mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-12 18:34:36 +08:00
Add cost estimation of range @> and <@ operators.
The estimates are based on the existing lower bound histogram, and a new histogram of range lengths. Bump catversion, because the range length histogram now needs to be present in statistic slot kind 6, or you get an error on @> and <@ queries. (A re-ANALYZE would be enough to fix that, though) Alexander Korotkov, with some refactoring by me.
This commit is contained in:
parent
788bce13d3
commit
59d0bf9dca
@ -20,6 +20,7 @@
|
||||
#include "access/htup_details.h"
|
||||
#include "catalog/pg_operator.h"
|
||||
#include "catalog/pg_statistic.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/lsyscache.h"
|
||||
#include "utils/rangetypes.h"
|
||||
#include "utils/selfuncs.h"
|
||||
@ -39,6 +40,21 @@ static int rbound_bsearch(TypeCacheEntry *typcache, RangeBound *value,
|
||||
RangeBound *hist, int hist_length, bool equal);
|
||||
static float8 get_position(TypeCacheEntry *typcache, RangeBound *value,
|
||||
RangeBound *hist1, RangeBound *hist2);
|
||||
static float8 get_len_position(double value, double hist1, double hist2);
|
||||
static float8 get_distance(TypeCacheEntry *typcache, RangeBound *bound1,
|
||||
RangeBound *bound2);
|
||||
static int length_hist_bsearch(Datum *length_hist_values,
|
||||
int length_hist_nvalues, double value, bool equal);
|
||||
static double calc_length_hist_frac(Datum *length_hist_values,
|
||||
int length_hist_nvalues, double length1, double length2, bool equal);
|
||||
static double calc_hist_selectivity_contained(TypeCacheEntry *typcache,
|
||||
RangeBound *lower, RangeBound *upper,
|
||||
RangeBound *hist_lower, int hist_nvalues,
|
||||
Datum *length_hist_values, int length_hist_nvalues);
|
||||
static double calc_hist_selectivity_contains(TypeCacheEntry *typcache,
|
||||
RangeBound *lower, RangeBound *upper,
|
||||
RangeBound *hist_lower, int hist_nvalues,
|
||||
Datum *length_hist_values, int length_hist_nvalues);
|
||||
|
||||
/*
|
||||
* Returns a default selectivity estimate for given operator, when we don't
|
||||
@ -213,7 +229,7 @@ calc_rangesel(TypeCacheEntry *typcache, VariableStatData *vardata,
|
||||
/* Try to get fraction of empty ranges */
|
||||
if (get_attstatsslot(vardata->statsTuple,
|
||||
vardata->atttype, vardata->atttypmod,
|
||||
STATISTIC_KIND_RANGE_EMPTY_FRAC, InvalidOid,
|
||||
STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM, InvalidOid,
|
||||
NULL,
|
||||
NULL, NULL,
|
||||
&numbers, &nnumbers))
|
||||
@ -332,6 +348,8 @@ calc_hist_selectivity(TypeCacheEntry *typcache, VariableStatData *vardata,
|
||||
{
|
||||
Datum *hist_values;
|
||||
int nhist;
|
||||
Datum *length_hist_values;
|
||||
int length_nhist;
|
||||
RangeBound *hist_lower;
|
||||
RangeBound *hist_upper;
|
||||
int i;
|
||||
@ -365,6 +383,25 @@ calc_hist_selectivity(TypeCacheEntry *typcache, VariableStatData *vardata,
|
||||
elog(ERROR, "bounds histogram contains an empty range");
|
||||
}
|
||||
|
||||
/* @> and @< also need a histogram of range lengths */
|
||||
if (operator == OID_RANGE_CONTAINS_OP ||
|
||||
operator == OID_RANGE_CONTAINED_OP)
|
||||
{
|
||||
if (!(HeapTupleIsValid(vardata->statsTuple) &&
|
||||
get_attstatsslot(vardata->statsTuple,
|
||||
vardata->atttype, vardata->atttypmod,
|
||||
STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM,
|
||||
InvalidOid,
|
||||
NULL,
|
||||
&length_hist_values, &length_nhist,
|
||||
NULL, NULL)))
|
||||
return -1.0;
|
||||
|
||||
/* check that it's a histogram, not just a dummy entry */
|
||||
if (length_nhist < 2)
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
/* Extract the bounds of the constant value. */
|
||||
range_deserialize(typcache, constval, &const_lower, &const_upper, &empty);
|
||||
Assert (!empty);
|
||||
@ -440,6 +477,9 @@ calc_hist_selectivity(TypeCacheEntry *typcache, VariableStatData *vardata,
|
||||
/*
|
||||
* A && B <=> NOT (A << B OR A >> B).
