2001-08-21 09:32:01 +08:00
|
|
|
/*
|
|
|
|
* FreeSec: libcrypt for NetBSD
|
|
|
|
*
|
2010-09-21 04:08:53 +08:00
|
|
|
* contrib/pgcrypto/crypt-des.c
|
2006-03-11 12:38:42 +08:00
|
|
|
*
|
2001-08-21 09:32:01 +08:00
|
|
|
* Copyright (c) 1994 David Burren
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
|
|
|
|
* this file should now *only* export crypt(), in order to make
|
|
|
|
* binaries of libcrypt exportable from the USA
|
|
|
|
*
|
|
|
|
* Adapted for FreeBSD-4.0 by Mark R V Murray
|
|
|
|
* this file should now *only* export crypt_des(), in order to make
|
|
|
|
* a module that can be optionally included in libcrypt.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. Neither the name of the author nor the names of other contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
2014-05-07 00:12:18 +08:00
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
2001-08-21 09:32:01 +08:00
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
|
|
|
|
*
|
|
|
|
* This is an original implementation of the DES and the crypt(3) interfaces
|
|
|
|
* by David Burren <davidb@werj.com.au>.
|
|
|
|
*
|
|
|
|
* An excellent reference on the underlying algorithm (and related
|
|
|
|
* algorithms) is:
|
|
|
|
*
|
|
|
|
* B. Schneier, Applied Cryptography: protocols, algorithms,
|
|
|
|
* and source code in C, John Wiley & Sons, 1994.
|
|
|
|
*
|
|
|
|
* Note that in that book's description of DES the lookups for the initial,
|
|
|
|
* pbox, and final permutations are inverted (this has been brought to the
|
|
|
|
* attention of the author). A list of errata for this book has been
|
|
|
|
* posted to the sci.crypt newsgroup by the author and is available for FTP.
|
|
|
|
*
|
|
|
|
* ARCHITECTURE ASSUMPTIONS:
|
|
|
|
* It is assumed that the 8-byte arrays passed by reference can be
|
|
|
|
* addressed as arrays of uint32's (ie. the CPU is not picky about
|
|
|
|
* alignment).
|
|
|
|
*/
|
|
|
|
|
2001-10-16 03:15:18 +08:00
|
|
|
#include "postgres.h"
|
2015-12-28 00:03:19 +08:00
|
|
|
#include "miscadmin.h"
|
2001-10-16 03:15:18 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
#include "px-crypt.h"
|
|
|
|
|
|
|
|
/* for ntohl/htonl */
|
|
|
|
#include <netinet/in.h>
|
2003-05-14 11:27:22 +08:00
|
|
|
#include <arpa/inet.h>
|
2001-08-21 09:32:01 +08:00
|
|
|
|
|
|
|
#define _PASSWORD_EFMT1 '_'
|
|
|
|
|
2006-07-13 12:15:25 +08:00
|
|
|
static const char _crypt_a64[] =
|
|
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
static uint8 IP[64] = {
|
|
|
|
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
|
|
|
|
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
|
|
|
|
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
|
|
|
|
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
|
|
|
|
};
|
|
|
|
|
|
|
|
static uint8 inv_key_perm[64];
|
|
|
|
static uint8 u_key_perm[56];
|
|
|
|
static uint8 key_perm[56] = {
|
|
|
|
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
|
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
|
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
|
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
|
|
|
};
|
|
|
|
|
|
|
|
static uint8 key_shifts[16] = {
|
|
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
|
|
};
|
|
|
|
|
|
|
|
static uint8 inv_comp_perm[56];
|
|
|
|
static uint8 comp_perm[48] = {
|
|
|
|
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
|
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
|
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
|
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static uint8 u_sbox[8][64];
|
|
|
|
static uint8 sbox[8][64] = {
|
|
|
|
{
|
|
|
|
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
|
|
|
|
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
|
|
|
|
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
|
|
|
|
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
