mirror of
https://git.postgresql.org/git/postgresql.git
synced 2025-01-06 15:24:56 +08:00
1059 lines
25 KiB
C
1059 lines
25 KiB
C
|
/******************************************************************************
|
||
|
This file contains routines that can be bound to a Postgres backend and
|
||
|
called by the backend in the process of processing queries. The calling
|
||
|
format for these routines is dictated by Postgres architecture.
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "postgres.h"
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
#include "access/gist.h"
|
||
|
#include "access/rtree.h"
|
||
|
#include "utils/elog.h"
|
||
|
#include "utils/palloc.h"
|
||
|
#include "utils/builtins.h"
|
||
|
|
||
|
#include "cubedata.h"
|
||
|
|
||
|
#define max(a,b) ((a) > (b) ? (a) : (b))
|
||
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||
|
#define abs(a) ((a) < (0) ? (-a) : (a))
|
||
|
|
||
|
extern void set_parse_buffer(char *str);
|
||
|
extern int cube_yyparse();
|
||
|
|
||
|
/*
|
||
|
** Input/Output routines
|
||
|
*/
|
||
|
NDBOX * cube_in(char *str);
|
||
|
char * cube_out(NDBOX *cube);
|
||
|
|
||
|
|
||
|
/*
|
||
|
** GiST support methods
|
||
|
*/
|
||
|
bool g_cube_consistent(GISTENTRY *entry, NDBOX *query, StrategyNumber strategy);
|
||
|
GISTENTRY * g_cube_compress(GISTENTRY *entry);
|
||
|
GISTENTRY * g_cube_decompress(GISTENTRY *entry);
|
||
|
float * g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
|
||
|
GIST_SPLITVEC * g_cube_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
|
||
|
bool g_cube_leaf_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
|
||
|
bool g_cube_internal_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
|
||
|
NDBOX * g_cube_union(bytea *entryvec, int *sizep);
|
||
|
NDBOX * g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep);
|
||
|
bool * g_cube_same(NDBOX *b1, NDBOX *b2, bool *result);
|
||
|
|
||
|
/*
|
||
|
** R-tree suport functions
|
||
|
*/
|
||
|
bool cube_same(NDBOX *a, NDBOX *b);
|
||
|
bool cube_different(NDBOX *a, NDBOX *b);
|
||
|
bool cube_contains(NDBOX *a, NDBOX *b);
|
||
|
bool cube_contained (NDBOX *a, NDBOX *b);
|
||
|
bool cube_overlap(NDBOX *a, NDBOX *b);
|
||
|
NDBOX * cube_union(NDBOX *a, NDBOX *b);
|
||
|
NDBOX * cube_inter(NDBOX *a, NDBOX *b);
|
||
|
float * cube_size(NDBOX *a);
|
||
|
void rt_cube_size(NDBOX *a, float *sz);
|
||
|
|
||
|
/*
|
||
|
** These make no sense for this type, but R-tree wants them
|
||
|
*/
|
||
|
bool cube_over_left(NDBOX *a, NDBOX *b);
|
||
|
bool cube_over_right(NDBOX *a, NDBOX *b);
|
||
|
bool cube_left(NDBOX *a, NDBOX *b);
|
||
|
bool cube_right(NDBOX *a, NDBOX *b);
|
||
|
|
||
|
/*
|
||
|
** miscellaneous
|
||
|
*/
|
||
|
bool cube_lt(NDBOX *a, NDBOX *b);
|
||
|
bool cube_gt(NDBOX *a, NDBOX *b);
|
||
|
float * cube_distance(NDBOX *a, NDBOX *b);
|
||
|
|
||
|
/*
|
||
|
** Auxiliary funxtions
|
||
|
*/
|
||
|
static float distance_1D(float a1, float a2, float b1, float b2);
|
||
|
static NDBOX *swap_corners (NDBOX *a);
|
||
|
|
||
|
|
||
|
/*****************************************************************************
|
||
|
* Input/Output functions
|
||
|
*****************************************************************************/
|
||
|
|
||
|
/* NdBox = [(lowerleft),(upperright)] */
|
||
|
/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
|
||
|
NDBOX *
|
||
|
cube_in(char *str)
|
||
|
{
|
||
|
void * result;
|
||
|
|
||
|
set_parse_buffer( str );
|
||
|
|
||
|
if ( cube_yyparse(&result) != 0 ) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return ( (NDBOX *)result );
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* You might have noticed a slight inconsistency between the following
|
||
|
* declaration and the SQL definition:
|
||
|
* CREATE FUNCTION cube_out(opaque) RETURNS opaque ...
