postgresql/contrib/intarray/_int_gist.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

631 lines
15 KiB
C
Raw Normal View History

/*
2010-09-21 04:08:53 +08:00
* contrib/intarray/_int_gist.c
*/
#include "postgres.h"
#include <limits.h>
#include "_int.h"
#include "access/gist.h"
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
#include "access/reloptions.h"
#include "access/stratnum.h"
#define GETENTRY(vec,pos) ((ArrayType *) DatumGetPointer((vec)->vector[(pos)].key))
2003-06-12 03:31:05 +08:00
/*
* Control the maximum sparseness of compressed keys.
*
* The upper safe bound for this limit is half the maximum allocatable array
* size. A lower bound would give more guarantees that pathological data
* wouldn't eat excessive CPU and memory, but at the expense of breaking
* possibly working (after a fashion) indexes.
*/
#define MAXNUMELTS (Min((MaxAllocSize / sizeof(Datum)),((MaxAllocSize - ARR_OVERHEAD_NONULLS(1)) / sizeof(int)))/2)
/* or: #define MAXNUMELTS 1000000 */
2003-06-12 03:31:05 +08:00
/*
** GiST support methods
*/
PG_FUNCTION_INFO_V1(g_int_consistent);
PG_FUNCTION_INFO_V1(g_int_compress);
PG_FUNCTION_INFO_V1(g_int_decompress);
PG_FUNCTION_INFO_V1(g_int_penalty);
PG_FUNCTION_INFO_V1(g_int_picksplit);
PG_FUNCTION_INFO_V1(g_int_union);
PG_FUNCTION_INFO_V1(g_int_same);
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
PG_FUNCTION_INFO_V1(g_int_options);
2003-06-12 03:31:05 +08:00
/*
** The GiST Consistent method for _intments
** Should return false if for all data items x below entry,
** the predicate x op query == false, where op is the oper
2003-06-12 03:31:05 +08:00
** corresponding to strategy in the pg_amop table.
*/
Datum
g_int_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
ArrayType *query = PG_GETARG_ARRAYTYPE_P_COPY(1);
2003-06-12 03:31:05 +08:00
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
bool retval;
2003-06-12 03:31:05 +08:00
/* this is exact except for RTSameStrategyNumber */
*recheck = (strategy == RTSameStrategyNumber);
if (strategy == BooleanSearchStrategy)
{
retval = execconsistent((QUERYTYPE *) query,
2003-06-12 03:31:05 +08:00
(ArrayType *) DatumGetPointer(entry->key),
GIST_LEAF(entry));
pfree(query);
PG_RETURN_BOOL(retval);
}
2003-06-12 03:31:05 +08:00
/* sort query for fast search, key is already sorted */
CHECKARRVALID(query);
2003-06-12 03:31:05 +08:00
PREPAREARR(query);
switch (strategy)
{
case RTOverlapStrategyNumber:
retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
query);
break;
case RTSameStrategyNumber:
if (GIST_LEAF(entry))
DirectFunctionCall3(g_int_same,
2003-06-12 03:31:05 +08:00
entry->key,
PointerGetDatum(query),
PointerGetDatum(&retval));
2003-06-12 03:31:05 +08:00
else
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
query);
break;
case RTContainsStrategyNumber:
case RTOldContainsStrategyNumber:
2003-06-12 03:31:05 +08:00
retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
query);
break;
case RTContainedByStrategyNumber:
case RTOldContainedByStrategyNumber:
/*
* This code is unreachable as of intarray 1.4, because the <@
* operator has been removed from the opclass. We keep it for now
* to support older versions of the SQL definitions.