|
|
|
|
},
|
|
|
|
{
|
|
|
|
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
|
|
|
|
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
|
|
|
|
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
|
|
|
|
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
|
|
|
|
},
|
|
|
|
{
|
|
|
|
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
|
|
|
|
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
|
|
|
|
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
|
|
|
|
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
|
|
|
|
},
|
|
|
|
{
|
|
|
|
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
|
|
|
|
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
|
|
|
|
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
|
|
|
|
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
|
|
|
|
},
|
|
|
|
{
|
|
|
|
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
|
|
|
|
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
|
|
|
|
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
|
|
|
|
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
|
|
|
|
},
|
|
|
|
{
|
|
|
|
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
|
|
|
|
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
|
|
|
|
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
|
|
|
|
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
|
|
|
|
},
|
|
|
|
{
|
|
|
|
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
|
|
|
|
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
|
|
|
|
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
|
|
|
|
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
|
|
|
|
},
|
|
|
|
{
|
|
|
|
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
|
|
|
|
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
|
|
|
|
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
|
|
|
|
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static uint8 un_pbox[32];
|
|
|
|
static uint8 pbox[32] = {
|
|
|
|
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
|
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
|
|
|
};
|
|
|
|
|
|
|
|
static uint32 _crypt_bits32[32] =
|
|
|
|
{
|
2001-10-28 14:26:15 +08:00
|
|
|
0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
2001-10-30 13:38:56 +08:00
|
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
|
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
|
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
|
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
|
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
|
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
|
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
2001-08-21 09:32:01 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
|
|
|
|
|
|
|
static uint32 saltbits;
|
|
|
|
static long old_salt;
|
|
|
|
static uint32 *bits28,
|
|
|
|
*bits24;
|
|
|
|
static uint8 init_perm[64],
|
|
|
|
final_perm[64];
|
|
|
|
static uint32 en_keysl[16],
|
|
|
|
en_keysr[16];
|
|
|
|
static uint32 de_keysl[16],
|
|
|
|
de_keysr[16];
|
|
|
|
static int des_initialised = 0;
|
|
|
|
static uint8 m_sbox[4][4096];
|
|
|
|
static uint32 psbox[4][256];
|
|
|
|
static uint32 ip_maskl[8][256],
|
|
|
|
ip_maskr[8][256];
|
|
|
|
static uint32 fp_maskl[8][256],
|
|
|
|
fp_maskr[8][256];
|
|
|
|
static uint32 key_perm_maskl[8][128],
|
|
|
|
key_perm_maskr[8][128];
|
|
|
|
static uint32 comp_maskl[8][128],
|
|
|
|
comp_maskr[8][128];
|
|
|
|
static uint32 old_rawkey0,
|
|
|
|
old_rawkey1;
|
|
|
|
|
2001-10-16 03:15:18 +08:00
|
|
|
static inline int
|
2001-08-21 09:32:01 +08:00
|
|
|
ascii_to_bin(char ch)
|
|
|
|
{
|
|
|
|
if (ch > 'z')
|
|
|
|
return (0);
|
|
|
|
if (ch >= 'a')
|
|
|
|
return (ch - 'a' + 38);
|
|
|
|
if (ch > 'Z')
|
|
|
|
return (0);
|
|
|
|
if (ch >= 'A')
|
|
|
|
return (ch - 'A' + 12);
|
|
|
|
if (ch > '9')
|
|
|
|
return (0);
|
|
|
|
if (ch >= '.')
