mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-12 18:34:36 +08:00
Add levenshtein_less_equal, optimized version for small distances.
Alexander Korotkov, heavily revised by me.
This commit is contained in:
parent
262c1a42dc
commit
604ab08145
@ -9,15 +9,6 @@
|
||||
* Copyright (c) 2001-2010, PostgreSQL Global Development Group
|
||||
* ALL RIGHTS RESERVED;
|
||||
*
|
||||
* levenshtein()
|
||||
* -------------
|
||||
* Written based on a description of the algorithm by Michael Gilleland
|
||||
* found at http://www.merriampark.com/ld.htm
|
||||
* Also looked at levenshtein.c in the PHP 4.0.6 distribution for
|
||||
* inspiration.
|
||||
* Configurable penalty costs extension is introduced by Volkan
|
||||
* YAZICI <volkan.yazici@gmail.com>.
|
||||
*
|
||||
* metaphone()
|
||||
* -----------
|
||||
* Modified for PostgreSQL by Joe Conway.
|
||||
@ -61,6 +52,8 @@ PG_MODULE_MAGIC;
|
||||
*/
|
||||
extern Datum levenshtein_with_costs(PG_FUNCTION_ARGS);
|
||||
extern Datum levenshtein(PG_FUNCTION_ARGS);
|
||||
extern Datum levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS);
|
||||
extern Datum levenshtein_less_equal(PG_FUNCTION_ARGS);
|
||||
extern Datum metaphone(PG_FUNCTION_ARGS);
|
||||
extern Datum soundex(PG_FUNCTION_ARGS);
|
||||
extern Datum difference(PG_FUNCTION_ARGS);
|
||||
@ -85,16 +78,6 @@ soundex_code(char letter)
|
||||
return letter;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Levenshtein
|
||||
*/
|
||||
#define MAX_LEVENSHTEIN_STRLEN 255
|
||||
|
||||
static int levenshtein_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c);
|
||||
|
||||
|
||||
/*
|
||||
* Metaphone
|
||||
*/
|
||||
@ -197,201 +180,9 @@ rest_of_char_same(const char *s1, const char *s2, int len)
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* levenshtein_internal - Calculates Levenshtein distance metric
|
||||
* between supplied strings. Generally
|
||||
* (1, 1, 1) penalty costs suffices common
|
||||
* cases, but your mileage may vary.
|
||||
*/
|
||||
static int
|
||||
levenshtein_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c)
|
||||
{
|
||||
int m,
|
||||
n,
|
||||
s_bytes,
|
||||
t_bytes;
|
||||
int *prev;
|
||||
int *curr;
|
||||
int *s_char_len = NULL;
|
||||
int i,
|
||||
j;
|
||||
const char *s_data;
|
||||
const char *t_data;
|
||||
const char *y;
|
||||
|
||||
/* Extract a pointer to the actual character data. */
|
||||
s_data = VARDATA_ANY(s);
|
||||
t_data = VARDATA_ANY(t);
|
||||
|
||||
/* Determine length of each string in bytes and characters. */
|
||||
s_bytes = VARSIZE_ANY_EXHDR(s);
|
||||
t_bytes = VARSIZE_ANY_EXHDR(t);
|
||||
m = pg_mbstrlen_with_len(s_data, s_bytes);
|
||||
n = pg_mbstrlen_with_len(t_data, t_bytes);
|
||||
|
||||
/*
|
||||
* We can transform an empty s into t with n insertions, or a non-empty t
|
||||
* into an empty s with m deletions.
|
||||
*/
|
||||
if (!m)
|
||||
return n * ins_c;
|
||||
if (!n)
|
||||
return m * del_c;
|
||||
|
||||
/*
|
||||
* For security concerns, restrict excessive CPU+RAM usage. (This
|
||||
* implementation uses O(m) memory and has O(mn) complexity.)
|
||||
*/
|
||||
if (m > MAX_LEVENSHTEIN_STRLEN ||
|
||||
n > MAX_LEVENSHTEIN_STRLEN)
|
||||
ereport(ERROR,
|
||||
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
||||
errmsg("argument exceeds the maximum length of %d bytes",
|
||||
MAX_LEVENSHTEIN_STRLEN)));
|
||||
|
||||
/*
|
||||
* In order to avoid calling pg_mblen() repeatedly on each character in s,
|
||||
* we cache all the lengths before starting the main loop -- but if all the
|
||||
* characters in both strings are single byte, then we skip this and use
|
||||
* a fast-path in the main loop. If only one string contains multi-byte
|
||||
* characters, we still build the array, so that the fast-path needn't
|
||||
* deal with the case where the array hasn't been initialized.