|
||
|
* The reason is that the argument pass into cube_out is really just a
|
||
|
* pointer. POSTGRES thinks all output functions are:
|
||
|
* char *out_func(char *);
|
||
|
*/
|
||
|
char *
|
||
|
cube_out(NDBOX *cube)
|
||
|
{
|
||
|
char *result;
|
||
|
char *p;
|
||
|
int equal = 1;
|
||
|
int dim = cube->dim;
|
||
|
int i;
|
||
|
|
||
|
if (cube == NULL)
|
||
|
return(NULL);
|
||
|
|
||
|
p = result = (char *) palloc(100);
|
||
|
|
||
|
/* while printing the first (LL) corner, check if it is equal
|
||
|
to the scond one */
|
||
|
p += sprintf(p, "(");
|
||
|
for ( i=0; i < dim; i++ ) {
|
||
|
p += sprintf(p, "%g", cube->x[i]);
|
||
|
p += sprintf(p, ", ");
|
||
|
if ( cube->x[i] != cube->x[i+dim] ) {
|
||
|
equal = 0;
|
||
|
}
|
||
|
}
|
||
|
p -= 2; /* get rid of the last ", " */
|
||
|
p += sprintf(p, ")");
|
||
|
|
||
|
if ( !equal ) {
|
||
|
p += sprintf(p, ",(");
|
||
|
for ( i=dim; i < dim * 2; i++ ) {
|
||
|
p += sprintf(p, "%g", cube->x[i]);
|
||
|
p += sprintf(p, ", ");
|
||
|
}
|
||
|
p -= 2;
|
||
|
p += sprintf(p, ")");
|
||
|
}
|
||
|
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*****************************************************************************
|
||
|
* GiST functions
|
||
|
*****************************************************************************/
|
||
|
|
||
|
/*
|
||
|
** The GiST Consistent method for boxes
|
||
|
** Should return false if for all data items x below entry,
|
||
|
** the predicate x op query == FALSE, where op is the oper
|
||
|
** corresponding to strategy in the pg_amop table.
|
||
|
*/
|
||
|
bool
|
||
|
g_cube_consistent(GISTENTRY *entry,
|
||
|
NDBOX *query,
|
||
|
StrategyNumber strategy)
|
||
|
{
|
||
|
/*
|
||
|
** if entry is not leaf, use g_cube_internal_consistent,
|
||
|
** else use g_cube_leaf_consistent
|
||
|
*/
|
||
|
if (GIST_LEAF(entry))
|
||
|
return(g_cube_leaf_consistent((NDBOX *)(entry->pred), query, strategy));
|
||
|
else
|
||
|
return(g_cube_internal_consistent((NDBOX *)(entry->pred), query, strategy));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** The GiST Union method for boxes
|
||
|
** returns the minimal bounding box that encloses all the entries in entryvec
|
||
|
*/
|
||
|
NDBOX *
|
||
|
g_cube_union(bytea *entryvec, int *sizep)
|
||
|
{
|
||
|
int numranges, i;
|
||
|
NDBOX *out = (NDBOX *)NULL;
|
||
|
NDBOX *tmp;
|
||
|
|
||
|
/*
|
||
|
fprintf(stderr, "union\n");
|
||
|
*/
|
||
|
numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY);
|
||
|
tmp = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
|
||
|
/*
|
||
|
*sizep = sizeof(NDBOX); -- NDBOX has variable size
|
||
|
*/
|
||
|
*sizep = tmp->size;
|
||
|
|
||
|
for (i = 1; i < numranges; i++) {
|
||
|
out = g_cube_binary_union(tmp, (NDBOX *)
|
||
|
(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred,
|
||
|
sizep);
|
||
|
/*
|
||
|
fprintf(stderr, "\t%s ^ %s -> %s\n", cube_out(tmp), cube_out((NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred), cube_out(out));
|
||
|
*/
|
||
|
if (i > 1) pfree(tmp);
|
||
|
tmp = out;
|
||
|
}
|
||
|
|
||
|
return(out);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** GiST Compress and Decompress methods for boxes