|
||||
*
|
||||
* Since A << B and A >> B are mutually exclusive events we can sum
|
||||
* their probabilities to find probability of (A << B OR A >> B).
|
||||
*
|
||||
* "range @> elem" is equivalent to "range && [elem,elem]". The
|
||||
* caller already constructed the singular range from the element
|
||||
* constant, so just treat it the same as &&.
|
||||
@ -454,9 +494,36 @@ calc_hist_selectivity(TypeCacheEntry *typcache, VariableStatData *vardata,
|
||||
break;
|
||||
|
||||
case OID_RANGE_CONTAINS_OP:
|
||||
hist_selec =
|
||||
calc_hist_selectivity_contains(typcache, &const_lower,
|
||||
&const_upper, hist_lower, nhist,
|
||||
length_hist_values, length_nhist);
|
||||
break;
|
||||
|
||||
case OID_RANGE_CONTAINED_OP:
|
||||
/* TODO: not implemented yet */
|
||||
hist_selec = -1.0;
|
||||
if (const_lower.infinite)
|
||||
{
|
||||
/*
|
||||
* Lower bound no longer matters. Just estimate the fraction
|
||||
* with an upper bound <= const uppert bound
|
||||
*/
|
||||
hist_selec =
|
||||
calc_hist_selectivity_scalar(typcache, &const_upper,
|
||||
hist_upper, nhist, true);
|
||||
}
|
||||
else if (const_upper.infinite)
|
||||
{
|
||||
hist_selec =
|
||||
1.0 - calc_hist_selectivity_scalar(typcache, &const_lower,
|
||||
hist_lower, nhist, false);
|
||||
}
|
||||
else
|
||||
{
|
||||
hist_selec =
|
||||
calc_hist_selectivity_contained(typcache, &const_lower,
|
||||
&const_upper, hist_lower, nhist,
|
||||
length_hist_values, length_nhist);
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -497,8 +564,13 @@ calc_hist_selectivity_scalar(TypeCacheEntry *typcache, RangeBound *constbound,
|
||||
|
||||
/*
|
||||
* Binary search on an array of range bounds. Returns greatest index of range
|
||||
* bound in array which is less than given range bound. If all range bounds in
|
||||
* array are greater or equal than given range bound, return -1.
|
||||
* bound in array which is less(less or equal) than given range bound. If all
|
||||
* range bounds in array are greater or equal(greater) than given range bound,
|
||||
* return -1. When "equal" flag is set conditions in brackets are used.
|
||||
*
|
||||
* This function is used in scalar operators selectivity estimation. Another
|
||||
* goal of this function is to found an histogram bin where to stop
|
||||
* interpolation of portion of bounds which are less or equal to given bound.
|
||||
*/
|
||||
static int
|
||||
rbound_bsearch(TypeCacheEntry *typcache, RangeBound *value, RangeBound *hist,
|
||||
@ -522,6 +594,36 @@ rbound_bsearch(TypeCacheEntry *typcache, RangeBound *value, RangeBound *hist,
|
||||
return lower;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Binary search on length histogram. Returns greatest index of range length in
|
||||
* histogram which is less than (less than or equal) the given length value. If
|
||||
* all lengths in the histogram are greater than (greater than or equal) the
|
||||
* given length, returns -1.
|
||||
*/
|
||||
static int
|
||||
length_hist_bsearch(Datum *length_hist_values, int length_hist_nvalues,
|
||||
double value, bool equal)
|
||||
{
|
||||
int lower = -1,
|
||||
upper = length_hist_nvalues - 1,
|
||||
middle;
|
||||
|
||||
while (lower < upper)
|
||||
{
|
||||
double middleval;
|
||||
|
||||
middle = (lower + upper + 1) / 2;
|
||||
|
||||
middleval = DatumGetFloat8(length_hist_values[middle]);
|
||||
if (middleval < value || (equal && middleval <= value))
|
||||
lower = middle;
|
||||
else
|
||||
upper = middle - 1;
|
||||
}
|
||||
return lower;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get relative position of value in histogram bin in [0,1] range.
|
||||
*/
|
||||
@ -598,3 +700,432 @@ get_position(TypeCacheEntry *typcache, RangeBound *value, RangeBound *hist1,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Get relative position of value in a length histogram bin in [0,1] range.
|
||||
*/
|
||||
static double
|
||||
get_len_position(double value, double hist1, double hist2)
|
||||
{
|
||||
if (!is_infinite(hist1) && !is_infinite(hist2))
|
||||
{
|
||||
/*
|
||||
* Both bounds are finite. The value should be finite too, because it
|
||||
* lies somewhere between the bounds. If it doesn't, just return
|
||||
* something.
