Modify prefix_selectivity() so that it will never estimate the selectivity

of the generated range condition var >= 'foo' AND var < 'fop' as being less
than what eqsel() would estimate for var = 'foo'.  This is intuitively
reasonable and it gets rid of the need for some entirely ad-hoc coding we
formerly used to reject bogus estimates.  The basic problem here is that
if the prefix is more than a few characters long, the two boundary values
are too close together to be distinguishable by comparison to the column
histogram, resulting in a selectivity estimate of zero, which is often
not very sane.  Change motivated by an example from Peter Eisentraut.

Arguably this is a bug fix, but I'll refrain from back-patching it
for the moment.
This commit is contained in:
Tom Lane 2008-03-08 22:41:38 +00:00
parent 6f10eb2111
commit 422495d0da

View File

@ -15,7 +15,7 @@
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.243 2008/01/01 19:45:52 momjian Exp $
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.244 2008/03/08 22:41:38 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -103,6 +103,12 @@
#include "utils/syscache.h"
static double var_eq_const(VariableStatData *vardata, Oid operator,
Datum constval, bool constisnull,
bool varonleft);
static double var_eq_non_const(VariableStatData *vardata, Oid operator,
Node *other,
bool varonleft);
static double ineq_histogram_selectivity(VariableStatData *vardata,
FmgrInfo *opproc, bool isgt,
Datum constval, Oid consttype);
@ -156,10 +162,6 @@ eqsel(PG_FUNCTION_ARGS)
VariableStatData vardata;
Node *other;
bool varonleft;
Datum *values;
int nvalues;
float4 *numbers;
int nnumbers;
double selec;
/*
@ -171,148 +173,203 @@ eqsel(PG_FUNCTION_ARGS)
PG_RETURN_FLOAT8(DEFAULT_EQ_SEL);
/*
* If the something is a NULL constant, assume operator is strict and
* We can do a lot better if the something is a constant. (Note: the
* Const might result from estimation rather than being a simple constant
* in the query.)
*/
if (IsA(other, Const))
selec = var_eq_const(&vardata, operator,
((Const *) other)->constvalue,
((Const *) other)->constisnull,
varonleft);
else
selec = var_eq_non_const(&vardata, operator, other,
varonleft);
ReleaseVariableStats(vardata);
PG_RETURN_FLOAT8((float8) selec);
}
/*
* var_eq_const --- eqsel for var = const case
*
* This is split out so that some other estimation functions can use it.
*/
static double
var_eq_const(VariableStatData *vardata, Oid operator,
Datum constval, bool constisnull,
bool varonleft)
{
double selec;
/*
* If the constant is NULL, assume operator is strict and
* return zero, ie, operator will never return TRUE.
*/
if (IsA(other, Const) &&
((Const *) other)->constisnull)
{
ReleaseVariableStats(vardata);
PG_RETURN_FLOAT8(0.0);
}
if (constisnull)
return 0.0;
if (HeapTupleIsValid(vardata.statsTuple))
if (HeapTupleIsValid(vardata->statsTuple))
{
Form_pg_statistic stats;
Datum *values;
int nvalues;
float4 *numbers;
int nnumbers;
bool match = false;
int i;
stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
if (IsA(other, Const))
/*
* Is the constant "=" to any of the column's most common values?
* (Although the given operator may not really be "=", we will
* assume that seeing whether it returns TRUE is an appropriate
* test. If you don't like this, maybe you shouldn't be using
* eqsel for your operator...)
*/
if (get_attstatsslot(vardata->statsTuple,
vardata->atttype, vardata->atttypmod,
STATISTIC_KIND_MCV, InvalidOid,
&values, &nvalues,
&numbers, &nnumbers))
{
/* Variable is being compared to a known non-null constant */
Datum constval = ((Const *) other)->constvalue;
bool match = false;
int i;
FmgrInfo eqproc;
/*
* Is the constant "=" to any of the column's most common values?
* (Although the given operator may not really be "=", we will
* assume that seeing whether it returns TRUE is an appropriate
* test. If you don't like this, maybe you shouldn't be using
* eqsel for your operator...)
*/
if (get_attstatsslot(vardata.statsTuple,
vardata.atttype, vardata.atttypmod,
STATISTIC_KIND_MCV, InvalidOid,
&values, &nvalues,
&numbers, &nnumbers))
fmgr_info(get_opcode(operator), &eqproc);
for (i = 0; i < nvalues; i++)
{
FmgrInfo eqproc;
fmgr_info(get_opcode(operator), &eqproc);
for (i = 0; i < nvalues; i++)
{
/* be careful to apply operator right way 'round */
if (varonleft)
match = DatumGetBool(FunctionCall2(&eqproc,
values[i],
constval));
else
match = DatumGetBool(FunctionCall2(&eqproc,
constval,
values[i]));
if (match)
break;
}
/* be careful to apply operator right way 'round */
if (varonleft)
match = DatumGetBool(FunctionCall2(&eqproc,
values[i],
constval));
else
match = DatumGetBool(FunctionCall2(&eqproc,
constval,
values[i]));
if (match)
break;
}
else
{
/* no most-common-value info available */
values = NULL;
numbers = NULL;
i = nvalues = nnumbers = 0;
}
if (match)
{
/*
* Constant is "=" to this common value. We know selectivity
* exactly (or as exactly as ANALYZE could calculate it,
* anyway).