|
||||
*/
|
||||
if (m != s_bytes || n != t_bytes)
|
||||
{
|
||||
int i;
|
||||
const char *cp = s_data;
|
||||
|
||||
s_char_len = (int *) palloc((m + 1) * sizeof(int));
|
||||
for (i = 0; i < m; ++i)
|
||||
{
|
||||
s_char_len[i] = pg_mblen(cp);
|
||||
cp += s_char_len[i];
|
||||
}
|
||||
s_char_len[i] = 0;
|
||||
}
|
||||
|
||||
/* One more cell for initialization column and row. */
|
||||
++m;
|
||||
++n;
|
||||
|
||||
/*
|
||||
* One way to compute Levenshtein distance is to incrementally construct
|
||||
* an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number
|
||||
* of operations required to transform the first i characters of s into
|
||||
* the first j characters of t. The last column of the final row is the
|
||||
* answer.
|
||||
*
|
||||
* We use that algorithm here with some modification. In lieu of holding
|
||||
* the entire array in memory at once, we'll just use two arrays of size
|
||||
* m+1 for storing accumulated values. At each step one array represents
|
||||
* the "previous" row and one is the "current" row of the notional large
|
||||
* array.
|
||||
*/
|
||||
prev = (int *) palloc(2 * m * sizeof(int));
|
||||
curr = prev + m;
|
||||
|
||||
/*
|
||||
* To transform the first i characters of s into the first 0 characters
|
||||
* of t, we must perform i deletions.
|
||||
*/
|
||||
for (i = 0; i < m; i++)
|
||||
prev[i] = i * del_c;
|
||||
|
||||
/* Loop through rows of the notional array */
|
||||
for (y = t_data, j = 1; j < n; j++)
|
||||
{
|
||||
int *temp;
|
||||
const char *x = s_data;
|
||||
int y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1;
|
||||
|
||||
/*
|
||||
* To transform the first 0 characters of s into the first j
|
||||
* characters of t, we must perform j insertions.
|
||||
*/
|
||||
curr[0] = j * ins_c;
|
||||
|
||||
/*
|
||||
* This inner loop is critical to performance, so we include a
|
||||
* fast-path to handle the (fairly common) case where no multibyte
|
||||
* characters are in the mix. The fast-path is entitled to assume
|
||||
* that if s_char_len is not initialized then BOTH strings contain
|
||||
* only single-byte characters.
|
||||
*/
|
||||
if (s_char_len != NULL)
|
||||
{
|
||||
for (i = 1; i < m; i++)
|
||||
{
|
||||
int ins;
|
||||
int del;
|
||||
int sub;
|
||||
int x_char_len = s_char_len[i - 1];
|
||||
|
||||
/*
|
||||
* Calculate costs for insertion, deletion, and substitution.
|
||||
*
|
||||
* When calculating cost for substitution, we compare the last
|
||||
* character of each possibly-multibyte character first,
|
||||
* because that's enough to rule out most mis-matches. If we
|
||||
* get past that test, then we compare the lengths and the
|
||||
* remaining bytes.
|
||||
*/
|
||||
ins = prev[i] + ins_c;
|
||||
del = curr[i - 1] + del_c;
|
||||
if (x[x_char_len-1] == y[y_char_len-1]
|
||||
&& x_char_len == y_char_len &&
|
||||
(x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
|
||||
sub = prev[i - 1];
|
||||
else
|
||||
sub = prev[i - 1] + sub_c;
|
||||
|
||||
/* Take the one with minimum cost. */
|
||||
curr[i] = Min(ins, del);
|
||||
curr[i] = Min(curr[i], sub);
|
||||
|
||||
/* Point to next character. */
|
||||
x += x_char_len;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = 1; i < m; i++)
|
||||
{
|
||||
int ins;
|
||||
int del;
|
||||
int sub;
|
||||
|
||||
/* Calculate costs for insertion, deletion, and substitution. */
|
||||
ins = prev[i] + ins_c;
|
||||
del = curr[i - 1] + del_c;
|
||||
sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
|
||||
|
||||
/* Take the one with minimum cost. */
|
||||
curr[i] = Min(ins, del);
|
||||
curr[i] = Min(curr[i], sub);
|
||||
|
||||
/* Point to next character. */
|
||||
x++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Swap current row with previous row. */
|
||||
temp = curr;
|
||||
curr = prev;
|
||||
prev = temp;
|
||||
|
||||
/* Point to next character. */
|
||||
y += y_char_len;
|
||||
}
|
||||
|
||||
/*
|
||||
* Because the final value was swapped from the previous row to the
|
||||
* current row, that's where we'll find it.