*/
2003-06-12 03:31:05 +08:00
if (GIST_LEAF(entry))
retval = inner_int_contains(query,
(ArrayType *) DatumGetPointer(entry->key));
else
Fix intarray's GiST opclasses to not fail for empty arrays with <@. contrib/intarray considers "arraycol <@ constant-array" to be indexable, but its GiST opclass code fails to reliably find index entries for empty array values (which of course should trivially match such queries). This is because the test condition to see whether we should descend through a non-leaf node is wrong. Unfortunately, empty array entries could be anywhere in the index, as these index opclasses are currently designed. So there's no way to fix this except by lobotomizing <@ indexscans to scan the whole index ... which is what this patch does. That's pretty unfortunate: the performance is now actually worse than a seqscan, in most cases. We'd be better off to remove <@ from the GiST opclasses entirely, and perhaps a future non-back-patchable patch will do so. In the meantime, applications whose performance is adversely impacted have a couple of options. They could switch to a GIN index, which doesn't have this bug, or they could replace "arraycol <@ constant-array" with "arraycol <@ constant-array AND arraycol && constant-array". That will provide about the same performance as before, and it will find all non-empty subsets of the given constant-array, which is all that could reliably be expected of the query before. While at it, add some more regression test cases to improve code coverage of contrib/intarray. In passing, adjust resize_intArrayType so that when it's returning an empty array, it uses construct_empty_array for that rather than cowboy hacking on the input array. While the hack produces an array that looks valid for most purposes, it isn't bitwise equal to empty arrays produced by other code paths, which could have subtle odd effects. I don't think this code path is performance-critical enough to justify such shortcuts. (Back-patch this part only as far as v11; before commit 01783ac36 we were not careful about this in other intarray code paths either.) Back-patch the <@ fixes to all supported versions, since this was broken from day one. Patch by me; thanks to Alexander Korotkov for review. Discussion: https://postgr.es/m/458.1565114141@sss.pgh.pa.us
2019-08-07 06:04:51 +08:00
{
/*
* Unfortunately, because empty arrays could be anywhere in
* the index, we must search the whole tree.
*/
retval = true;
}
2003-06-12 03:31:05 +08:00
break;
default:
retval = false;
2003-06-12 03:31:05 +08:00
}
pfree(query);
2003-06-12 03:31:05 +08:00
PG_RETURN_BOOL(retval);
}
Datum
g_int_union(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
2003-06-12 03:31:05 +08:00
int *size = (int *) PG_GETARG_POINTER(1);
int32 i,
2003-06-12 03:31:05 +08:00
*ptr;
ArrayType *res;
int totlen = 0;
2003-06-12 03:31:05 +08:00
for (i = 0; i < entryvec->n; i++)
{
ArrayType *ent = GETENTRY(entryvec, i);
CHECKARRVALID(ent);
totlen += ARRNELEMS(ent);
}
2003-06-12 03:31:05 +08:00
res = new_intArrayType(totlen);
ptr = ARRPTR(res);
for (i = 0; i < entryvec->n; i++)
2003-06-12 03:31:05 +08:00
{
ArrayType *ent = GETENTRY(entryvec, i);
int nel;
nel = ARRNELEMS(ent);
memcpy(ptr, ARRPTR(ent), nel * sizeof(int32));
ptr += nel;
2003-06-12 03:31:05 +08:00
}
QSORT(res, 1);
res = _int_unique(res);
*size = VARSIZE(res);
PG_RETURN_POINTER(res);
}
/*
** GiST Compress and Decompress methods
*/
Datum
g_int_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;
ArrayType *r;
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
int num_ranges = G_INT_GET_NUMRANGES();
int len,
lenr;
2003-06-12 03:31:05 +08:00
int *dr;
int i,
j,
2003-06-12 03:31:05 +08:00
cand;
int64 min;
2003-06-12 03:31:05 +08:00
if (entry->leafkey)
{
r = DatumGetArrayTypePCopy(entry->key);
CHECKARRVALID(r);
2003-06-12 03:31:05 +08:00
PREPAREARR(r);
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
if (ARRNELEMS(r) >= 2 * num_ranges)
elog(NOTICE, "input array is too big (%d maximum allowed, %d current), use gist__intbig_ops opclass instead",
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
2 * num_ranges - 1, ARRNELEMS(r));
2003-06-12 03:31:05 +08:00
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, false);
2003-06-12 03:31:05 +08:00
PG_RETURN_POINTER(retval);
}
/*
* leaf entries never compress one more time, only when entry->leafkey
* ==true, so now we work only with internal keys
*/
r = DatumGetArrayTypeP(entry->key);
CHECKARRVALID(r);
if (ARRISEMPTY(r))
2003-06-12 03:31:05 +08:00
{
if (r != (ArrayType *) DatumGetPointer(entry->key))
pfree(r);
PG_RETURN_POINTER(entry);
}
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
if ((len = ARRNELEMS(r)) >= 2 * num_ranges)
2003-06-12 03:31:05 +08:00
{ /* compress */
if (r == (ArrayType *) DatumGetPointer(entry->key))
r = DatumGetArrayTypePCopy(entry->key);
2003-06-12 03:31:05 +08:00
r = resize_intArrayType(r, 2 * (len));
dr = ARRPTR(r);
/*
* "len" at this point is the number of ranges we will construct.