|
|
|
|
return (ch - '.');
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2004-10-25 10:15:02 +08:00
|
|
|
des_init(void)
|
2001-08-21 09:32:01 +08:00
|
|
|
{
|
|
|
|
int i,
|
|
|
|
j,
|
|
|
|
b,
|
|
|
|
k,
|
|
|
|
inbit,
|
|
|
|
obit;
|
|
|
|
uint32 *p,
|
|
|
|
*il,
|
|
|
|
*ir,
|
|
|
|
*fl,
|
|
|
|
*fr;
|
|
|
|
|
|
|
|
old_rawkey0 = old_rawkey1 = 0L;
|
|
|
|
saltbits = 0L;
|
|
|
|
old_salt = 0L;
|
|
|
|
bits24 = (bits28 = _crypt_bits32 + 4) + 4;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invert the S-boxes, reordering the input bits.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
for (j = 0; j < 64; j++)
|
|
|
|
{
|
|
|
|
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
|
|
|
|
u_sbox[i][j] = sbox[i][b];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle
|
|
|
|
* 12 bits of the S-box input.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
for (b = 0; b < 4; b++)
|
|
|
|
for (i = 0; i < 64; i++)
|
|
|
|
for (j = 0; j < 64; j++)
|
|
|
|
m_sbox[b][(i << 6) | j] =
|
|
|
|
(u_sbox[(b << 1)][i] << 4) |
|
|
|
|
u_sbox[(b << 1) + 1][j];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up the initial & final permutations into a useful form, and
|
|
|
|
* initialise the inverted key permutation.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 64; i++)
|
|
|
|
{
|
|
|
|
init_perm[final_perm[i] = IP[i] - 1] = i;
|
|
|
|
inv_key_perm[i] = 255;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Invert the key permutation and initialise the inverted key compression
|
|
|
|
* permutation.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
for (i = 0; i < 56; i++)
|
|
|
|
{
|
|
|
|
u_key_perm[i] = key_perm[i] - 1;
|
|
|
|
inv_key_perm[key_perm[i] - 1] = i;
|
|
|
|
inv_comp_perm[i] = 255;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invert the key compression permutation.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 48; i++)
|
|
|
|
inv_comp_perm[comp_perm[i] - 1] = i;
|
|
|
|
|
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Set up the OR-mask arrays for the initial and final permutations, and
|
|
|
|
* for the key initial and compression permutations.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
for (k = 0; k < 8; k++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < 256; i++)
|
|
|
|
{
|
|
|
|
*(il = &ip_maskl[k][i]) = 0L;
|
|
|
|
*(ir = &ip_maskr[k][i]) = 0L;
|
|
|
|
*(fl = &fp_maskl[k][i]) = 0L;
|
|
|
|
*(fr = &fp_maskr[k][i]) = 0L;
|
|
|
|
for (j = 0; j < 8; j++)
|
|
|
|
{
|
|
|
|
inbit = 8 * k + j;
|
|
|
|
if (i & _crypt_bits8[j])
|
|
|
|
{
|
|
|
|
if ((obit = init_perm[inbit]) < 32)
|
|
|
|
*il |= _crypt_bits32[obit];
|
|
|
|
else
|
|
|
|
*ir |= _crypt_bits32[obit - 32];
|
|
|
|
if ((obit = final_perm[inbit]) < 32)
|
|
|
|
*fl |= _crypt_bits32[obit];
|
|
|
|
else
|
|
|
|
*fr |= _crypt_bits32[obit - 32];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 0; i < 128; i++)
|
|
|
|
{
|
|
|
|
*(il = &key_perm_maskl[k][i]) = 0L;
|
|
|
|
*(ir = &key_perm_maskr[k][i]) = 0L;
|
|
|
|
for (j = 0; j < 7; j++)
|
|
|
|
{
|
|
|
|
inbit = 8 * k + j;
|
|
|
|
if (i & _crypt_bits8[j + 1])
|
|
|
|
{
|
|
|
|
if ((obit = inv_key_perm[inbit]) == 255)
|
|
|
|
continue;
|
|
|
|
if (obit < 28)
|
|
|
|
*il |= bits28[obit];
|
|
|
|
else
|