|
||||
*/
|
||||
if (is_infinite(value))
|
||||
return 0.5;
|
||||
|
||||
return 1.0 - (hist2 - value) / (hist2 - hist1);
|
||||
}
|
||||
else if (is_infinite(hist1) && !is_infinite(hist2))
|
||||
{
|
||||
/*
|
||||
* Lower bin boundary is -infinite, upper is finite.
|
||||
* Return 1.0 to indicate the value is infinitely far from the lower
|
||||
* bound.
|
||||
*/
|
||||
return 1.0;
|
||||
}
|
||||
else if (is_infinite(hist1) && is_infinite(hist2))
|
||||
{
|
||||
/* same as above, but in reverse */
|
||||
return 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* If both bin boundaries are infinite, they should be equal to each
|
||||
* other, and the value should also be infinite and equal to both
|
||||
* bounds. (But don't Assert that, to avoid crashing unnecessarily
|
||||
* if the caller messes up)
|
||||
*
|
||||
* Assume the value to lie in the middle of the infinite bounds.
|
||||
*/
|
||||
return 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Measure distance between two range bounds.
|
||||
*/
|
||||
static float8
|
||||
get_distance(TypeCacheEntry *typcache, RangeBound *bound1, RangeBound *bound2)
|
||||
{
|
||||
bool has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid);
|
||||
|
||||
if (!bound1->infinite && !bound2->infinite)
|
||||
{
|
||||
/*
|
||||
* No bounds are infinite, use subdiff function or return default
|
||||
* value of 1.0 if no subdiff is available.
|
||||
*/
|
||||
if (has_subdiff)
|
||||
return
|
||||
DatumGetFloat8(FunctionCall2Coll(&typcache->rng_subdiff_finfo,
|
||||
typcache->rng_collation,
|
||||
bound2->val,
|
||||
bound1->val));
|
||||
else
|
||||
return 1.0;
|
||||
}
|
||||
else if (bound1->infinite && bound2->infinite)
|
||||
{
|
||||
/* Both bounds are infinite */
|
||||
if (bound1->lower == bound2->lower)
|
||||
return 0.0;
|
||||
else
|
||||
return get_float8_infinity();
|
||||
}
|
||||
else
|
||||
{
|
||||
/* One bound is infinite, another is not */
|
||||
return get_float8_infinity();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the average of function P(x), in the interval [length1, length2],
|
||||
* where P(x) is the fraction of tuples with length < x (or length <= x if
|
||||
* 'equal' is true).
|
||||
*/
|
||||
static double
|
||||
calc_length_hist_frac(Datum *length_hist_values, int length_hist_nvalues,
|
||||
double length1, double length2, bool equal)
|
||||
{
|
||||
double frac;
|
||||
double A, B, PA, PB;
|
||||
double pos;
|
||||
int i;
|
||||
double area;
|
||||
|
||||
Assert(length2 >= length1);
|
||||
|
||||
if (length2 < 0.0)
|
||||
return 0.0; /* shouldn't happen, but doesn't hurt to check */
|
||||
|
||||
/* All lengths in the table are <= infinite. */
|
||||
if (is_infinite(length2) && equal)
|
||||
return 1.0;
|
||||
|
||||
/*----------
|
||||
* The average of a function between A and B can be calculated by the
|
||||
* formula:
|
||||
*
|
||||
* B
|
||||
* 1 /
|
||||
* ------- | P(x)dx
|
||||
* B - A /
|
||||
* A
|
||||
*
|
||||
* The geometrical interpretation of the integral is the area under the
|
||||
* graph of P(x). P(x) is defined by the length histogram. We calculate
|
||||
* the area in a piecewise fashion, iterating through the length histogram
|
||||
* bins. Each bin is a trapezoid:
|
||||
*
|
||||
* P(x2)
|
||||
* /|
|
||||
* / |
|
||||
* P(x1)/ |
|
||||
* | |
|
||||
* | |
|
||||
* ---+---+--
|
||||
* x1 x2
|
||||
*
|
||||
* where x1 and x2 are the boundaries of the current histogram, and P(x1)
|
||||
* and P(x1) are the cumulative fraction of tuples at the boundaries.