|
||||
*/
|
||||
return prev[m - 1];
|
||||
}
|
||||
|
||||
#include "levenshtein.c"
|
||||
#define LEVENSHTEIN_LESS_EQUAL
|
||||
#include "levenshtein.c"
|
||||
|
||||
PG_FUNCTION_INFO_V1(levenshtein_with_costs);
|
||||
Datum
|
||||
@ -418,6 +209,33 @@ levenshtein(PG_FUNCTION_ARGS)
|
||||
}
|
||||
|
||||
|
||||
PG_FUNCTION_INFO_V1(levenshtein_less_equal_with_costs);
|
||||
Datum
|
||||
levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS)
|
||||
{
|
||||
text *src = PG_GETARG_TEXT_PP(0);
|
||||
text *dst = PG_GETARG_TEXT_PP(1);
|
||||
int ins_c = PG_GETARG_INT32(2);
|
||||
int del_c = PG_GETARG_INT32(3);
|
||||
int sub_c = PG_GETARG_INT32(4);
|
||||
int max_d = PG_GETARG_INT32(5);
|
||||
|
||||
PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, ins_c, del_c, sub_c, max_d));
|
||||
}
|
||||
|
||||
|
||||
PG_FUNCTION_INFO_V1(levenshtein_less_equal);
|
||||
Datum
|
||||
levenshtein_less_equal(PG_FUNCTION_ARGS)
|
||||
{
|
||||
text *src = PG_GETARG_TEXT_PP(0);
|
||||
text *dst = PG_GETARG_TEXT_PP(1);
|
||||
int max_d = PG_GETARG_INT32(2);
|
||||
|
||||
PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, 1, 1, 1, max_d));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Calculates the metaphone of an input string.
|
||||
* Returns number of characters requested
|
||||
|
@ -11,6 +11,14 @@ CREATE OR REPLACE FUNCTION levenshtein (text,text,int,int,int) RETURNS int
|
||||
AS 'MODULE_PATHNAME','levenshtein_with_costs'
|
||||
LANGUAGE C IMMUTABLE STRICT;
|
||||
|
||||
CREATE OR REPLACE FUNCTION levenshtein_less_equal (text,text,int) RETURNS int
|
||||
AS 'MODULE_PATHNAME','levenshtein_less_equal'
|
||||
LANGUAGE C IMMUTABLE STRICT;
|
||||
|
||||
CREATE OR REPLACE FUNCTION levenshtein_less_equal (text,text,int,int,int,int) RETURNS int
|
||||
AS 'MODULE_PATHNAME','levenshtein_less_equal_with_costs'
|
||||
LANGUAGE C IMMUTABLE STRICT;
|
||||
|
||||
CREATE OR REPLACE FUNCTION metaphone (text,int) RETURNS text
|
||||
AS 'MODULE_PATHNAME','metaphone'
|
||||
LANGUAGE C IMMUTABLE STRICT;
|
||||
|
397
contrib/fuzzystrmatch/levenshtein.c
Normal file
397
contrib/fuzzystrmatch/levenshtein.c
Normal file
@ -0,0 +1,397 @@
|
||||
/*
|
||||
* levenshtein.c
|
||||
*
|
||||
* Functions for "fuzzy" comparison of strings
|
||||
*
|
||||
* Joe Conway <mail@joeconway.com>
|
||||
*
|
||||
* contrib/fuzzystrmatch/fuzzystrmatch.c
|
||||
* Copyright (c) 2001-2010, PostgreSQL Global Development Group
|
||||
* ALL RIGHTS RESERVED;
|
||||
*
|
||||
* levenshtein()
|
||||
* -------------
|
||||
* Written based on a description of the algorithm by Michael Gilleland
|
||||
* found at http://www.merriampark.com/ld.htm
|
||||
* Also looked at levenshtein.c in the PHP 4.0.6 distribution for
|
||||
* inspiration.