|
|
|
*ir |= bits28[obit - 28];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*(il = &comp_maskl[k][i]) = 0L;
|
|
|
|
*(ir = &comp_maskr[k][i]) = 0L;
|
|
|
|
for (j = 0; j < 7; j++)
|
|
|
|
{
|
|
|
|
inbit = 7 * k + j;
|
|
|
|
if (i & _crypt_bits8[j + 1])
|
|
|
|
{
|
|
|
|
if ((obit = inv_comp_perm[inbit]) == 255)
|
|
|
|
continue;
|
|
|
|
if (obit < 24)
|
|
|
|
*il |= bits24[obit];
|
|
|
|
else
|
|
|
|
*ir |= bits24[obit - 24];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Invert the P-box permutation, and convert into OR-masks for handling
|
|
|
|
* the output of the S-box arrays setup above.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
for (i = 0; i < 32; i++)
|
|
|
|
un_pbox[pbox[i] - 1] = i;
|
|
|
|
|
|
|
|
for (b = 0; b < 4; b++)
|
|
|
|
for (i = 0; i < 256; i++)
|
|
|
|
{
|
|
|
|
*(p = &psbox[b][i]) = 0L;
|
|
|
|
for (j = 0; j < 8; j++)
|
|
|
|
{
|
|
|
|
if (i & _crypt_bits8[j])
|
|
|
|
*p |= _crypt_bits32[un_pbox[8 * b + j]];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
des_initialised = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
setup_salt(long salt)
|
|
|
|
{
|
|
|
|
uint32 obit,
|
|
|
|
saltbit;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (salt == old_salt)
|
|
|
|
return;
|
|
|
|
old_salt = salt;
|
|
|
|
|
|
|
|
saltbits = 0L;
|
|
|
|
saltbit = 1;
|
|
|
|
obit = 0x800000;
|
|
|
|
for (i = 0; i < 24; i++)
|
|
|
|
{
|
|
|
|
if (salt & saltbit)
|
|
|
|
saltbits |= obit;
|
|
|
|
saltbit <<= 1;
|
|
|
|
obit >>= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
des_setkey(const char *key)
|
|
|
|
{
|
|
|
|
uint32 k0,
|
|
|
|
k1,
|
|
|
|
rawkey0,
|
|
|
|
rawkey1;
|
|
|
|
int shifts,
|
|
|
|
round;
|
|
|
|
|
|
|
|
if (!des_initialised)
|
|
|
|
des_init();
|
|
|
|
|
2011-09-12 02:54:32 +08:00
|
|
|
rawkey0 = ntohl(*(const uint32 *) key);
|
|
|
|
rawkey1 = ntohl(*(const uint32 *) (key + 4));
|
2001-08-21 09:32:01 +08:00
|
|
|
|
|
|
|
if ((rawkey0 | rawkey1)
|
|
|
|
&& rawkey0 == old_rawkey0
|
|
|
|
&& rawkey1 == old_rawkey1)
|
|
|
|
{
|
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Already setup for this key. This optimisation fails on a zero key
|
|
|
|
* (which is weak and has bad parity anyway) in order to simplify the
|
|
|
|
* starting conditions.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
old_rawkey0 = rawkey0;
|
|
|
|
old_rawkey1 = rawkey1;
|
|
|
|
|
|
|
|
/*
|
2001-10-25 13:50:21 +08:00
|
|
|
* Do key permutation and split into two 28-bit subkeys.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
k0 = key_perm_maskl[0][rawkey0 >> 25]
|
|
|
|
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
|
|
|
|
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
|
|
|
|
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
|
|
|
|
| key_perm_maskl[4][rawkey1 >> 25]
|
|
|
|
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
|
|
|
|
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
|
|
|
|
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
|
|
k1 = key_perm_maskr[0][rawkey0 >> 25]
|
|
|
|
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
|
|
|
|
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
|
|
|
|
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
|
|
|
|
| key_perm_maskr[4][rawkey1 >> 25]