*/
selec = numbers[i];
}
else
{
/*
* Comparison is against a constant that is neither NULL nor
* any of the common values. Its selectivity cannot be more
* than this:
*/
double sumcommon = 0.0;
double otherdistinct;
for (i = 0; i < nnumbers; i++)
sumcommon += numbers[i];
selec = 1.0 - sumcommon - stats->stanullfrac;
CLAMP_PROBABILITY(selec);
/*
* and in fact it's probably a good deal less. We approximate
* that all the not-common values share this remaining
* fraction equally, so we divide by the number of other
* distinct values.
*/
otherdistinct = get_variable_numdistinct(&vardata)
- nnumbers;
if (otherdistinct > 1)
selec /= otherdistinct;
/*
* Another cross-check: selectivity shouldn't be estimated as
* more than the least common "most common value".
*/
if (nnumbers > 0 && selec > numbers[nnumbers - 1])
selec = numbers[nnumbers - 1];
}
free_attstatsslot(vardata.atttype, values, nvalues,
numbers, nnumbers);
}
else
{
double ndistinct;
/* no most-common-value info available */
values = NULL;
numbers = NULL;
i = nvalues = nnumbers = 0;
}
if (match)
{
/*
* Constant is "=" to this common value. We know selectivity
* exactly (or as exactly as ANALYZE could calculate it,
* anyway).
*/
selec = numbers[i];
}
else
{
/*
* Comparison is against a constant that is neither NULL nor
* any of the common values. Its selectivity cannot be more
* than this:
*/
double sumcommon = 0.0;
double otherdistinct;
for (i = 0; i < nnumbers; i++)
sumcommon += numbers[i];
selec = 1.0 - sumcommon - stats->stanullfrac;
CLAMP_PROBABILITY(selec);
/*
* Search is for a value that we do not know a priori, but we will
* assume it is not NULL. Estimate the selectivity as non-null
* fraction divided by number of distinct values, so that we get a
* result averaged over all possible values whether common or
* uncommon. (Essentially, we are assuming that the not-yet-known
* comparison value is equally likely to be any of the possible
* values, regardless of their frequency in the table. Is that a
* good idea?)
* and in fact it's probably a good deal less. We approximate
* that all the not-common values share this remaining
* fraction equally, so we divide by the number of other
* distinct values.
*/
selec = 1.0 - stats->stanullfrac;
ndistinct = get_variable_numdistinct(&vardata);
if (ndistinct > 1)
selec /= ndistinct;
otherdistinct = get_variable_numdistinct(vardata) - nnumbers;
if (otherdistinct > 1)
selec /= otherdistinct;
/*
* Cross-check: selectivity should never be estimated as more than
* the most common value's.
* Another cross-check: selectivity shouldn't be estimated as
* more than the least common "most common value".
*/
if (get_attstatsslot(vardata.statsTuple,
vardata.atttype, vardata.atttypmod,
STATISTIC_KIND_MCV, InvalidOid,
NULL, NULL,
&numbers, &nnumbers))
{
if (nnumbers > 0 && selec > numbers[0])
selec = numbers[0];
free_attstatsslot(vardata.atttype, NULL, 0, numbers, nnumbers);
}
if (nnumbers > 0 && selec > numbers[nnumbers - 1])
selec = numbers[nnumbers - 1];
}
free_attstatsslot(vardata->atttype, values, nvalues,
numbers, nnumbers);
}
else
{
/*
* No ANALYZE stats available, so make a guess using estimated number
* of distinct values and assuming they are equally common. (The guess
* is unlikely to be very good, but we do know a few special cases.)
*/
selec = 1.0 / get_variable_numdistinct(vardata);
}
/* result should be in range, but make sure... */
CLAMP_PROBABILITY(selec);
return selec;
}
/*
* var_eq_non_const --- eqsel for var = something-other-than-const case
*/
static double
var_eq_non_const(VariableStatData *vardata, Oid operator,
Node *other,
bool varonleft)
{
double selec;
if (HeapTupleIsValid(vardata->statsTuple))
{
Form_pg_statistic stats;
double ndistinct;
float4 *numbers;
int nnumbers;
stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
/*
* Search is for a value that we do not know a priori, but we will
* assume it is not NULL. Estimate the selectivity as non-null
* fraction divided by number of distinct values, so that we get a
* result averaged over all possible values whether common or
* uncommon. (Essentially, we are assuming that the not-yet-known
* comparison value is equally likely to be any of the possible
* values, regardless of their frequency in the table. Is that a
* good idea?)