|
||||
*
|
||||
* The area of each trapezoid is 1/2 * (P(x2) + P(x1)) * (x2 - x1)
|
||||
*
|
||||
* The first bin contains the lower bound passed by the caller, so we
|
||||
* use linear interpolation between the previous and next histogram bin
|
||||
* boundary to calculate P(x1). Likewise for the last bin: we use linear
|
||||
* interpolation to calculate P(x2). For the bins in between, x1 and x2
|
||||
* lie on histogram bin boundaries, so P(x1) and P(x2) are simply:
|
||||
* P(x1) = (bin index) / (number of bins)
|
||||
* P(x2) = (bin index + 1 / (number of bins)
|
||||
*/
|
||||
|
||||
/* First bin, the one that contains lower bound */
|
||||
i = length_hist_bsearch(length_hist_values, length_hist_nvalues, length1, equal);
|
||||
if (i >= length_hist_nvalues - 1)
|
||||
return 1.0;
|
||||
|
||||
if (i < 0)
|
||||
{
|
||||
i = 0;
|
||||
pos = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* interpolate length1's position in the bin */
|
||||
pos = get_len_position(length1,
|
||||
DatumGetFloat8(length_hist_values[i]),
|
||||
DatumGetFloat8(length_hist_values[i + 1]));
|
||||
}
|
||||
PB = (((double) i) + pos) / (double) (length_hist_nvalues - 1);
|
||||
B = length1;
|
||||
|
||||
/*
|
||||
* In the degenerate case that length1 == length2, simply return P(length1).
|
||||
* This is not merely an optimization: if length1 == length2, we'd divide
|
||||
* by zero later on.
|
||||
*/
|
||||
if (length2 == length1)
|
||||
return PB;
|
||||
|
||||
/*
|
||||
* Loop through all the bins, until we hit the last bin, the one that
|
||||
* contains the upper bound. (if lower and upper bounds are in the same
|
||||
* bin, this falls out immediately)
|
||||
*/
|
||||
area = 0.0;
|
||||
for (; i < length_hist_nvalues - 1; i++)
|
||||
{
|
||||
double bin_upper = DatumGetFloat8(length_hist_values[i + 1]);
|
||||
|
||||
/* check if we've reached the last bin */
|
||||
if (!(bin_upper < length2 || (equal && bin_upper <= length2)))
|
||||
break;
|
||||
|
||||
/* the upper bound of previous bin is the lower bound of this bin */
|
||||
A = B; PA = PB;
|
||||
|
||||
B = bin_upper;
|
||||
PB = (double) i / (double) (length_hist_nvalues - 1);
|
||||
|
||||
/*
|
||||
* Add the area of this trapezoid to the total. The point of the
|
||||
* if-check is to avoid NaN, in the corner case that PA == PB == 0, and
|
||||
* B - A == Inf. The area of a zero-height trapezoid (PA == PB == 0) is
|
||||
* zero, regardless of the width (B - A).
|
||||
*/
|
||||
if (PA > 0 || PB > 0)
|
||||
area += 0.5 * (PB + PA) * (B - A);
|
||||
}
|
||||
|
||||
/* Last bin */
|
||||
A = B; PA = PB;
|
||||
|
||||
B = length2; /* last bin ends at the query upper bound */
|
||||
if (i >= length_hist_nvalues - 1)
|
||||
pos = 0.0;
|
||||
else
|
||||
{
|
||||
if (DatumGetFloat8(length_hist_values[i]) == DatumGetFloat8(length_hist_values[i + 1]))
|
||||
pos = 0.0;
|
||||
else
|
||||
pos = get_len_position(length2, DatumGetFloat8(length_hist_values[i]), DatumGetFloat8(length_hist_values[i + 1]));
|
||||
}
|
||||
PB = (((double) i) + pos) / (double) (length_hist_nvalues - 1);
|
||||
|
||||
if (PA > 0 || PB > 0)
|
||||
area += 0.5 * (PB + PA) * (B - A);
|
||||
|
||||
/*
|
||||
* Ok, we have calculated the area, ie. the integral. Divide by width to
|
||||
* get the requested average.
|
||||
*
|
||||
* Avoid NaN arising from infinite / infinite. This happens at least if
|
||||
* length2 is infinite. It's not clear what the correct value would be in
|
||||
* that case, so 0.5 seems as good as any value.
|
||||
*/
|
||||
if (is_infinite(area) && is_infinite(length2))
|
||||
frac = 0.5;
|
||||
else
|
||||
frac = area / (length2 - length1);
|
||||
|
||||
return frac;
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate selectivity of "var <@ const" operator, ie. estimate the fraction
|
||||
* of ranges that fall within the constant lower and upper bounds. This uses
|
||||
* the histograms of range lower bounds and range lengths, on the assumption
|
||||
* that the range lengths are independent of the lower bounds.
|
||||
*
|
||||
* The caller has already checked that constant lower and upper bounds are
|
||||
* finite.