|
|
|
|
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
|
|
|
|
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
|
|
|
|
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
2001-10-25 13:50:21 +08:00
|
|
|
* Rotate subkeys and do compression permutation.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
shifts = 0;
|
|
|
|
for (round = 0; round < 16; round++)
|
|
|
|
{
|
|
|
|
uint32 t0,
|
|
|
|
t1;
|
|
|
|
|
|
|
|
shifts += key_shifts[round];
|
|
|
|
|
|
|
|
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
|
|
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
|
|
|
|
|
de_keysl[15 - round] =
|
|
|
|
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
|
|
|
|
| comp_maskl[1][(t0 >> 14) & 0x7f]
|
|
|
|
| comp_maskl[2][(t0 >> 7) & 0x7f]
|
|
|
|
| comp_maskl[3][t0 & 0x7f]
|
|
|
|
| comp_maskl[4][(t1 >> 21) & 0x7f]
|
|
|
|
| comp_maskl[5][(t1 >> 14) & 0x7f]
|
|
|
|
| comp_maskl[6][(t1 >> 7) & 0x7f]
|
|
|
|
| comp_maskl[7][t1 & 0x7f];
|
|
|
|
|
|
|
|
de_keysr[15 - round] =
|
|
|
|
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
|
|
|
|
| comp_maskr[1][(t0 >> 14) & 0x7f]
|
|
|
|
| comp_maskr[2][(t0 >> 7) & 0x7f]
|
|
|
|
| comp_maskr[3][t0 & 0x7f]
|
|
|
|
| comp_maskr[4][(t1 >> 21) & 0x7f]
|
|
|
|
| comp_maskr[5][(t1 >> 14) & 0x7f]
|
|
|
|
| comp_maskr[6][(t1 >> 7) & 0x7f]
|
|
|
|
| comp_maskr[7][t1 & 0x7f];
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2001-10-25 13:50:21 +08:00
|
|
|
do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count)
|
2001-08-21 09:32:01 +08:00
|
|
|
{
|
|
|
|
/*
|
2001-10-25 13:50:21 +08:00
|
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
uint32 l,
|
|
|
|
r,
|
|
|
|
*kl,
|
|
|
|
*kr,
|
|
|
|
*kl1,
|
|
|
|
*kr1;
|
|
|
|
uint32 f,
|
|
|
|
r48l,
|
|
|
|
r48r;
|
|
|
|
int round;
|
|
|
|
|
|
|
|
if (count == 0)
|
|
|
|
return (1);
|
|
|
|
else if (count > 0)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Encrypting
|
|
|
|
*/
|
|
|
|
kl1 = en_keysl;
|
|
|
|
kr1 = en_keysr;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Decrypting
|
|
|
|
*/
|
|
|
|
count = -count;
|
|
|
|
kl1 = de_keysl;
|
|
|
|
kr1 = de_keysr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2001-10-25 13:50:21 +08:00
|
|
|
* Do initial permutation (IP).
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
l = ip_maskl[0][l_in >> 24]
|
|
|
|
| ip_maskl[1][(l_in >> 16) & 0xff]
|
|
|
|
| ip_maskl[2][(l_in >> 8) & 0xff]
|
|
|
|
| ip_maskl[3][l_in & 0xff]
|
|
|
|
| ip_maskl[4][r_in >> 24]
|
|
|
|
| ip_maskl[5][(r_in >> 16) & 0xff]
|
|
|
|
| ip_maskl[6][(r_in >> 8) & 0xff]
|
|
|
|
| ip_maskl[7][r_in & 0xff];
|
|
|
|
r = ip_maskr[0][l_in >> 24]
|
|
|
|
| ip_maskr[1][(l_in >> 16) & 0xff]
|
|
|
|
| ip_maskr[2][(l_in >> 8) & 0xff]
|
|
|
|
| ip_maskr[3][l_in & 0xff]
|
|
|
|
| ip_maskr[4][r_in >> 24]
|
|
|
|
| ip_maskr[5][(r_in >> 16) & 0xff]
|
|
|
|
| ip_maskr[6][(r_in >> 8) & 0xff]
|
|
|
|
| ip_maskr[7][r_in & 0xff];
|
|
|
|
|
|
|
|
while (count--)
|
|
|
|
{
|
2015-12-28 00:03:19 +08:00
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
|
|
|
* Do each round.
|
|
|
|
*/
|
|
|
|
kl = kl1;
|
|
|
|
kr = kr1;
|
|
|
|
round = 16;
|
|
|
|
while (round--)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Expand R to 48 bits (simulate the E-box).