|
||||
* Configurable penalty costs extension is introduced by Volkan
|
||||
* YAZICI <volkan.yazici@gmail.com>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* External declarations for exported functions
|
||||
*/
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
static int levenshtein_less_equal_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c, int max_d);
|
||||
#else
|
||||
static int levenshtein_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c);
|
||||
#endif
|
||||
|
||||
#define MAX_LEVENSHTEIN_STRLEN 255
|
||||
|
||||
|
||||
/*
|
||||
* Calculates Levenshtein distance metric between supplied strings. Generally
|
||||
* (1, 1, 1) penalty costs suffices for common cases, but your mileage may
|
||||
* vary.
|
||||
*
|
||||
* One way to compute Levenshtein distance is to incrementally construct
|
||||
* an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number
|
||||
* of operations required to transform the first i characters of s into
|
||||
* the first j characters of t. The last column of the final row is the
|
||||
* answer.
|
||||
*
|
||||
* We use that algorithm here with some modification. In lieu of holding
|
||||
* the entire array in memory at once, we'll just use two arrays of size
|
||||
* m+1 for storing accumulated values. At each step one array represents
|
||||
* the "previous" row and one is the "current" row of the notional large
|
||||
* array.
|
||||
*
|
||||
* If max_d >= 0, we only need to provide an accurate answer when that answer
|
||||
* is less than or equal to the bound. From any cell in the matrix, there is
|
||||
* theoretical "minimum residual distance" from that cell to the last column
|
||||
* of the final row. This minimum residual distance is zero when the
|
||||
* untransformed portions of the strings are of equal length (because we might
|
||||
* get lucky and find all the remaining characters matching) and is otherwise
|
||||
* based on the minimum number of insertions or deletions needed to make them
|
||||
* equal length. The residual distance grows as we move toward the upper
|
||||
* right or lower left corners of the matrix. When the max_d bound is
|
||||
* usefully tight, we can use this property to avoid computing the entirety
|
||||
* of each row; instead, we maintain a start_column and stop_column that
|
||||
* identify the portion of the matrix close to the diagonal which can still
|
||||
* affect the final answer.
|
||||
*/
|
||||
static int
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
levenshtein_less_equal_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c, int max_d)
|
||||
#else
|
||||
levenshtein_internal(text *s, text *t,
|
||||
int ins_c, int del_c, int sub_c)
|
||||
#endif
|
||||
{
|
||||
int m,
|
||||
n,
|
||||
s_bytes,
|
||||
t_bytes;
|
||||
int *prev;
|
||||
int *curr;
|
||||
int *s_char_len = NULL;
|
||||
int i,
|
||||
j;
|
||||
const char *s_data;
|
||||
const char *t_data;
|
||||
const char *y;
|
||||
|
||||
/*
|
||||
* For levenshtein_less_equal_internal, we have real variables called
|
||||
* start_column and stop_column; otherwise it's just short-hand for 0
|
||||
* and m.
|
||||
*/
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
int start_column, stop_column;
|
||||
#undef START_COLUMN
|
||||
#undef STOP_COLUMN
|
||||
#define START_COLUMN start_column
|
||||
#define STOP_COLUMN stop_column
|
||||
#else
|
||||
#undef START_COLUMN
|
||||
#undef STOP_COLUMN
|
||||
#define START_COLUMN 0
|
||||
#define STOP_COLUMN m
|
||||
#endif
|
||||
|
||||
/* Extract a pointer to the actual character data. */
|
||||
s_data = VARDATA_ANY(s);
|
||||
t_data = VARDATA_ANY(t);
|
||||
|
||||
/* Determine length of each string in bytes and characters. */
|
||||
s_bytes = VARSIZE_ANY_EXHDR(s);
|
||||
t_bytes = VARSIZE_ANY_EXHDR(t);
|
||||
m = pg_mbstrlen_with_len(s_data, s_bytes);
|
||||
n = pg_mbstrlen_with_len(t_data, t_bytes);
|
||||
|
||||
/*
|
||||
* We can transform an empty s into t with n insertions, or a non-empty t
|
||||
* into an empty s with m deletions.