|
||||
*/
|
||||
static double
|
||||
calc_hist_selectivity_contained(TypeCacheEntry *typcache,
|
||||
RangeBound *lower, RangeBound *upper,
|
||||
RangeBound *hist_lower, int hist_nvalues,
|
||||
Datum *length_hist_values, int length_hist_nvalues)
|
||||
{
|
||||
int i,
|
||||
upper_index;
|
||||
float8 prev_dist;
|
||||
double bin_width;
|
||||
double upper_bin_width;
|
||||
double sum_frac;
|
||||
|
||||
/*
|
||||
* Begin by finding the bin containing the upper bound, in the lower bound
|
||||
* histogram. Any range with a lower bound > constant upper bound can't
|
||||
* match, ie. there are no matches in bins greater than upper_index.
|
||||
*/
|
||||
upper->inclusive = !upper->inclusive;
|
||||
upper->lower = true;
|
||||
upper_index = rbound_bsearch(typcache, upper, hist_lower, hist_nvalues,
|
||||
false);
|
||||
|
||||
/*
|
||||
* Calculate upper_bin_width, ie. the fraction of the (upper_index,
|
||||
* upper_index + 1) bin which is greater than upper bound of query range
|
||||
* using linear interpolation of subdiff function.
|
||||
*/
|
||||
if (upper_index >= 0 && upper_index < hist_nvalues - 1)
|
||||
upper_bin_width = get_position(typcache, upper,
|
||||
&hist_lower[upper_index],
|
||||
&hist_lower[upper_index + 1]);
|
||||
else
|
||||
upper_bin_width = 0.0;
|
||||
|
||||
/*
|
||||
* In the loop, dist and prev_dist are the distance of the "current" bin's
|
||||
* lower and upper bounds from the constant upper bound.
|
||||
*
|
||||
* bin_width represents the width of the current bin. Normally it is 1.0,
|
||||
* meaning a full width bin, but can be less in the corner cases: start
|
||||
* and end of the loop. We start with bin_width = upper_bin_width, because
|
||||
* we begin at the bin containing the upper bound.
|
||||
*/
|
||||
prev_dist = 0.0;
|
||||
bin_width = upper_bin_width;
|
||||
|
||||
sum_frac = 0.0;
|
||||
for (i = upper_index; i >= 0; i--)
|
||||
{
|
||||
double dist;
|
||||
double length_hist_frac;
|
||||
bool final_bin = false;
|
||||
|
||||
/*
|
||||
* dist -- distance from upper bound of query range to lower bound of
|
||||
* the current bin in the lower bound histogram. Or to the lower bound
|
||||
* of the constant range, if this is the final bin, containing the
|
||||
* constant lower bound.
|
||||
*/
|
||||
if (range_cmp_bounds(typcache, &hist_lower[i], lower) < 0)
|
||||
{
|
||||
dist = get_distance(typcache, lower, upper);
|
||||
/*
|
||||
* Subtract from bin_width the portion of this bin that we want
|
||||
* to ignore.
|
||||
*/
|
||||
bin_width -= get_position(typcache, lower, &hist_lower[i],
|
||||
&hist_lower[i + 1]);
|
||||
if (bin_width < 0.0)
|
||||
bin_width = 0.0;
|
||||
final_bin = true;
|
||||
}
|
||||
else
|
||||
dist = get_distance(typcache, &hist_lower[i], upper);
|
||||
|
||||
/*
|
||||
* Estimate the fraction of tuples in this bin that are narrow enough
|
||||
* to not exceed the distance to the upper bound of the query range.
|
||||
*/
|
||||
length_hist_frac = calc_length_hist_frac(length_hist_values,
|
||||
length_hist_nvalues,
|
||||
prev_dist, dist, true);
|
||||
|
||||
/*
|
||||
* Add the fraction of tuples in this bin, with a suitable length,
|
||||
* to the total.
|
||||
*/
|
||||
sum_frac += length_hist_frac * bin_width / (double) (hist_nvalues - 1);
|
||||
|
||||
if (final_bin)
|
||||
break;
|
||||
|
||||
bin_width = 1.0;
|
||||
prev_dist = dist;
|
||||
}
|
||||
|
||||
return sum_frac;
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate selectivity of "var @> const" operator, ie. estimate the fraction
|
||||
* of ranges that contain the constant lower and upper bounds. This uses
|
||||
* the histograms of range lower bounds and range lengths, on the assumption
|
||||
* that the range lengths are independent of the lower bounds.
|
||||
*
|
||||
* Note, this is "var @> const", ie. estimate the fraction of ranges that
|
||||
* contain the constant lower and upper bounds.