|
|
|
|
*/
|
|
|
|
r48l = ((r & 0x00000001) << 23)
|
|
|
|
| ((r & 0xf8000000) >> 9)
|
|
|
|
| ((r & 0x1f800000) >> 11)
|
|
|
|
| ((r & 0x01f80000) >> 13)
|
|
|
|
| ((r & 0x001f8000) >> 15);
|
|
|
|
|
|
|
|
r48r = ((r & 0x0001f800) << 7)
|
|
|
|
| ((r & 0x00001f80) << 5)
|
|
|
|
| ((r & 0x000001f8) << 3)
|
|
|
|
| ((r & 0x0000001f) << 1)
|
|
|
|
| ((r & 0x80000000) >> 31);
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Do salting for crypt() and friends, and XOR with the permuted
|
|
|
|
* key.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
f = (r48l ^ r48r) & saltbits;
|
|
|
|
r48l ^= f ^ *kl++;
|
|
|
|
r48r ^= f ^ *kr++;
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Do sbox lookups (which shrink it back to 32 bits) and do the
|
|
|
|
* pbox permutation at the same time.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
f = psbox[0][m_sbox[0][r48l >> 12]]
|
|
|
|
| psbox[1][m_sbox[1][r48l & 0xfff]]
|
|
|
|
| psbox[2][m_sbox[2][r48r >> 12]]
|
|
|
|
| psbox[3][m_sbox[3][r48r & 0xfff]];
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
|
|
|
* Now that we've permuted things, complete f().
|
|
|
|
*/
|
|
|
|
f ^= l;
|
|
|
|
l = r;
|
|
|
|
r = f;
|
|
|
|
}
|
|
|
|
r = l;
|
|
|
|
l = f;
|
|
|
|
}
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
|
|
|
* Do final permutation (inverse of IP).
|
|
|
|
*/
|
|
|
|
*l_out = fp_maskl[0][l >> 24]
|
|
|
|
| fp_maskl[1][(l >> 16) & 0xff]
|
|
|
|
| fp_maskl[2][(l >> 8) & 0xff]
|
|
|
|
| fp_maskl[3][l & 0xff]
|
|
|
|
| fp_maskl[4][r >> 24]
|
|
|
|
| fp_maskl[5][(r >> 16) & 0xff]
|
|
|
|
| fp_maskl[6][(r >> 8) & 0xff]
|
|
|
|
| fp_maskl[7][r & 0xff];
|
|
|
|
*r_out = fp_maskr[0][l >> 24]
|
|
|
|
| fp_maskr[1][(l >> 16) & 0xff]
|
|
|
|
| fp_maskr[2][(l >> 8) & 0xff]
|
|
|
|
| fp_maskr[3][l & 0xff]
|
|
|
|
| fp_maskr[4][r >> 24]
|
|
|
|
| fp_maskr[5][(r >> 16) & 0xff]
|
|
|
|
| fp_maskr[6][(r >> 8) & 0xff]
|
|
|
|
| fp_maskr[7][r & 0xff];
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
des_cipher(const char *in, char *out, long salt, int count)
|
|
|
|
{
|
2001-10-16 03:15:18 +08:00
|
|
|
uint32 buffer[2];
|
2001-08-21 09:32:01 +08:00
|
|
|
uint32 l_out,
|
|
|
|
r_out,
|
|
|
|
rawl,
|
|
|
|
rawr;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (!des_initialised)
|
|
|
|
des_init();
|
|
|
|
|
|
|
|
setup_salt(salt);
|
|
|
|
|
2001-10-16 03:15:18 +08:00
|
|
|
/* copy data to avoid assuming input is word-aligned */
|
|
|
|
memcpy(buffer, in, sizeof(buffer));
|
|
|
|
|
|
|
|
rawl = ntohl(buffer[0]);
|
|
|
|
rawr = ntohl(buffer[1]);
|
2001-08-21 09:32:01 +08:00
|
|
|
|
|
|
|
retval = do_des(rawl, rawr, &l_out, &r_out, count);
|
2015-10-12 08:42:26 +08:00
|
|
|
if (retval)
|
|
|
|
return (retval);
|
2001-08-21 09:32:01 +08:00
|
|
|
|
2001-10-16 03:15:18 +08:00
|
|
|
buffer[0] = htonl(l_out);
|
|
|
|
buffer[1] = htonl(r_out);
|
|
|
|
|
|
|
|
/* copy data to avoid assuming output is word-aligned */
|
|
|
|
memcpy(out, buffer, sizeof(buffer));
|
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
return (retval);
|
|
|
|
}
|
|
|
|
|
|
|
|
char *
|
|
|
|
px_crypt_des(const char *key, const char *setting)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
uint32 count,
|
|
|
|
salt,
|
|
|
|
l,
|
|
|
|
r0,
|
|
|
|
r1,
|
|
|
|
keybuf[2];
|
2005-09-25 03:14:05 +08:00
|
|
|
char *p;
|
|
|
|
uint8 *q;
|
|
|
|
static char output[21];
|
2001-08-21 09:32:01 +08:00
|
|
|
|
|
|
|
if (!des_initialised)
|
|
|
|
des_init();
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Copy the key, shifting each character up by one bit and padding with
|
|
|
|
* zeros.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
q = (uint8 *) keybuf;
|
|
|
|
while (q - (uint8 *) keybuf - 8)
|
|
|
|
{
|
Fix incorrect password transformation in contrib/pgcrypto's DES crypt().