* "lenr" is the number of ranges we must eventually remove by
* merging, we must be careful to remove no more than this number.
*/
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
lenr = len - num_ranges;
/*
* Initially assume we can merge consecutive ints into a range. but we
* must count every value removed and stop when lenr runs out
*/
for (j = i = len - 1; i > 0 && lenr > 0; i--, j--)
{
int r_end = dr[i];
int r_start = r_end;
while (i > 0 && lenr > 0 && dr[i - 1] == r_start - 1)
--r_start, --i, --lenr;
dr[2 * j] = r_start;
dr[2 * j + 1] = r_end;
}
/* just copy the rest, if any, as trivial ranges */
for (; i >= 0; i--, j--)
dr[2 * j] = dr[2 * j + 1] = dr[i];
2003-06-12 03:31:05 +08:00
if (++j)
{
/*
* shunt everything down to start at the right place
*/
memmove((void *) &dr[0], (void *) &dr[2 * j], 2 * (len - j) * sizeof(int32));
}
/*
* make "len" be number of array elements, not ranges
*/
len = 2 * (len - j);
2003-06-12 03:31:05 +08:00
cand = 1;
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
while (len > num_ranges * 2)
2003-06-12 03:31:05 +08:00
{
min = PG_INT64_MAX;
2003-06-12 03:31:05 +08:00
for (i = 2; i < len; i += 2)
if (min > ((int64) dr[i] - (int64) dr[i - 1]))
2003-06-12 03:31:05 +08:00
{
min = ((int64) dr[i] - (int64) dr[i - 1]);
2003-06-12 03:31:05 +08:00
cand = i;
}
memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int32));
2003-06-12 03:31:05 +08:00
len -= 2;
}
/*
* check sparseness of result
*/
lenr = internal_size(dr, len);
if (lenr < 0 || lenr > MAXNUMELTS)
ereport(ERROR,
(errmsg("data is too sparse, recreate index using gist__intbig_ops opclass instead")));
2003-06-12 03:31:05 +08:00
r = resize_intArrayType(r, len);
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, false);
2003-06-12 03:31:05 +08:00
PG_RETURN_POINTER(retval);
}
else
PG_RETURN_POINTER(entry);
}
Datum
g_int_decompress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;
ArrayType *r;
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
int num_ranges = G_INT_GET_NUMRANGES();
2003-06-12 03:31:05 +08:00
int *dr,
lenr;
ArrayType *in;
int lenin;
int *din;
int i,
j;
in = DatumGetArrayTypeP(entry->key);
2003-06-12 03:31:05 +08:00
CHECKARRVALID(in);
if (ARRISEMPTY(in))
{
if (in != (ArrayType *) DatumGetPointer(entry->key))
{
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(in),
entry->rel, entry->page, entry->offset, false);
PG_RETURN_POINTER(retval);
}
2003-06-12 03:31:05 +08:00
PG_RETURN_POINTER(entry);
}
2003-06-12 03:31:05 +08:00
lenin = ARRNELEMS(in);
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
if (lenin < 2 * num_ranges)
2003-06-12 03:31:05 +08:00
{ /* not compressed value */
if (in != (ArrayType *) DatumGetPointer(entry->key))
{
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(in),
entry->rel, entry->page, entry->offset, false);
2003-06-12 03:31:05 +08:00
PG_RETURN_POINTER(retval);
}
PG_RETURN_POINTER(entry);
}
din = ARRPTR(in);
lenr = internal_size(din, lenin);
if (lenr < 0 || lenr > MAXNUMELTS)
ereport(ERROR,
(errmsg("compressed array is too big, recreate index using gist__intbig_ops opclass instead")));
2003-06-12 03:31:05 +08:00
r = new_intArrayType(lenr);
dr = ARRPTR(r);
for (i = 0; i < lenin; i += 2)
for (j = din[i]; j <= din[i + 1]; j++)