|
||||
*/
|
||||
static double
|
||||
calc_hist_selectivity_contains(TypeCacheEntry *typcache,
|
||||
RangeBound *lower, RangeBound *upper,
|
||||
RangeBound *hist_lower, int hist_nvalues,
|
||||
Datum *length_hist_values, int length_hist_nvalues)
|
||||
{
|
||||
int i,
|
||||
lower_index;
|
||||
double bin_width,
|
||||
lower_bin_width;
|
||||
double sum_frac;
|
||||
float8 prev_dist;
|
||||
|
||||
/* Find the bin containing the lower bound of query range. */
|
||||
lower_index = rbound_bsearch(typcache, lower, hist_lower, hist_nvalues,
|
||||
true);
|
||||
|
||||
/*
|
||||
* Calculate lower_bin_width, ie. the fraction of the of (lower_index,
|
||||
* lower_index + 1) bin which is greater than lower bound of query range
|
||||
* using linear interpolation of subdiff function.
|
||||
*/
|
||||
if (lower_index >= 0 && lower_index < hist_nvalues - 1)
|
||||
lower_bin_width = get_position(typcache, lower, &hist_lower[lower_index],
|
||||
&hist_lower[lower_index + 1]);
|
||||
else
|
||||
lower_bin_width = 0.0;
|
||||
|
||||
/*
|
||||
* Loop through all the lower bound bins, smaller than the query lower
|
||||
* bound. In the loop, dist and prev_dist are the distance of the "current"
|
||||
* bin's lower and upper bounds from the constant upper bound. We begin
|
||||
* from query lower bound, and walk backwards, so the first bin's upper
|
||||
* bound is the query lower bound, and its distance to the query upper
|
||||
* bound is the length of the query range.
|
||||
*
|
||||
* bin_width represents the width of the current bin. Normally it is 1.0,
|
||||
* meaning a full width bin, except for the first bin, which is only
|
||||
* counted up to the constant lower bound.
|
||||
*/
|
||||
prev_dist = get_distance(typcache, lower, upper);
|
||||
sum_frac = 0.0;
|
||||
bin_width = lower_bin_width;
|
||||
for (i = lower_index; i >= 0; i--)
|
||||
{
|
||||
float8 dist;
|
||||
double length_hist_frac;
|
||||
|
||||
/*
|
||||
* dist -- distance from upper bound of query range to current
|
||||
* value of lower bound histogram or lower bound of query range (if
|
||||
* we've reach it).
|
||||
*/
|
||||
dist = get_distance(typcache, &hist_lower[i], upper);
|
||||
|
||||
/*
|
||||
* Get average fraction of length histogram which covers intervals
|
||||
* longer than (or equal to) distance to upper bound of query range.
|
||||
*/
|
||||
length_hist_frac =
|
||||
1.0 - calc_length_hist_frac(length_hist_values,
|
||||
length_hist_nvalues,
|
||||
prev_dist, dist, false);
|
||||
|
||||
sum_frac += length_hist_frac * bin_width / (double) (hist_nvalues - 1);
|
||||
|
||||
bin_width = 1.0;
|
||||
prev_dist = dist;
|
||||
}
|
||||
|
||||
return sum_frac;
|
||||
}
|
||||
|
@ -29,6 +29,8 @@
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/rangetypes.h"
|
||||
|
||||
static int float8_qsort_cmp(const void *a1, const void *a2);
|
||||
static int range_bound_qsort_cmp(const void *a1, const void *a2, void *arg);
|
||||
static void compute_range_stats(VacAttrStats *stats,
|
||||
AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows);
|
||||
|
||||
@ -56,6 +58,23 @@ range_typanalyze(PG_FUNCTION_ARGS)
|
||||
PG_RETURN_BOOL(true);
|
||||
}
|
||||
|
||||
/*
|
||||
* Comparison function for sorting float8s, used for range lengths.
|
||||
*/
|
||||
static int
|
||||
float8_qsort_cmp(const void *a1, const void *a2)
|
||||
{
|
||||
const float8 *f1 = (const float8 *) a1;
|
||||
const float8 *f2 = (const float8 *) a2;
|
||||
|
||||
if (*f1 < *f2)
|
||||
return -1;
|
||||
else if (*f1 == *f2)
|
||||
return 0;
|
||||
else
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Comparison function for sorting RangeBounds.