|
||||
*/
|
||||
if (!m)
|
||||
return n * ins_c;
|
||||
if (!n)
|
||||
return m * del_c;
|
||||
|
||||
/*
|
||||
* For security concerns, restrict excessive CPU+RAM usage. (This
|
||||
* implementation uses O(m) memory and has O(mn) complexity.)
|
||||
*/
|
||||
if (m > MAX_LEVENSHTEIN_STRLEN ||
|
||||
n > MAX_LEVENSHTEIN_STRLEN)
|
||||
ereport(ERROR,
|
||||
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
||||
errmsg("argument exceeds the maximum length of %d bytes",
|
||||
MAX_LEVENSHTEIN_STRLEN)));
|
||||
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
/* Initialize start and stop columns. */
|
||||
start_column = 0;
|
||||
stop_column = m + 1;
|
||||
|
||||
/*
|
||||
* If max_d >= 0, determine whether the bound is impossibly tight. If so,
|
||||
* return max_d + 1 immediately. Otherwise, determine whether it's tight
|
||||
* enough to limit the computation we must perform. If so, figure out
|
||||
* initial stop column.
|
||||
*/
|
||||
if (max_d >= 0)
|
||||
{
|
||||
int min_theo_d; /* Theoretical minimum distance. */
|
||||
int max_theo_d; /* Theoretical maximum distance. */
|
||||
int net_inserts = n - m;
|
||||
|
||||
min_theo_d = net_inserts < 0 ?
|
||||
-net_inserts * del_c : net_inserts * ins_c;
|
||||
if (min_theo_d > max_d)
|
||||
return max_d + 1;
|
||||
if (ins_c + del_c < sub_c)
|
||||
sub_c = ins_c + del_c;
|
||||
max_theo_d = min_theo_d + sub_c * Min(m, n);
|
||||
if (max_d >= max_theo_d)
|
||||
max_d = -1;
|
||||
else if (ins_c + del_c > 0)
|
||||
{
|
||||
/*
|
||||
* Figure out how much of the first row of the notional matrix
|
||||
* we need to fill in. If the string is growing, the theoretical
|
||||
* minimum distance already incorporates the cost of deleting the
|
||||
* number of characters necessary to make the two strings equal
|
||||
* in length. Each additional deletion forces another insertion,
|
||||
* so the best-case total cost increases by ins_c + del_c.
|
||||
* If the string is shrinking, the minimum theoretical cost
|
||||
* assumes no excess deletions; that is, we're starting no futher
|
||||
* right than column n - m. If we do start further right, the
|
||||
* best-case total cost increases by ins_c + del_c for each move
|
||||
* right.
|
||||
*/
|
||||
int slack_d = max_d - min_theo_d;
|
||||
int best_column = net_inserts < 0 ? -net_inserts : 0;
|
||||
stop_column = best_column + (slack_d / (ins_c + del_c)) + 1;
|
||||
if (stop_column > m)
|
||||
stop_column = m + 1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* In order to avoid calling pg_mblen() repeatedly on each character in s,
|
||||
* we cache all the lengths before starting the main loop -- but if all the
|
||||
* characters in both strings are single byte, then we skip this and use
|
||||
* a fast-path in the main loop. If only one string contains multi-byte
|
||||
* characters, we still build the array, so that the fast-path needn't
|
||||
* deal with the case where the array hasn't been initialized.
|
||||
*/
|
||||
if (m != s_bytes || n != t_bytes)
|
||||
{
|
||||
int i;
|
||||
const char *cp = s_data;
|
||||
|
||||
s_char_len = (int *) palloc((m + 1) * sizeof(int));
|
||||
for (i = 0; i < m; ++i)
|
||||
{
|
||||
s_char_len[i] = pg_mblen(cp);
|
||||
cp += s_char_len[i];
|
||||
}
|
||||
s_char_len[i] = 0;
|
||||
}
|
||||
|
||||
/* One more cell for initialization column and row. */
|
||||
++m;
|
||||
++n;
|
||||
|
||||
/* Previous and current rows of notional array. */
|
||||
prev = (int *) palloc(2 * m * sizeof(int));
|
||||
curr = prev + m;
|
||||
|
||||
/*
|
||||
* To transform the first i characters of s into the first 0 characters
|
||||
* of t, we must perform i deletions.