Overly tight coding caused the password transformation loop to stop
examining input once it had processed a byte equal to 0x80. Thus, if the
given password string contained such a byte (which is possible though not
highly likely in UTF8, and perhaps also in other non-ASCII encodings), all
subsequent characters would not contribute to the hash, making the password
much weaker than it appears on the surface.
This would only affect cases where applications used DES crypt() to encode
passwords before storing them in the database. If a weak password has been
created in this fashion, the hash will stop matching after this update has
been applied, so it will be easy to tell if any passwords were unexpectedly
weak. Changing to a different password would be a good idea in such a case.
(Since DES has been considered inadequately secure for some time, changing
to a different encryption algorithm can also be recommended.)
This code, and the bug, are shared with at least PHP, FreeBSD, and OpenBSD.
Since the other projects have already published their fixes, there is no
point in trying to keep this commit private.
This bug has been assigned CVE-2012-2143, and credit for its discovery goes
to Rubin Xu and Joseph Bonneau.
2012-05-30 22:53:30 +08:00
|
|
|
*q++ = *key << 1;
|
|
|
|
if (*key != '\0')
|
2001-08-21 09:32:01 +08:00
|
|
|
key++;
|
|
|
|
}
|
2005-09-25 03:14:05 +08:00
|
|
|
if (des_setkey((char *) keybuf))
|
2001-08-21 09:32:01 +08:00
|
|
|
return (NULL);
|
|
|
|
|
|
|
|
#ifndef DISABLE_XDES
|
|
|
|
if (*setting == _PASSWORD_EFMT1)
|
|
|
|
{
|
|
|
|
/*
|
2015-10-05 22:06:29 +08:00
|
|
|
* "new"-style: setting must be a 9-character (underscore, then 4
|
|
|
|
* bytes of count, then 4 bytes of salt) string. See CRYPT(3) under
|
|
|
|
* the "Extended crypt" heading for further details.
|
|
|
|
*
|
|
|
|
* Unlimited characters of the input key are used. This is known as
|
|
|
|
* the "Extended crypt" DES method.
|
|
|
|
*
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
2015-10-05 22:06:29 +08:00
|
|
|
if (strlen(setting) < 9)
|
|
|
|
ereport(ERROR,
|
|
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
|
|
errmsg("invalid salt")));
|
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
for (i = 1, count = 0L; i < 5; i++)
|
|
|
|
count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
|
|
|
|
|
|
|
|
for (i = 5, salt = 0L; i < 9; i++)
|
|
|
|
salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
|
|
|
|
|
|
|
|
while (*key)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Encrypt the key with itself.
|
|
|
|
*/
|
2005-09-25 03:14:05 +08:00
|
|
|
if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1))
|
2001-08-21 09:32:01 +08:00
|
|
|
return (NULL);
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
|
|
|
* And XOR with the next 8 characters of the key.
|
|
|
|
*/
|
|
|
|
q = (uint8 *) keybuf;
|
|
|
|
while (q - (uint8 *) keybuf - 8 && *key)
|
|
|
|
*q++ ^= *key++ << 1;
|
|
|
|
|
2005-09-25 03:14:05 +08:00
|
|
|
if (des_setkey((char *) keybuf))
|
2001-08-21 09:32:01 +08:00
|
|
|
return (NULL);
|
|
|
|
}
|
Replace a bunch more uses of strncpy() with safer coding.
strncpy() has a well-deserved reputation for being unsafe, so make an
effort to get rid of nearly all occurrences in HEAD.