|
||||
*/
|
||||
@ -77,6 +96,7 @@ compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
|
||||
int samplerows, double totalrows)
|
||||
{
|
||||
TypeCacheEntry *typcache = (TypeCacheEntry *) stats->extra_data;
|
||||
bool has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid);
|
||||
int null_cnt = 0;
|
||||
int non_null_cnt = 0;
|
||||
int non_empty_cnt = 0;
|
||||
@ -85,12 +105,14 @@ compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
|
||||
int slot_idx;
|
||||
int num_bins = stats->attr->attstattarget;
|
||||
int num_hist;
|
||||
float8 *lengths;
|
||||
RangeBound *lowers, *uppers;
|
||||
double total_width = 0;
|
||||
|
||||
/* Allocate memory for arrays of range bounds. */
|
||||
/* Allocate memory to hold range bounds and lengths of the sample ranges. */
|
||||
lowers = (RangeBound *) palloc(sizeof(RangeBound) * samplerows);
|
||||
uppers = (RangeBound *) palloc(sizeof(RangeBound) * samplerows);
|
||||
lengths = (float8 *) palloc(sizeof(float8) * samplerows);
|
||||
|
||||
/* Loop over the sample ranges. */
|
||||
for (range_no = 0; range_no < samplerows; range_no++)
|
||||
@ -101,6 +123,7 @@ compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
|
||||
RangeType *range;
|
||||
RangeBound lower,
|
||||
upper;
|
||||
float8 length;
|
||||
|
||||
vacuum_delay_point();
|
||||
|
||||
@ -124,9 +147,33 @@ compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
|
||||
|
||||
if (!empty)
|
||||
{
|
||||
/* Fill bound values for further usage in histograms */
|
||||
/* Remember bounds and length for further usage in histograms */
|
||||
lowers[non_empty_cnt] = lower;
|
||||
uppers[non_empty_cnt] = upper;
|
||||
|
||||
if (lower.infinite || upper.infinite)
|
||||
{
|
||||
/* Length of any kind of an infinite range is infinite */
|
||||
length = get_float8_infinity();
|
||||
}
|
||||
else if (has_subdiff)
|
||||
{
|
||||
/*
|
||||
* For an ordinary range, use subdiff function between upper
|
||||
* and lower bound values.
|
||||
*/
|
||||
length = DatumGetFloat8(FunctionCall2Coll(
|
||||
&typcache->rng_subdiff_finfo,
|
||||
typcache->rng_collation,
|
||||
upper.val, lower.val));
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Use default value of 1.0 if no subdiff is available. */
|
||||
length = 1.0;
|
||||
}
|
||||
lengths[non_empty_cnt] = length;
|
||||
|
||||
non_empty_cnt++;
|
||||
}
|
||||
else
|
||||
@ -141,6 +188,7 @@ compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
|
||||
if (non_null_cnt > 0)
|
||||
{
|
||||
Datum *bound_hist_values;
|
||||
Datum *length_hist_values;
|
||||
int pos,
|
||||
posfrac,
|
||||
delta,
|
||||
@ -159,7 +207,8 @@ compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
|
||||
old_cxt = MemoryContextSwitchTo(stats->anl_context);
|
||||
|
||||
/*
|
||||
* Generate a histogram slot entry if there are at least two values.
|
||||
* Generate a bounds histogram slot entry if there are at least two
|
||||
* values.
|
||||
*/
|
||||
if (non_empty_cnt >= 2)
|
||||
{
|
||||
@ -210,12 +259,80 @@ compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
|
||||
slot_idx++;
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate a length histogram slot entry if there are at least two
|
||||
* values.
|
||||
*/
|
||||
if (non_empty_cnt >= 2)
|
||||
{
|
||||
/*
|
||||
* Ascending sort of range lengths for further filling of
|
||||
* histogram
|
||||
*/
|
||||
qsort(lengths, non_empty_cnt, sizeof(float8), float8_qsort_cmp);
|
||||
|
||||
num_hist = non_empty_cnt;
|
||||
if (num_hist > num_bins)
|
||||
num_hist = num_bins + 1;
|
||||
|
||||
length_hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
|
||||
|
||||
/*
|
||||
* The object of this loop is to copy the first and last lengths[]
|
||||
* entries along with evenly-spaced values in between. So the i'th
|
||||
* value is lengths[(i * (nvals - 1)) / (num_hist - 1)]. But
|
||||
* computing that subscript directly risks integer overflow when the
|
||||
* stats target is more than a couple thousand. Instead we add
|
||||
* (nvals - 1) / (num_hist - 1) to pos at each step, tracking the
|
||||
* integral and fractional parts of the sum separately.