|
||||
*/
|
||||
for (i = START_COLUMN; i < STOP_COLUMN; i++)
|
||||
prev[i] = i * del_c;
|
||||
|
||||
/* Loop through rows of the notional array */
|
||||
for (y = t_data, j = 1; j < n; j++)
|
||||
{
|
||||
int *temp;
|
||||
const char *x = s_data;
|
||||
int y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1;
|
||||
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
/*
|
||||
* In the best case, values percolate down the diagonal unchanged, so
|
||||
* we must increment stop_column unless it's already on the right end
|
||||
* of the array. The inner loop will read prev[stop_column], so we
|
||||
* have to initialize it even though it shouldn't affect the result.
|
||||
*/
|
||||
if (stop_column < m)
|
||||
{
|
||||
prev[stop_column] = max_d + 1;
|
||||
++stop_column;
|
||||
}
|
||||
|
||||
/*
|
||||
* The main loop fills in curr, but curr[0] needs a special case:
|
||||
* to transform the first 0 characters of s into the first j
|
||||
* characters of t, we must perform j insertions. However, if
|
||||
* start_column > 0, this special case does not apply.
|
||||
*/
|
||||
if (start_column == 0)
|
||||
{
|
||||
curr[0] = j * ins_c;
|
||||
i = 1;
|
||||
}
|
||||
else
|
||||
i = start_column;
|
||||
#else
|
||||
curr[0] = j * ins_c;
|
||||
i = 1;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This inner loop is critical to performance, so we include a
|
||||
* fast-path to handle the (fairly common) case where no multibyte
|
||||
* characters are in the mix. The fast-path is entitled to assume
|
||||
* that if s_char_len is not initialized then BOTH strings contain
|
||||
* only single-byte characters.
|
||||
*/
|
||||
if (s_char_len != NULL)
|
||||
{
|
||||
for (; i < STOP_COLUMN; i++)
|
||||
{
|
||||
int ins;
|
||||
int del;
|
||||
int sub;
|
||||
int x_char_len = s_char_len[i - 1];
|
||||
|
||||
/*
|
||||
* Calculate costs for insertion, deletion, and substitution.
|
||||
*
|
||||
* When calculating cost for substitution, we compare the last
|
||||
* character of each possibly-multibyte character first,
|
||||
* because that's enough to rule out most mis-matches. If we
|
||||
* get past that test, then we compare the lengths and the
|
||||
* remaining bytes.
|
||||
*/
|
||||
ins = prev[i] + ins_c;
|
||||
del = curr[i - 1] + del_c;
|
||||
if (x[x_char_len-1] == y[y_char_len-1]
|
||||
&& x_char_len == y_char_len &&
|
||||
(x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
|
||||
sub = prev[i - 1];
|
||||
else
|
||||
sub = prev[i - 1] + sub_c;
|
||||
|
||||
/* Take the one with minimum cost. */
|
||||
curr[i] = Min(ins, del);
|
||||
curr[i] = Min(curr[i], sub);
|
||||
|
||||
/* Point to next character. */
|
||||
x += x_char_len;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (; i < STOP_COLUMN; i++)
|
||||
{
|
||||
int ins;
|
||||
int del;
|
||||
int sub;
|
||||
|
||||
/* Calculate costs for insertion, deletion, and substitution. */
|
||||
ins = prev[i] + ins_c;
|
||||
del = curr[i - 1] + del_c;
|
||||
sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
|
||||
|
||||
/* Take the one with minimum cost. */
|
||||
curr[i] = Min(ins, del);
|
||||
curr[i] = Min(curr[i], sub);
|
||||
|
||||
/* Point to next character. */
|
||||
x++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Swap current row with previous row. */
|
||||
temp = curr;
|
||||
curr = prev;
|
||||
prev = temp;
|
||||
|
||||
/* Point to next character. */
|
||||
y += y_char_len;
|
||||
|
||||
#ifdef LEVENSHTEIN_LESS_EQUAL
|
||||
/*
|
||||
* This chunk of code represents a significant performance hit if used
|
||||
* in the case where there is no max_d bound. This is probably not
|
||||
* because the max_d >= 0 test itself is expensive, but rather because
|
||||
* the possibility of needing to execute this code prevents tight
|
||||
* optimization of the loop as a whole.