*/
selec = 1.0 - stats->stanullfrac;
ndistinct = get_variable_numdistinct(vardata);
if (ndistinct > 1)
selec /= ndistinct;
/*
* Cross-check: selectivity should never be estimated as more than
* the most common value's.
*/
if (get_attstatsslot(vardata->statsTuple,
vardata->atttype, vardata->atttypmod,
STATISTIC_KIND_MCV, InvalidOid,
NULL, NULL,
&numbers, &nnumbers))
{
if (nnumbers > 0 && selec > numbers[0])
selec = numbers[0];
free_attstatsslot(vardata->atttype, NULL, 0, numbers, nnumbers);
}
}
else
@ -322,15 +379,13 @@ eqsel(PG_FUNCTION_ARGS)
* of distinct values and assuming they are equally common. (The guess
* is unlikely to be very good, but we do know a few special cases.)
*/
selec = 1.0 / get_variable_numdistinct(&vardata);
selec = 1.0 / get_variable_numdistinct(vardata);
}
ReleaseVariableStats(vardata);
/* result should be in range, but make sure... */
CLAMP_PROBABILITY(selec);
PG_RETURN_FLOAT8((float8) selec);
return selec;
}
/*
@ -1047,16 +1102,11 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
*/
Oid eqopr = get_opfamily_member(opfamily, vartype, vartype,
BTEqualStrategyNumber);
List *eqargs;
if (eqopr == InvalidOid)
elog(ERROR, "no = operator for opfamily %u", opfamily);
eqargs = list_make2(variable, prefix);
result = DatumGetFloat8(DirectFunctionCall4(eqsel,
PointerGetDatum(root),
ObjectIdGetDatum(eqopr),
PointerGetDatum(eqargs),
Int32GetDatum(varRelid)));
result = var_eq_const(&vardata, eqopr, prefix->constvalue,
false, true);
}
else
{
@ -4430,6 +4480,7 @@ prefix_selectivity(VariableStatData *vardata,
Oid cmpopr;
FmgrInfo opproc;
Const *greaterstrcon;
Selectivity eq_sel;
cmpopr = get_opfamily_member(opfamily, vartype, vartype,
BTGreaterEqualStrategyNumber);
@ -4444,7 +4495,7 @@ prefix_selectivity(VariableStatData *vardata,
if (prefixsel <= 0.0)
{
/* No histogram is present ... return a suitable default estimate */
return 0.005;
return DEFAULT_MATCH_SEL;
}
/*-------
@ -4452,17 +4503,17 @@ prefix_selectivity(VariableStatData *vardata,
* "x < greaterstr".
*-------
*/
cmpopr = get_opfamily_member(opfamily, vartype, vartype,
BTLessStrategyNumber);
if (cmpopr == InvalidOid)
elog(ERROR, "no < operator for opfamily %u", opfamily);
fmgr_info(get_opcode(cmpopr), &opproc);
greaterstrcon = make_greater_string(prefixcon, &opproc);
if (greaterstrcon)
{
Selectivity topsel;
cmpopr = get_opfamily_member(opfamily, vartype, vartype,
BTLessStrategyNumber);
if (cmpopr == InvalidOid)
elog(ERROR, "no < operator for opfamily %u", opfamily);
fmgr_info(get_opcode(cmpopr), &opproc);
topsel = ineq_histogram_selectivity(vardata, &opproc, false,
greaterstrcon->constvalue,
greaterstrcon->consttype);
@ -4477,16 +4528,30 @@ prefix_selectivity(VariableStatData *vardata,
* doesn't count those anyway.
*/
prefixsel = topsel + prefixsel - 1.0;
/*
* A zero or negative prefixsel should be converted into a small
* positive value; we probably are dealing with a very tight range and
* got a bogus result due to roundoff errors.
*/
if (prefixsel <= 0.0)
prefixsel = 1.0e-10;
}
/*
* If the prefix is long then the two bounding values might be too
* close together for the histogram to distinguish them usefully,
* resulting in a zero estimate (plus or minus roundoff error).
* To avoid returning a ridiculously small estimate, compute the
* estimated selectivity for "variable = 'foo'", and clamp to that.
* (Obviously, the resultant estimate should be at least that.)
*
* We apply this even if we couldn't make a greater string. That case
* suggests that the prefix is near the maximum possible, and thus
* probably off the end of the histogram, and thus we probably got a
* very small estimate from the >= condition; so we still need to clamp.
*/
cmpopr = get_opfamily_member(opfamily, vartype, vartype,
BTEqualStrategyNumber);
if (cmpopr == InvalidOid)
elog(ERROR, "no = operator for opfamily %u", opfamily);
eq_sel = var_eq_const(vardata, cmpopr, prefixcon->constvalue,
false, true);
prefixsel = Max(prefixsel, eq_sel);
return prefixsel;
}