|
||
|
** do not do anything.
|
||
|
*/
|
||
|
GISTENTRY *
|
||
|
g_cube_compress(GISTENTRY *entry)
|
||
|
{
|
||
|
return(entry);
|
||
|
}
|
||
|
|
||
|
GISTENTRY *
|
||
|
g_cube_decompress(GISTENTRY *entry)
|
||
|
{
|
||
|
return(entry);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** The GiST Penalty method for boxes
|
||
|
** As in the R-tree paper, we use change in area as our penalty metric
|
||
|
*/
|
||
|
float *
|
||
|
g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
|
||
|
{
|
||
|
Datum ud;
|
||
|
float tmp1, tmp2;
|
||
|
|
||
|
ud = (Datum)cube_union((NDBOX *)(origentry->pred), (NDBOX *)(newentry->pred));
|
||
|
rt_cube_size((NDBOX *)ud, &tmp1);
|
||
|
rt_cube_size((NDBOX *)(origentry->pred), &tmp2);
|
||
|
*result = tmp1 - tmp2;
|
||
|
pfree((char *)ud);
|
||
|
/*
|
||
|
fprintf(stderr, "penalty\n");
|
||
|
fprintf(stderr, "\t%g\n", *result);
|
||
|
*/
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
** The GiST PickSplit method for boxes
|
||
|
** We use Guttman's poly time split algorithm
|
||
|
*/
|
||
|
GIST_SPLITVEC *
|
||
|
g_cube_picksplit(bytea *entryvec,
|
||
|
GIST_SPLITVEC *v)
|
||
|
{
|
||
|
OffsetNumber i, j;
|
||
|
NDBOX *datum_alpha, *datum_beta;
|
||
|
NDBOX *datum_l, *datum_r;
|
||
|
NDBOX *union_d, *union_dl, *union_dr;
|
||
|
NDBOX *inter_d;
|
||
|
bool firsttime;
|
||
|
float size_alpha, size_beta, size_union, size_inter;
|
||
|
float size_waste, waste;
|
||
|
float size_l, size_r;
|
||
|
int nbytes;
|
||
|
OffsetNumber seed_1 = 0, seed_2 = 0;
|
||
|
OffsetNumber *left, *right;
|
||
|
OffsetNumber maxoff;
|
||
|
|
||
|
/*
|
||
|
fprintf(stderr, "picksplit\n");
|
||
|
*/
|
||
|
maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
|
||
|
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
|
||
|
v->spl_left = (OffsetNumber *) palloc(nbytes);
|
||
|
v->spl_right = (OffsetNumber *) palloc(nbytes);
|
||
|
|
||
|
firsttime = true;
|
||
|
waste = 0.0;
|
||
|
|
||
|
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
|
||
|
datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
|
||
|
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
|
||
|
datum_beta = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
|
||
|
|
||
|
/* compute the wasted space by unioning these guys */
|
||
|
/* size_waste = size_union - size_inter; */
|
||
|
union_d = (NDBOX *)cube_union(datum_alpha, datum_beta);
|
||
|
rt_cube_size(union_d, &size_union);
|
||
|
inter_d = (NDBOX *)cube_inter(datum_alpha, datum_beta);
|
||
|
rt_cube_size(inter_d, &size_inter);
|
||
|
size_waste = size_union - size_inter;
|
||
|
|
||
|
pfree(union_d);
|
||
|
|
||
|
if (inter_d != (NDBOX *) NULL)
|
||
|
pfree(inter_d);
|
||
|
|
||
|
/*
|
||
|
* are these a more promising split than what we've
|
||
|
* already seen?
|
||
|
*/
|
||
|
|
||
|
if (size_waste > waste || firsttime) {
|
||
|
waste = size_waste;
|
||
|
seed_1 = i;
|
||
|
seed_2 = j;
|
||
|
firsttime = false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
left = v->spl_left;
|
||
|
v->spl_nleft = 0;
|
||
|
right = v->spl_right;
|
||
|
v->spl_nright = 0;
|
||
|
|
||
|
datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
|
||
|
datum_l = (NDBOX *)cube_union(datum_alpha, datum_alpha);
|
||
|
rt_cube_size((NDBOX *)datum_l, &size_l);
|
||
|
datum_beta = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);;
|
||
|
datum_r = (NDBOX *)cube_union(datum_beta, datum_beta);
|
||
|
rt_cube_size((NDBOX *)datum_r, &size_r);
|
||
|
|
||
|
/*
|
||
|
* Now split up the regions between the two seeds. An important
|
||
|
* property of this split algorithm is that the split vector v
|
||
|
* has the indices of items to be split in order in its left and
|
||
|
* right vectors. We exploit this property by doing a merge in
|
||
|
* the code that actually splits the page.
|
||
|
*
|
||
|
* For efficiency, we also place the new index tuple in this loop.
|
||
|
* This is handled at the very end, when we have placed all the
|
||
|
* existing tuples and i == maxoff + 1.