if ((!i) || *(dr - 1) != j)
*dr++ = j;
if (in != (ArrayType *) DatumGetPointer(entry->key))
pfree(in);
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page, entry->offset, false);
2003-06-12 03:31:05 +08:00
PG_RETURN_POINTER(retval);
}
/*
** The GiST Penalty method for _intments
*/
Datum
g_int_penalty(PG_FUNCTION_ARGS)
{
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
float *result = (float *) PG_GETARG_POINTER(2);
ArrayType *ud;
float tmp1,
tmp2;
ud = inner_int_union((ArrayType *) DatumGetPointer(origentry->key),
(ArrayType *) DatumGetPointer(newentry->key));
rt__int_size(ud, &tmp1);
rt__int_size((ArrayType *) DatumGetPointer(origentry->key), &tmp2);
*result = tmp1 - tmp2;
pfree(ud);
PG_RETURN_POINTER(result);
}
Datum
g_int_same(PG_FUNCTION_ARGS)
{
ArrayType *a = PG_GETARG_ARRAYTYPE_P(0);
ArrayType *b = PG_GETARG_ARRAYTYPE_P(1);
2003-06-12 03:31:05 +08:00
bool *result = (bool *) PG_GETARG_POINTER(2);
int32 n = ARRNELEMS(a);
int32 *da,
2003-06-12 03:31:05 +08:00
*db;
CHECKARRVALID(a);
CHECKARRVALID(b);
2003-06-12 03:31:05 +08:00
if (n != ARRNELEMS(b))
{
*result = false;
PG_RETURN_POINTER(result);
}
*result = true;
2003-06-12 03:31:05 +08:00
da = ARRPTR(a);
db = ARRPTR(b);
while (n--)
{
2003-06-12 03:31:05 +08:00
if (*da++ != *db++)
{
*result = false;
2003-06-12 03:31:05 +08:00
break;
}
}
2003-06-12 03:31:05 +08:00
PG_RETURN_POINTER(result);
}
/*****************************************************************
** Common GiST Method
*****************************************************************/
typedef struct
{
OffsetNumber pos;
float cost;
} SPLITCOST;
static int
comparecost(const void *a, const void *b)
{
if (((const SPLITCOST *) a)->cost == ((const SPLITCOST *) b)->cost)
2003-06-12 03:31:05 +08:00
return 0;
else
return (((const SPLITCOST *) a)->cost > ((const SPLITCOST *) b)->cost) ? 1 : -1;
2003-06-12 03:31:05 +08:00
}
/*
** The GiST PickSplit method for _intments
** We use Guttman's poly time split algorithm
*/
Datum
g_int_picksplit(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
2003-06-12 03:31:05 +08:00
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
OffsetNumber i,
j;
ArrayType *datum_alpha,
*datum_beta;
ArrayType *datum_l,
*datum_r;
ArrayType *union_d,
*union_dl,
*union_dr;
ArrayType *inter_d;
bool firsttime;
float size_alpha,
size_beta,
size_union,
size_inter;
float size_waste,
waste;
float size_l,
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
OffsetNumber maxoff;
SPLITCOST *costvector;
#ifdef GIST_DEBUG
elog(DEBUG3, "--------picksplit %d", entryvec->n);
2003-06-12 03:31:05 +08:00
#endif
maxoff = entryvec->n - 2;
2003-06-12 03:31:05 +08:00
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
datum_alpha = GETENTRY(entryvec, i);
2003-06-12 03:31:05 +08:00
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
datum_beta = GETENTRY(entryvec, j);
2003-06-12 03:31:05 +08:00
/* compute the wasted space by unioning these guys */
/* size_waste = size_union - size_inter; */
union_d = inner_int_union(datum_alpha, datum_beta);
rt__int_size(union_d, &size_union);
inter_d = inner_int_inter(datum_alpha, datum_beta);
rt__int_size(inter_d, &size_inter);
size_waste = size_union - size_inter;
pfree(union_d);
pfree(inter_d);
2003-06-12 03:31:05 +08:00
