postgresql/contrib/tablefunc/tablefunc.c

1698 lines
45 KiB
C
Raw Normal View History

/*
* tablefunc
*
* Sample to demonstrate C functions which return setof scalar
* and setof composite.
* Joe Conway <mail@joeconway.com>
* And contributors:
* Nabil Sayegh <postgresql@e-trolley.de>
*
2004-08-29 12:13:13 +08:00
* Copyright (c) 2002-2004, PostgreSQL Global Development Group
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without a written agreement
* is hereby granted, provided that the above copyright notice and this
* paragraph and the following two paragraphs appear in all copies.
2002-09-05 04:31:48 +08:00
*
* IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
* LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
* DOCUMENTATION, EVEN IF THE AUTHOR OR DISTRIBUTORS HAVE BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
2002-09-05 04:31:48 +08:00
*
* THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE AUTHOR AND DISTRIBUTORS HAS NO OBLIGATIONS TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*/
#include "postgres.h"
#include <math.h>
#include "fmgr.h"
#include "funcapi.h"
#include "executor/spi.h"
#include "lib/stringinfo.h"
#include "miscadmin.h"
#include "utils/builtins.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "tablefunc.h"
2003-08-04 08:43:34 +08:00
static int load_categories_hash(char *cats_sql, MemoryContext per_query_ctx);
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
static Tuplestorestate *get_crosstab_tuplestore(char *sql,
2003-08-04 08:43:34 +08:00
int num_categories,
TupleDesc tupdesc,
MemoryContext per_query_ctx);
static void validateConnectbyTupleDesc(TupleDesc tupdesc, bool show_branch, bool show_serial);
static bool compatCrosstabTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2);
static bool compatConnectbyTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2);
static void get_normal_pair(float8 *x1, float8 *x2);
static TupleDesc make_crosstab_tupledesc(TupleDesc spi_tupdesc,
int num_categories);
static Tuplestorestate *connectby(char *relname,
2002-09-05 04:31:48 +08:00
char *key_fld,
char *parent_key_fld,
2003-08-04 08:43:34 +08:00
char *orderby_fld,
2002-09-05 04:31:48 +08:00
char *branch_delim,
char *start_with,
int max_depth,
bool show_branch,
bool show_serial,
2002-09-05 04:31:48 +08:00
MemoryContext per_query_ctx,
AttInMetadata *attinmeta);
static Tuplestorestate *build_tuplestore_recursively(char *key_fld,
2002-09-05 04:31:48 +08:00
char *parent_key_fld,
char *relname,
char *orderby_fld,
2002-09-05 04:31:48 +08:00
char *branch_delim,
char *start_with,
char *branch,
int level,
int *serial,
2002-09-05 04:31:48 +08:00
int max_depth,
bool show_branch,
bool show_serial,
2002-09-05 04:31:48 +08:00
MemoryContext per_query_ctx,
AttInMetadata *attinmeta,
Tuplestorestate *tupstore);
static char *quote_literal_cstr(char *rawstr);
typedef struct
{
2002-09-05 04:31:48 +08:00
float8 mean; /* mean of the distribution */
float8 stddev; /* stddev of the distribution */
float8 carry_val; /* hold second generated value */
bool use_carry; /* use second generated value */
} normal_rand_fctx;
typedef struct
{
2002-09-05 04:31:48 +08:00
SPITupleTable *spi_tuptable; /* sql results from user query */
char *lastrowid; /* rowid of the last tuple sent */
} crosstab_fctx;
#define GET_TEXT(cstrp) DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(cstrp)))
#define GET_STR(textp) DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(textp)))
#define xpfree(var_) \
do { \
if (var_ != NULL) \
{ \
pfree(var_); \
var_ = NULL; \
} \
} while (0)
/* sign, 10 digits, '\0' */
#define INT32_STRLEN 12
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* hash table support */
static HTAB *crosstab_HashTable;
/* The information we cache about loaded procedures */
typedef struct crosstab_cat_desc
{
char *catname;
2003-08-04 08:43:34 +08:00
int attidx; /* zero based */
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