|
||
|
*/
|
||
|
|
||
|
maxoff = OffsetNumberNext(maxoff);
|
||
|
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
|
||
|
|
||
|
/*
|
||
|
* If we've already decided where to place this item, just
|
||
|
* put it on the right list. Otherwise, we need to figure
|
||
|
* out which page needs the least enlargement in order to
|
||
|
* store the item.
|
||
|
*/
|
||
|
|
||
|
if (i == seed_1) {
|
||
|
*left++ = i;
|
||
|
v->spl_nleft++;
|
||
|
continue;
|
||
|
} else if (i == seed_2) {
|
||
|
*right++ = i;
|
||
|
v->spl_nright++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* okay, which page needs least enlargement? */
|
||
|
datum_alpha = (NDBOX *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
|
||
|
union_dl = (NDBOX *)cube_union(datum_l, datum_alpha);
|
||
|
union_dr = (NDBOX *)cube_union(datum_r, datum_alpha);
|
||
|
rt_cube_size((NDBOX *)union_dl, &size_alpha);
|
||
|
rt_cube_size((NDBOX *)union_dr, &size_beta);
|
||
|
|
||
|
/* pick which page to add it to */
|
||
|
if (size_alpha - size_l < size_beta - size_r) {
|
||
|
pfree(datum_l);
|
||
|
pfree(union_dr);
|
||
|
datum_l = union_dl;
|
||
|
size_l = size_alpha;
|
||
|
*left++ = i;
|
||
|
v->spl_nleft++;
|
||
|
} else {
|
||
|
pfree(datum_r);
|
||
|
pfree(union_dl);
|
||
|
datum_r = union_dr;
|
||
|
size_r = size_alpha;
|
||
|
*right++ = i;
|
||
|
v->spl_nright++;
|
||
|
}
|
||
|
}
|
||
|
*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
|
||
|
|
||
|
v->spl_ldatum = (char *)datum_l;
|
||
|
v->spl_rdatum = (char *)datum_r;
|
||
|
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Equality method
|
||
|
*/
|
||
|
bool *
|
||
|
g_cube_same(NDBOX *b1, NDBOX *b2, bool *result)
|
||
|
{
|
||
|
if (cube_same(b1, b2))
|
||
|
*result = TRUE;
|
||
|
else *result = FALSE;
|
||
|
/*
|
||
|
fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
|
||
|
*/
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** SUPPORT ROUTINES
|
||
|
*/
|
||
|
bool
|
||
|
g_cube_leaf_consistent(NDBOX *key,
|
||
|
NDBOX *query,
|
||
|
StrategyNumber strategy)
|
||
|
{
|
||
|
bool retval;
|
||
|
|
||
|
/*
|
||
|
fprintf(stderr, "leaf_consistent, %d\n", strategy);
|
||
|
*/
|
||
|
switch(strategy) {
|
||
|
case RTLeftStrategyNumber:
|
||
|
retval = (bool)cube_left(key, query);
|
||
|
break;
|
||
|
case RTOverLeftStrategyNumber:
|
||
|
retval = (bool)cube_over_left(key,query);
|
||
|
break;
|
||
|
case RTOverlapStrategyNumber:
|
||
|
retval = (bool)cube_overlap(key, query);
|
||
|
break;
|
||
|
case RTOverRightStrategyNumber:
|
||
|
retval = (bool)cube_over_right(key, query);
|
||
|
break;
|
||
|
case RTRightStrategyNumber:
|
||
|
retval = (bool)cube_right(key, query);
|
||
|
break;
|
||
|
case RTSameStrategyNumber:
|
||
|
retval = (bool)cube_same(key, query);
|
||
|
break;
|
||
|
case RTContainsStrategyNumber:
|
||
|
retval = (bool)cube_contains(key, query);
|
||
|
break;
|
||
|
case RTContainedByStrategyNumber:
|
||
|
retval = (bool)cube_contained(key,query);
|
||
|
break;
|
||
|
default:
|
||
|
retval = FALSE;
|
||
|
}
|
||
|
return(retval);
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
g_cube_internal_consistent(NDBOX *key,
|
||
|
NDBOX *query,
|
||
|
StrategyNumber strategy)
|
||
|
{
|
||
|
bool retval;
|
||
|
|
||
|
/*
|
||
|
fprintf(stderr, "internal_consistent, %d\n", strategy);
|
||
|
*/
|
||
|
switch(strategy) {
|
||
|
case RTLeftStrategyNumber:
|
||
|
case RTOverLeftStrategyNumber:
|
||
|
retval = (bool)cube_over_left(key,query);
|
||
|
break;
|
||
|
case RTOverlapStrategyNumber:
|
||
|
retval = (bool)cube_overlap(key, query);
|
||
|
break;
|
||
|
case RTOverRightStrategyNumber:
|
||
|
case RTRightStrategyNumber:
|
||
|
retval = (bool)cube_right(key, query);
|
||
|
break;
|
||
|
case RTSameStrategyNumber:
|
||
|
case RTContainsStrategyNumber:
|
||
|
retval = (bool)cube_contains(key, query);
|
||
|
break;
|
||
|
case RTContainedByStrategyNumber:
|
||
|
retval = (bool)cube_overlap(key, query);
|
||
|
break;
|
||
|
default:
|
||
|
retval = FALSE;
|
||
|
}
|
||
|
return(retval);
|
||
|
}
|
||
|
|
||
|
NDBOX *
|
||
|
g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep)
|
||
|
{
|
||
|
NDBOX *retval;
|
||
|
|
||
|
retval = cube_union(r1, r2);
|
||
|
*sizep = retval->size;
|
||
|
|
||
|
return (retval);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* cube_union */
|
||
|
NDBOX *cube_union(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
int i;
|
||
|
NDBOX *result;
|
||
|
NDBOX *a = swap_corners(box_a);
|
||
|
NDBOX *b = swap_corners(box_b);
|
||
|
|
||
|
if ( a->dim >= b->dim ) {
|
||
|
result = palloc(a->size);
|
||
|
result->size = a->size;
|
||
|
result->dim = a->dim;
|
||
|
}
|
||
|
else {
|
||
|
result = palloc(b->size);
|
||
|
result->size = b->size;
|
||
|
result->dim = b->dim;
|
||
|
}
|
||
|
|
||
|
/* swap the box pointers if needed */
|
||
|
if ( a->dim < b->dim ) {
|
||
|
NDBOX * tmp = b; b = a; a = tmp;
|
||
|
}
|
||
|
|
||
|
/* use the potentially smaller of the two boxes (b) to fill in
|
||
|
the result, padding absent dimensions with zeroes*/
|
||
|
for ( i = 0; i < b->dim; i++ ) {
|
||
|
result->x[i] = b->x[i];
|
||
|
result->x[i + a->dim] = b->x[i + b->dim];
|
||
|
}
|
||
|
for ( i = b->dim; i < a->dim; i++ ) {
|
||
|
result->x[i] = 0;
|
||
|
result->x[i + a->dim] = 0;
|
||
|
}
|
||
|
|
||
|
/* compute the union */
|
||
|
for ( i = 0; i < a->dim; i++ ) {
|
||
|
result->x[i] = min(a->x[i], result->x[i]);
|
||
|
}
|
||
|
for ( i = a->dim; i < a->dim * 2; i++ ) {
|
||
|
result->x[i] = max(a->x[i], result->x[i]);
|
||
|
}
|
||
|
|
||
|
pfree(a);
|
||
|
pfree(b);
|
||
|
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
/* cube_inter */
|
||
|
NDBOX *cube_inter(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
int i;
|
||
|
NDBOX * result;
|
||
|
NDBOX *a = swap_corners(box_a);
|
||
|
NDBOX *b = swap_corners(box_b);
|
||
|
|
||
|
if ( a->dim >= b->dim ) {
|
||
|
result = palloc(a->size);
|
||
|
result->size = a->size;
|
||
|
result->dim = a->dim;
|
||
|
}
|
||
|
else {
|
||
|
result = palloc(b->size);
|
||
|
result->size = b->size;
|
||
|
result->dim = b->dim;
|
||
|
}
|
||
|
|
||
|
/* swap the box pointers if needed */
|
||
|
if ( a->dim < b->dim ) {
|
||
|
NDBOX * tmp = b; b = a; a = tmp;
|
||
|
}
|
||
|
|
||
|
/* use the potentially smaller of the two boxes (b) to fill in
|
||
|
the result, padding absent dimensions with zeroes*/
|
||
|
for ( i = 0; i < b->dim; i++ ) {
|
||
|
result->x[i] = b->x[i];
|
||
|
result->x[i + a->dim] = b->x[i + b->dim];
|
||
|
}
|
||
|
for ( i = b->dim; i < a->dim; i++ ) {
|
||
|
result->x[i] = 0;
|
||
|
result->x[i + a->dim] = 0;
|
||
|
}
|
||
|
|
||
|
/* compute the intersection */
|
||
|
for ( i = 0; i < a->dim; i++ ) {
|
||
|
result->x[i] = max(a->x[i], result->x[i]);
|
||
|
}
|
||
|
for ( i = a->dim; i < a->dim * 2; i++ ) {
|
||
|
result->x[i] = min(a->x[i], result->x[i]);
|
||
|
}
|
||
|
|
||
|
pfree(a);
|
||
|
pfree(b);
|
||
|
|
||
|
/* Is it OK to return a non-null intersection for non-overlapping boxes? */
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
/* cube_size */
|
||
|
float *cube_size(NDBOX *a)
|
||
|
{
|
||
|
int i,j;
|
||
|
float *result;
|
||
|
|
||
|
result = (float *) palloc(sizeof(float));
|
||
|
|
||
|
*result = 1.0;
|
||
|
for ( i = 0, j = a->dim; i < a->dim; i++,j++ ) {
|
||
|