A large fraction of the remaining uses were passing length less than or
equal to the known strlen() of the source, in which case no null-padding
can occur and the behavior is equivalent to memcpy(), though doubtless
slower and certainly harder to reason about. So just use memcpy() in
these cases.
In other cases, use either StrNCpy() or strlcpy() as appropriate (depending
on whether padding to the full length of the destination buffer seems
useful).
I left a few strncpy() calls alone in the src/timezone/ code, to keep it
in sync with upstream (the IANA tzcode distribution). There are also a
few such calls in ecpg that could possibly do with more analysis.
AFAICT, none of these changes are more than cosmetic, except for the four
occurrences in fe-secure-openssl.c, which are in fact buggy: an overlength
source leads to a non-null-terminated destination buffer and ensuing
misbehavior. These don't seem like security issues, first because no stack
clobber is possible and second because if your values of sslcert etc are
coming from untrusted sources then you've got problems way worse than this.
Still, it's undesirable to have unpredictable behavior for overlength
inputs, so back-patch those four changes to all active branches.
2015-01-25 02:05:42 +08:00
|
|
|
StrNCpy(output, setting, 10);
|
2001-08-21 09:32:01 +08:00
|
|
|
|
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* Double check that we weren't given a short setting. If we were, the
|
2012-04-24 10:43:09 +08:00
|
|
|
* above code will probably have created weird values for count and
|
2005-10-15 10:49:52 +08:00
|
|
|
* salt, but we don't really care. Just make sure the output string
|
|
|
|
* doesn't have an extra NUL in it.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
p = output + strlen(output);
|
|
|
|
}
|
|
|
|
else
|
2001-11-06 01:46:40 +08:00
|
|
|
#endif /* !DISABLE_XDES */
|
2001-08-21 09:32:01 +08:00
|
|
|
{
|
|
|
|
/*
|
2015-10-05 22:06:29 +08:00
|
|
|
* "old"-style: setting - 2 bytes of salt key - only up to the first 8
|
|
|
|
* characters of the input key are used.
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
count = 25;
|
|
|
|
|
2015-10-05 22:06:29 +08:00
|
|
|
if (strlen(setting) < 2)
|
|
|
|
ereport(ERROR,
|
|
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
|
|
errmsg("invalid salt")));
|
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
salt = (ascii_to_bin(setting[1]) << 6)
|
|
|
|
| ascii_to_bin(setting[0]);
|
|
|
|
|
|
|
|
output[0] = setting[0];
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
2005-10-15 10:49:52 +08:00
|
|
|
* If the encrypted password that the salt was extracted from is only
|
|
|
|
* 1 character long, the salt will be corrupted. We need to ensure
|
|
|
|
* that the output string doesn't have an extra NUL in it!
|
2001-08-21 09:32:01 +08:00
|
|
|
*/
|
|
|
|
output[1] = setting[1] ? setting[1] : output[0];
|
|
|
|
|
|
|
|
p = output + 2;
|
|
|
|
}
|
|
|
|
setup_salt(salt);
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
|
|
|
* Do it.
|
|
|
|
*/
|
|
|
|
if (do_des(0L, 0L, &r0, &r1, count))
|
|
|
|
return (NULL);
|
2001-10-25 13:50:21 +08:00
|
|
|
|
2001-08-21 09:32:01 +08:00
|
|
|
/*
|
|
|
|
* Now encode the result...
|
|
|
|
*/
|
|
|
|
l = (r0 >> 8);
|
|
|
|
*p++ = _crypt_a64[(l >> 18) & 0x3f];
|
|
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
|
|
|
|
|
|
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
|
|
|
|
*p++ = _crypt_a64[(l >> 18) & 0x3f];
|
|
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
|
|
|
|
|
|
l = r1 << 2;
|
|
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
|
|
*p = 0;
|
|
|
|
|
|
|
|
return (output);
|
|
|
|
}
|