|
||||
*/
|
||||
delta = (non_empty_cnt - 1) / (num_hist - 1);
|
||||
deltafrac = (non_empty_cnt - 1) % (num_hist - 1);
|
||||
pos = posfrac = 0;
|
||||
|
||||
for (i = 0; i < num_hist; i++)
|
||||
{
|
||||
length_hist_values[i] = Float8GetDatum(lengths[pos]);
|
||||
pos += delta;
|
||||
posfrac += deltafrac;
|
||||
if (posfrac >= (num_hist - 1))
|
||||
{
|
||||
/* fractional part exceeds 1, carry to integer part */
|
||||
pos++;
|
||||
posfrac -= (num_hist - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* Even when we don't create the histogram, store an empty array
|
||||
* to mean "no histogram". We can't just leave stavalues NULL,
|
||||
* because get_attstatsslot() errors if you ask for stavalues, and
|
||||
* it's NULL. We'll still store the empty fraction in stanumbers.
|
||||
*/
|
||||
length_hist_values = palloc(0);
|
||||
num_hist = 0;
|
||||
}
|
||||
stats->staop[slot_idx] = Float8LessOperator;
|
||||
stats->stavalues[slot_idx] = length_hist_values;
|
||||
stats->numvalues[slot_idx] = num_hist;
|
||||
stats->statypid[slot_idx] = FLOAT8OID;
|
||||
stats->statyplen[slot_idx] = sizeof(float8);
|
||||
#ifdef USE_FLOAT8_BYVAL
|
||||
stats->statypbyval[slot_idx] = true;
|
||||
#else
|
||||
stats->statypbyval[slot_idx] = false;
|
||||
#endif
|
||||
stats->statypalign[slot_idx] = 'd';
|
||||
|
||||
/* Store the fraction of empty ranges */
|
||||
emptyfrac = (float4 *) palloc(sizeof(float4));
|
||||
*emptyfrac = ((double) empty_cnt) / ((double) non_null_cnt);
|
||||
stats->stakind[slot_idx] = STATISTIC_KIND_RANGE_EMPTY_FRAC;
|
||||
stats->stanumbers[slot_idx] = emptyfrac;
|
||||
stats->numnumbers[slot_idx] = 1;
|
||||
|
||||
stats->stakind[slot_idx] = STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM;
|
||||
slot_idx++;
|
||||
|
||||
MemoryContextSwitchTo(old_cxt);
|
||||
|
@ -53,6 +53,6 @@
|
||||
*/
|
||||
|
||||
/* yyyymmddN */
|
||||
#define CATALOG_VERSION_NO 201303101
|
||||
#define CATALOG_VERSION_NO 201303141
|
||||
|
||||
#endif
|
||||
|
@ -527,6 +527,7 @@ DATA(insert OID = 671 ( "<>" PGNSP PGUID b f f 701 701 16 671 670 float8ne
|
||||
DESCR("not equal");
|
||||
DATA(insert OID = 672 ( "<" PGNSP PGUID b f f 701 701 16 674 675 float8lt scalarltsel scalarltjoinsel ));
|
||||
DESCR("less than");
|
||||
#define Float8LessOperator 672
|
||||
DATA(insert OID = 673 ( "<=" PGNSP PGUID b f f 701 701 16 675 674 float8le scalarltsel scalarltjoinsel ));
|
||||
DESCR("less than or equal");
|
||||
DATA(insert OID = 674 ( ">" PGNSP PGUID b f f 701 701 16 672 673 float8gt scalargtsel scalargtjoinsel ));
|
||||
|
@ -269,11 +269,15 @@ typedef FormData_pg_statistic *Form_pg_statistic;
|
||||
#define STATISTIC_KIND_DECHIST 5
|
||||
|
||||
/*
|
||||
* An "empty frac" slot describes the fraction of empty ranges in a range-type
|
||||
* column. stavalues is not used and should be NULL. stanumbers contains a
|
||||
* single entry, the fraction of empty ranges (0.0 to 1.0).
|
||||
* A "length histogram" slot describes the distribution of range lengths in
|
||||
* rows of a range-type column. stanumbers contains a single entry, the
|
||||
* fraction of empty ranges. stavalues is a histogram of non-empty lengths, in
|
||||
* a format similar to STATISTIC_KIND_HISTOGRAM: it contains M (>=2) range
|
||||
* values that divide the column data values into M-1 bins of approximately
|
||||
* equal population. The lengths are stores as float8s, as measured by the
|
||||
* range type's subdiff function. Only non-null rows are considered.
|
||||
*/
|
||||
#define STATISTIC_KIND_RANGE_EMPTY_FRAC 6
|
||||
#define STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM 6
|
||||
|
||||
/*
|
||||
* A "bounds histogram" slot is similar to STATISTIC_KIND_HISTOGRAM, but for
|
||||
|
Loading…
Reference in New Issue
Block a user