*result=(*result)*abs((a->x[j] - a->x[i]));
|
||
|
}
|
||
|
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
rt_cube_size(NDBOX *a, float *size)
|
||
|
{
|
||
|
int i,j;
|
||
|
if (a == (NDBOX *) NULL)
|
||
|
*size = 0.0;
|
||
|
else {
|
||
|
*size = 1.0;
|
||
|
for ( i = 0, j = a->dim; i < a->dim; i++,j++ ) {
|
||
|
*size=(*size)*abs((a->x[j] - a->x[i]));
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* The following four methods compare the projections of the boxes
|
||
|
onto the 0-th coordinate axis. These methods are useless for dimensions
|
||
|
larger than 2, but it seems that R-tree requires all its strategies
|
||
|
map to real functions that return something */
|
||
|
|
||
|
/* is the right edge of (a) located to the left of
|
||
|
the right edge of (b)? */
|
||
|
bool cube_over_left(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
|
||
|
return( a->x[a->dim - 1] <= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b) );
|
||
|
}
|
||
|
|
||
|
/* is the left edge of (a) located to the right of
|
||
|
the left edge of (b)? */
|
||
|
bool cube_over_right(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
|
||
|
return( a->x[a->dim - 1] >= b->x[b->dim - 1] && !cube_left(a, b) && !cube_right(a, b) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/* return 'true' if the projection of 'a' is
|
||
|
entirely on the left of the projection of 'b' */
|
||
|
bool cube_left(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
|
||
|
return( a->x[a->dim - 1] < b->x[0]);
|
||
|
}
|
||
|
|
||
|
/* return 'true' if the projection of 'a' is
|
||
|
entirely on the right of the projection of 'b' */
|
||
|
bool cube_right(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
|
||
|
return( a->x[0] > b->x[b->dim - 1]);
|
||
|
}
|
||
|
|
||
|
/* make up a metric in which one box will be 'lower' than the other
|
||
|
-- this can be useful for srting and to determine uniqueness */
|
||
|
bool cube_lt(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
int i;
|
||
|
int dim;
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
dim = min(a->dim, b->dim);
|
||
|
|
||
|
/* if all common dimensions are equal, the cube with more dimensions wins */
|
||
|
if ( cube_same(a, b) ) {
|
||
|
if (a->dim < b->dim) {
|
||
|
return(TRUE);
|
||
|
}
|
||
|
else {
|
||
|
return(FALSE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* compare the common dimensions */
|
||
|
for ( i = 0; i < dim; i++ ) {
|
||
|
if ( a->x[i] > b->x[i] )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i] < b->x[i] )
|
||
|
return(TRUE);
|
||
|
}
|
||
|
for ( i = 0; i < dim; i++ ) {
|
||
|
if ( a->x[i + a->dim] > b->x[i + b->dim] )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] < b->x[i + b->dim] )
|
||
|
return(TRUE);
|
||
|
}
|
||
|
|
||
|
/* compare extra dimensions to zero */
|
||
|
if ( a->dim > b->dim ) {
|
||
|
for ( i = dim; i < a->dim; i++ ) {
|
||
|
if ( a->x[i] > 0 )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i] < 0 )
|
||
|
return(TRUE);
|
||
|
}
|
||
|
for ( i = 0; i < dim; i++ ) {
|
||
|
if ( a->x[i + a->dim] > 0 )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] < 0 )
|
||
|
return(TRUE);
|
||
|
}
|
||
|
}
|
||
|
if ( a->dim < b->dim ) {
|
||
|
for ( i = dim; i < b->dim; i++ ) {
|
||
|
if ( b->x[i] > 0 )
|
||
|
return(TRUE);
|
||
|
if ( b->x[i] < 0 )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
for ( i = 0; i < dim; i++ ) {
|
||
|
if ( b->x[i + b->dim] > 0 )
|
||
|
return(TRUE);
|
||
|
if ( b->x[i + b->dim] < 0 )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return(FALSE);
|
||
|
}
|
||
|
|
||
|
|
||
|
bool cube_gt(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