/*
* are these a more promising split that what we've already seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
if (seed_1 == 0 || seed_2 == 0)
{
seed_1 = 1;
seed_2 = 2;
}
datum_alpha = GETENTRY(entryvec, seed_1);
2003-06-12 03:31:05 +08:00
datum_l = copy_intArrayType(datum_alpha);
rt__int_size(datum_l, &size_l);
datum_beta = GETENTRY(entryvec, seed_2);
2003-06-12 03:31:05 +08:00
datum_r = copy_intArrayType(datum_beta);
rt__int_size(datum_r, &size_r);
maxoff = OffsetNumberNext(maxoff);
/*
* sort entries
*/
costvector = (SPLITCOST *) palloc(sizeof(SPLITCOST) * maxoff);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
costvector[i - 1].pos = i;
datum_alpha = GETENTRY(entryvec, i);
2003-06-12 03:31:05 +08:00
union_d = inner_int_union(datum_l, datum_alpha);
rt__int_size(union_d, &size_alpha);
pfree(union_d);
union_d = inner_int_union(datum_r, datum_alpha);
rt__int_size(union_d, &size_beta);
pfree(union_d);
costvector[i - 1].cost = Abs((size_alpha - size_l) - (size_beta - size_r));
2003-06-12 03:31:05 +08:00
}
qsort((void *) costvector, maxoff, sizeof(SPLITCOST), comparecost);
/*
* Now split up the regions between the two seeds. An important property
* of this split algorithm is that the split vector v has the indices of
* items to be split in order in its left and right vectors. We exploit
* this property by doing a merge in the code that actually splits the
* page.
*
* For efficiency, we also place the new index tuple in this loop. This is
* handled at the very end, when we have placed all the existing tuples
* and i == maxoff + 1.
*/
for (j = 0; j < maxoff; j++)
{
i = costvector[j].pos;
/*
* If we've already decided where to place this item, just put it on
* the right list. Otherwise, we need to figure out which page needs
* the least enlargement in order to store the item.
*/
if (i == seed_1)
{
*left++ = i;
v->spl_nleft++;
continue;
}
else if (i == seed_2)
{
*right++ = i;
v->spl_nright++;
continue;
}
/* okay, which page needs least enlargement? */
datum_alpha = GETENTRY(entryvec, i);
2003-06-12 03:31:05 +08:00
union_dl = inner_int_union(datum_l, datum_alpha);
union_dr = inner_int_union(datum_r, datum_alpha);
rt__int_size(union_dl, &size_alpha);
rt__int_size(union_dr, &size_beta);
/* pick which page to add it to */
if (size_alpha - size_l < size_beta - size_r + WISH_F(v->spl_nleft, v->spl_nright, 0.01))
{
pfree(datum_l);
pfree(union_dr);
2003-06-12 03:31:05 +08:00
datum_l = union_dl;
size_l = size_alpha;
*left++ = i;
v->spl_nleft++;
}
else
{
pfree(datum_r);
pfree(union_dl);
2003-06-12 03:31:05 +08:00
datum_r = union_dr;
size_r = size_beta;
*right++ = i;
v->spl_nright++;
}
}
pfree(costvector);
*right = *left = FirstOffsetNumber;
v->spl_ldatum = PointerGetDatum(datum_l);
v->spl_rdatum = PointerGetDatum(datum_r);
PG_RETURN_POINTER(v);
}
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-31 00:17:11 +08:00
Datum
g_int_options(PG_FUNCTION_ARGS)
{
local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
init_local_reloptions(relopts, sizeof(GISTIntArrayOptions));
add_local_int_reloption(relopts, "numranges",
"number of ranges for compression",
G_INT_NUMRANGES_DEFAULT, 1, G_INT_NUMRANGES_MAX,
offsetof(GISTIntArrayOptions, num_ranges));
PG_RETURN_VOID();
}