} crosstab_cat_desc;
#define MAX_CATNAME_LEN NAMEDATALEN
#define INIT_CATS 64
#define crosstab_HashTableLookup(CATNAME, CATDESC) \
do { \
crosstab_HashEnt *hentry; char key[MAX_CATNAME_LEN]; \
\
MemSet(key, 0, MAX_CATNAME_LEN); \
snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATNAME); \
hentry = (crosstab_HashEnt*) hash_search(crosstab_HashTable, \
key, HASH_FIND, NULL); \
if (hentry) \
CATDESC = hentry->catdesc; \
else \
CATDESC = NULL; \
} while(0)
#define crosstab_HashTableInsert(CATDESC) \
do { \
crosstab_HashEnt *hentry; bool found; char key[MAX_CATNAME_LEN]; \
\
MemSet(key, 0, MAX_CATNAME_LEN); \
snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATDESC->catname); \
hentry = (crosstab_HashEnt*) hash_search(crosstab_HashTable, \
key, HASH_ENTER, &found); \
if (hentry == NULL) \
ereport(ERROR, \
(errcode(ERRCODE_OUT_OF_MEMORY), \
errmsg("out of memory"))); \
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
if (found) \
ereport(ERROR, \
(errcode(ERRCODE_DUPLICATE_OBJECT), \
errmsg("duplicate category name"))); \
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
hentry->catdesc = CATDESC; \
} while(0)
/* hash table */
typedef struct crosstab_hashent
{
2003-08-04 08:43:34 +08:00
char internal_catname[MAX_CATNAME_LEN];
crosstab_cat_desc *catdesc;
} crosstab_HashEnt;
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/*
* normal_rand - return requested number of random values
* with a Gaussian (Normal) distribution.
*
* inputs are int numvals, float8 mean, and float8 stddev
* returns setof float8
*/
PG_FUNCTION_INFO_V1(normal_rand);
Datum
normal_rand(PG_FUNCTION_ARGS)
{
2002-09-05 04:31:48 +08:00
FuncCallContext *funcctx;
int call_cntr;
int max_calls;
normal_rand_fctx *fctx;
float8 mean;
float8 stddev;
float8 carry_val;
bool use_carry;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
2002-09-05 04:31:48 +08:00
if (SRF_IS_FIRSTCALL())
{
/* create a function context for cross-call persistence */
2002-09-05 04:31:48 +08:00
funcctx = SRF_FIRSTCALL_INIT();
2002-09-05 04:31:48 +08:00
/*
* switch to memory context appropriate for multiple function
* calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* total number of tuples to be returned */
funcctx->max_calls = PG_GETARG_UINT32(0);
/* allocate memory for user context */
fctx = (normal_rand_fctx *) palloc(sizeof(normal_rand_fctx));
/*
2002-09-05 04:31:48 +08:00
* Use fctx to keep track of upper and lower bounds from call to
* call. It will also be used to carry over the spare value we get
* from the Box-Muller algorithm so that we only actually
* calculate a new value every other call.
*/
fctx->mean = PG_GETARG_FLOAT8(1);
fctx->stddev = PG_GETARG_FLOAT8(2);
fctx->carry_val = 0;
fctx->use_carry = false;
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
2002-09-05 04:31:48 +08:00
}
/* stuff done on every call of the function */
2002-09-05 04:31:48 +08:00
funcctx = SRF_PERCALL_SETUP();
call_cntr = funcctx->call_cntr;
max_calls = funcctx->max_calls;
fctx = funcctx->user_fctx;
mean = fctx->mean;
stddev = fctx->stddev;
carry_val = fctx->carry_val;
use_carry = fctx->use_carry;
2002-09-05 04:31:48 +08:00
if (call_cntr < max_calls) /* do when there is more left to send */
{
float8 result;
2002-09-05 04:31:48 +08:00
if (use_carry)
{
/*
* reset use_carry and use second value obtained on last pass
*/
fctx->use_carry = false;
result = carry_val;
}
else
{
float8 normval_1;
float8 normval_2;
/* Get the next two normal values */
get_normal_pair(&normval_1, &normval_2);
/* use the first */
result = mean + (stddev * normval_1);
/* and save the second */
fctx->carry_val = mean + (stddev * normval_2);
fctx->use_carry = true;
}
/* send the result */
2002-09-05 04:31:48 +08:00
SRF_RETURN_NEXT(funcctx, Float8GetDatum(result));
}
else
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
/*
* get_normal_pair()
* Assigns normally distributed (Gaussian) values to a pair of provided
* parameters, with mean 0, standard deviation 1.