int i;
|
||
|
int dim;
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
dim = min(a->dim, b->dim);
|
||
|
|
||
|
/* if all common dimensions are equal, the cube with more dimensions wins */
|
||
|
if ( cube_same(a, b) ) {
|
||
|
if (a->dim > b->dim) {
|
||
|
return(TRUE);
|
||
|
}
|
||
|
else {
|
||
|
return(FALSE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* compare the common dimensions */
|
||
|
for ( i = 0; i < dim; i++ ) {
|
||
|
if ( a->x[i] < b->x[i] )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i] > b->x[i] )
|
||
|
return(TRUE);
|
||
|
}
|
||
|
for ( i = 0; i < dim; i++ ) {
|
||
|
if ( a->x[i + a->dim] < b->x[i + b->dim] )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] > b->x[i + b->dim] )
|
||
|
return(TRUE);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* compare extra dimensions to zero */
|
||
|
if ( a->dim > b->dim ) {
|
||
|
for ( i = dim; i < a->dim; i++ ) {
|
||
|
if ( a->x[i] < 0 )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i] > 0 )
|
||
|
return(TRUE);
|
||
|
}
|
||
|
for ( i = 0; i < dim; i++ ) {
|
||
|
if ( a->x[i + a->dim] < 0 )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] > 0 )
|
||
|
return(TRUE);
|
||
|
}
|
||
|
}
|
||
|
if ( a->dim < b->dim ) {
|
||
|
for ( i = dim; i < b->dim; i++ ) {
|
||
|
if ( b->x[i] < 0 )
|
||
|
return(TRUE);
|
||
|
if ( b->x[i] > 0 )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
for ( i = 0; i < dim; i++ ) {
|
||
|
if ( b->x[i + b->dim] < 0 )
|
||
|
return(TRUE);
|
||
|
if ( b->x[i + b->dim] > 0 )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return(FALSE);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Equal */
|
||
|
bool cube_same(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
int i;
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
|
||
|
/* swap the box pointers if necessary */
|
||
|
if ( a->dim < b->dim ) {
|
||
|
NDBOX * tmp = b; b = a; a = tmp;
|
||
|
}
|
||
|
|
||
|
for ( i = 0; i < b->dim; i++ ) {
|
||
|
if ( a->x[i] != b->x[i] )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] != b->x[i + b->dim] )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
|
||
|
/* all dimensions of (b) are compared to those of (a);
|
||
|
instead of those in (a) absent in (b), compare (a) to zero */
|
||
|
for ( i = b->dim; i < a->dim; i++ ) {
|
||
|
if ( a->x[i] != 0 )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] != 0 )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
|
||
|
pfree(a);
|
||
|
pfree(b);
|
||
|
|
||
|
return(TRUE);
|
||
|
}
|
||
|
|
||
|
/* Different */
|
||
|
bool cube_different(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
return(!cube_same(box_a, box_b));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Contains */
|
||
|
/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
|
||
|
bool cube_contains(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
int i;
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
|
||
|
if ( a->dim < b->dim ) {
|
||
|
/* the further comparisons will make sense if the
|
||
|
excess dimensions of (b) were zeroes */
|
||
|
for ( i = a->dim; i < b->dim; i++ ) {
|
||
|
if ( b->x[i] != 0 )
|
||
|
return(FALSE);
|
||
|
if ( b->x[i + b->dim] != 0 )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Can't care less about the excess dimensions of (a), if any */
|
||
|
for ( i = 0; i < min(a->dim, b->dim); i++ ) {
|
||
|
if ( a->x[i] > b->x[i] )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] < b->x[i + b->dim] )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
|
||
|
pfree(a);
|
||
|
pfree(b);
|
||
|
|
||
|
return(TRUE);
|
||
|
}
|
||
|
|
||
|
/* Contained */
|
