vardata->atttypmod = exprTypmod(node); vardata->atttypmod = exprTypmod(node);