*
* This routine implements Algorithm P (Polar method for normal deviates)
* from Knuth's _The_Art_of_Computer_Programming_, Volume 2, 3rd ed., pages
* 122-126. Knuth cites his source as "The polar method", G. E. P. Box, M. E.
* Muller, and G. Marsaglia, _Annals_Math,_Stat._ 29 (1958), 610-611.
*
*/
static void
get_normal_pair(float8 *x1, float8 *x2)
{
2002-09-05 04:31:48 +08:00
float8 u1,
u2,
v1,
v2,
s;
do
{
u1 = (float8) random() / (float8) MAX_RANDOM_VALUE;
u2 = (float8) random() / (float8) MAX_RANDOM_VALUE;
v1 = (2.0 * u1) - 1.0;
v2 = (2.0 * u2) - 1.0;
s = v1 * v1 + v2 * v2;
} while (s >= 1.0);
if (s == 0)
{
*x1 = 0;
*x2 = 0;
}
else
{
s = sqrt((-2.0 * log(s)) / s);
*x1 = v1 * s;
*x2 = v2 * s;
}
}
/*
* crosstab - create a crosstab of rowids and values columns from a
* SQL statement returning one rowid column, one category column,
* and one value column.
*
* e.g. given sql which produces:
*
* rowid cat value
* ------+-------+-------
2002-09-05 04:31:48 +08:00
* row1 cat1 val1
* row1 cat2 val2
* row1 cat3 val3
* row1 cat4 val4
* row2 cat1 val5
* row2 cat2 val6
* row2 cat3 val7
* row2 cat4 val8
*
* crosstab returns:
* <===== values columns =====>
* rowid cat1 cat2 cat3 cat4
* ------+-------+-------+-------+-------
2002-09-05 04:31:48 +08:00
* row1 val1 val2 val3 val4
* row2 val5 val6 val7 val8
*
* NOTES:
* 1. SQL result must be ordered by 1,2.
* 2. The number of values columns depends on the tuple description
2002-09-05 04:31:48 +08:00
* of the function's declared return type.
* 2. Missing values (i.e. not enough adjacent rows of same rowid to
2002-09-05 04:31:48 +08:00
* fill the number of result values columns) are filled in with nulls.
* 3. Extra values (i.e. too many adjacent rows of same rowid to fill
2002-09-05 04:31:48 +08:00
* the number of result values columns) are skipped.
* 4. Rows with all nulls in the values columns are skipped.
*/
PG_FUNCTION_INFO_V1(crosstab);
Datum
crosstab(PG_FUNCTION_ARGS)
{
2002-09-05 04:31:48 +08:00
FuncCallContext *funcctx;
TupleDesc ret_tupdesc;
int call_cntr;
int max_calls;
AttInMetadata *attinmeta;
SPITupleTable *spi_tuptable = NULL;
TupleDesc spi_tupdesc;
char *lastrowid = NULL;
crosstab_fctx *fctx;
int i;
int num_categories;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
2002-09-05 04:31:48 +08:00
if (SRF_IS_FIRSTCALL())
{
char *sql = GET_STR(PG_GETARG_TEXT_P(0));
Oid funcid = fcinfo->flinfo->fn_oid;
Oid functypeid;
char functyptype;
TupleDesc tupdesc = NULL;
int ret;
int proc;
/* create a function context for cross-call persistence */
2002-09-05 04:31:48 +08:00
funcctx = SRF_FIRSTCALL_INIT();
2002-09-05 04:31:48 +08:00
/*
* switch to memory context appropriate for multiple function
* calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
/* internal error */
elog(ERROR, "crosstab: SPI_connect returned %d", ret);
/* Retrieve the desired rows */
ret = SPI_execute(sql, true, 0);
proc = SPI_processed;
/* Check for qualifying tuples */
if ((ret == SPI_OK_SELECT) && (proc > 0))
{
spi_tuptable = SPI_tuptable;
spi_tupdesc = spi_tuptable->tupdesc;
/*
* The provided SQL query must always return three columns.