|
||||
*/
|
||||
if (max_d >= 0)
|
||||
{
|
||||
/*
|
||||
* The "zero point" is the column of the current row where the
|
||||
* remaining portions of the strings are of equal length. There
|
||||
* are (n - 1) characters in the target string, of which j have
|
||||
* been transformed. There are (m - 1) characters in the source
|
||||
* string, so we want to find the value for zp where where (n - 1)
|
||||
* - j = (m - 1) - zp.
|
||||
*/
|
||||
int zp = j - (n - m);
|
||||
|
||||
/* Check whether the stop column can slide left. */
|
||||
while (stop_column > 0)
|
||||
{
|
||||
int ii = stop_column - 1;
|
||||
int net_inserts = ii - zp;
|
||||
if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c :
|
||||
-net_inserts * del_c) <= max_d)
|
||||
break;
|
||||
stop_column--;
|
||||
}
|
||||
|
||||
/* Check whether the start column can slide right. */
|
||||
while (start_column < stop_column)
|
||||
{
|
||||
int net_inserts = start_column - zp;
|
||||
if (prev[start_column] +
|
||||
(net_inserts > 0 ? net_inserts * ins_c :
|
||||
-net_inserts * del_c) <= max_d)
|
||||
break;
|
||||
/*
|
||||
* We'll never again update these values, so we must make
|
||||
* sure there's nothing here that could confuse any future
|
||||
* iteration of the outer loop.
|
||||
*/
|
||||
prev[start_column] = max_d + 1;
|
||||
curr[start_column] = max_d + 1;
|
||||
if (start_column != 0)
|
||||
s_data += n != t_bytes + 1 ? pg_mblen(s_data) : 1;
|
||||
start_column++;
|
||||
}
|
||||
|
||||
/* If they cross, we're going to exceed the bound. */
|
||||
if (start_column >= stop_column)
|
||||
return max_d + 1;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Because the final value was swapped from the previous row to the
|
||||
* current row, that's where we'll find it.
|
||||
*/
|
||||
return prev[m - 1];
|
||||
}
|
@ -18,3 +18,7 @@ DROP FUNCTION metaphone (text,int);
|
||||
DROP FUNCTION levenshtein (text,text,int,int,int);
|
||||
|
||||
DROP FUNCTION levenshtein (text,text);
|
||||
|
||||
DROP FUNCTION levenshtein_less_equal (text,text,int);
|
||||
|
||||
DROP FUNCTION levenshtein_less_equal (text,text,int,int,int,int);
|
||||
|
@ -84,6 +84,8 @@ SELECT * FROM s WHERE difference(s.nm, 'john') > 2;
|
||||
<synopsis>
|
||||
levenshtein(text source, text target, int ins_cost, int del_cost, int sub_cost) returns int
|
||||
levenshtein(text source, text target) returns int
|
||||
levenshtein_less_equal(text source, text target, int ins_cost, int del_cost, int sub_cost, int max_d) returns int
|
||||
levenshtein_less_equal(text source, text target, int max_d) returns int
|
||||
</synopsis>
|
||||
|
||||
<para>
|
||||
@ -92,6 +94,11 @@ levenshtein(text source, text target) returns int
|
||||
specify how much to charge for a character insertion, deletion, or
|
||||
substitution, respectively. You can omit the cost parameters, as in
|
||||
the second version of the function; in that case they all default to 1.
|
||||
<literal>levenshtein_less_equal</literal> is accelerated version of
|
||||
levenshtein functon for low values of distance. If actual distance
|
||||
is less or equal then max_d, then <literal>levenshtein_less_equal</literal>
|
||||
returns accurate value of it. Otherwise this function returns value
|
||||
which is greater than max_d.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
@ -110,6 +117,18 @@ test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2,1,1);
|
||||
-------------
|
||||
3
|
||||
(1 row)
|
||||
|
||||
test=# SELECT levenshtein_less_equal('extensive', 'exhaustive',2);
|
||||
levenshtein_less_equal
|
||||
------------------------
|
||||
3
|
||||
(1 row)
|
||||
|
||||
test=# SELECT levenshtein_less_equal('extensive', 'exhaustive',4);
|
||||
levenshtein_less_equal
|
||||
------------------------
|
||||
4
|
||||
(1 row)
|
||||
</screen>
|
||||
</sect2>
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user