||
|
/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
|
||
|
bool cube_contained (NDBOX *a, NDBOX *b)
|
||
|
{
|
||
|
if (cube_contains(b,a) == TRUE)
|
||
|
return(TRUE);
|
||
|
else
|
||
|
return(FALSE);
|
||
|
}
|
||
|
|
||
|
/* Overlap */
|
||
|
/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
|
||
|
bool cube_overlap(NDBOX *box_a, NDBOX *box_b)
|
||
|
{
|
||
|
int i;
|
||
|
NDBOX *a;
|
||
|
NDBOX *b;
|
||
|
|
||
|
/* This *very bad* error was found in the source:
|
||
|
if ( (a==NULL) || (b=NULL) )
|
||
|
return(FALSE);
|
||
|
*/
|
||
|
if ( (box_a==NULL) || (box_b==NULL) )
|
||
|
return(FALSE);
|
||
|
|
||
|
a = swap_corners(box_a);
|
||
|
b = swap_corners(box_b);
|
||
|
|
||
|
/* swap the box pointers if needed */
|
||
|
if ( a->dim < b->dim ) {
|
||
|
NDBOX * tmp = b; b = a; a = tmp;
|
||
|
}
|
||
|
|
||
|
/* compare within the dimensions of (b) */
|
||
|
for ( i = 0; i < b->dim; i++ ) {
|
||
|
if ( a->x[i] > b->x[i + b->dim] )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] < b->x[i] )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
|
||
|
/* compare to zero those dimensions in (a) absent in (b) */
|
||
|
for ( i = b->dim; i < a->dim; i++ ) {
|
||
|
if ( a->x[i] > 0 )
|
||
|
return(FALSE);
|
||
|
if ( a->x[i + a->dim] < 0 )
|
||
|
return(FALSE);
|
||
|
}
|
||
|
|
||
|
pfree(a);
|
||
|
pfree(b);
|
||
|
|
||
|
return(TRUE);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Distance */
|
||
|
/* The distance is computed as a per axis sum of the squared distances
|
||
|
between 1D projections of the boxes onto Cartesian axes. Assuming zero
|
||
|
distance between overlapping projections, this metric coincides with the
|
||
|
"common sense" geometric distance */
|
||
|
float *cube_distance(NDBOX *a, NDBOX *b)
|
||
|
{
|
||
|
int i;
|
||
|
double d, distance;
|
||
|
float *result;
|
||
|
|
||
|
result = (float *) palloc(sizeof(float));
|
||
|
|
||
|
/* swap the box pointers if needed */
|
||
|
if ( a->dim < b->dim ) {
|
||
|
NDBOX * tmp = b; b = a; a = tmp;
|
||
|
}
|
||
|
|
||
|
distance = 0.0;
|
||
|
/* compute within the dimensions of (b) */
|
||
|
for ( i = 0; i < b->dim; i++ ) {
|
||
|
d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
|
||
|
distance += d*d;
|
||
|
}
|
||
|
|
||
|
/* compute distance to zero for those dimensions in (a) absent in (b) */
|
||
|
for ( i = b->dim; i < a->dim; i++ ) {
|
||
|
d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
|
||
|
distance += d*d;
|
||
|
}
|
||
|
|
||
|
*result = (float)sqrt(distance);
|
||
|
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
static float distance_1D(float a1, float a2, float b1, float b2)
|
||
|
{
|
||
|
/* interval (a) is entirely on the left of (b) */
|
||
|
if( (a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2) ) {
|
||
|
return ( min( b1, b2 ) - max( a1, a2 ) );
|
||
|
}
|
||
|
|
||
|
/* interval (a) is entirely on the right of (b) */
|
||
|
if( (a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2) ) {
|
||
|
return ( min( a1, a2 ) - max( b1, b2 ) );
|
||
|
}
|
||
|
|
||
|
/* the rest are all sorts of intersections */
|
||
|
return(0.0);
|
||
|
}
|
||
|
|
||
|
/* normalize the box's co-ordinates by placing min(xLL,xUR) to LL
|
||
|
and max(xLL,xUR) to UR
|
||
|
*/
|
||
|
static NDBOX *swap_corners ( NDBOX *a )
|
||
|
{
|
||
|
int i, j;
|
||
|
NDBOX * result;
|
||
|
|
||
|
result = palloc(a->size);
|
||
|
result->size = a->size;
|
||
|
result->dim = a->dim;
|
||
|
|
||
|
for ( i = 0, j = a->dim; i < a->dim; i++, j++ ) {
|
||
|
result->x[i] = min(a->x[i],a->x[j]);
|
||
|
result->x[j] = max(a->x[i],a->x[j]);
|
||
|
}
|
||
|
|
||
|
return(result);
|
||
|
}
|