*
* 1. rowname the label or identifier for each row in the final
2002-09-05 04:31:48 +08:00
* result 2. category the label or identifier for each column
* in the final result 3. values the value for each column
* in the final result
*/
if (spi_tupdesc->natts != 3)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid source data SQL statement"),
errdetail("The provided SQL must return 3 " \
2003-08-04 08:43:34 +08:00
" columns; rowid, category, and values.")));
}
else
{
/* no qualifying tuples */
SPI_finish();
2002-09-05 04:31:48 +08:00
SRF_RETURN_DONE(funcctx);
}
/* SPI switches context on us, so reset it */
MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* get the typeid that represents our return type */
functypeid = get_func_rettype(funcid);
/* check typtype to see if we have a predetermined return type */
functyptype = get_typtype(functypeid);
2002-09-05 04:31:48 +08:00
if (functyptype == 'c')
{
/* Build a tuple description for a named composite type */
tupdesc = TypeGetTupleDesc(functypeid, NIL);
}
else if (functypeid == RECORDOID)
{
if (fcinfo->nargs != 2)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("wrong number of arguments")));
else
{
int num_categories = PG_GETARG_INT32(1);
tupdesc = make_crosstab_tupledesc(spi_tupdesc, num_categories);
}
}
else
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("return type must be a row type")));
/*
* Check that return tupdesc is compatible with the one we got
* from ret_relname, at least based on number and type of
* attributes
*/
if (!compatCrosstabTupleDescs(tupdesc, spi_tupdesc))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("return and sql tuple descriptions are " \
"incompatible")));
/*
2002-09-05 04:31:48 +08:00
* Generate attribute metadata needed later to produce tuples from
* raw C strings
*/
attinmeta = TupleDescGetAttInMetadata(tupdesc);
funcctx->attinmeta = attinmeta;
/* allocate memory for user context */
fctx = (crosstab_fctx *) palloc(sizeof(crosstab_fctx));
/*
* Save spi data for use across calls
*/
fctx->spi_tuptable = spi_tuptable;
fctx->lastrowid = NULL;
funcctx->user_fctx = fctx;
/* total number of tuples to be returned */
funcctx->max_calls = proc;
MemoryContextSwitchTo(oldcontext);
2002-09-05 04:31:48 +08:00
}
/* stuff done on every call of the function */
2002-09-05 04:31:48 +08:00
funcctx = SRF_PERCALL_SETUP();
/*
* initialize per-call variables
*/
call_cntr = funcctx->call_cntr;
max_calls = funcctx->max_calls;
/* user context info */
fctx = (crosstab_fctx *) funcctx->user_fctx;
lastrowid = fctx->lastrowid;
spi_tuptable = fctx->spi_tuptable;
/* the sql tuple */
spi_tupdesc = spi_tuptable->tupdesc;
/* attribute return type and return tuple description */
attinmeta = funcctx->attinmeta;
ret_tupdesc = attinmeta->tupdesc;
/* the return tuple always must have 1 rowid + num_categories columns */
num_categories = ret_tupdesc->natts - 1;
2002-09-05 04:31:48 +08:00
if (call_cntr < max_calls) /* do when there is more left to send */
2002-09-05 04:31:48 +08:00
{
HeapTuple tuple;
Datum result;
char **values;
bool allnulls = true;
while (true)
{
/* allocate space */
values = (char **) palloc((1 + num_categories) * sizeof(char *));
/* and make sure it's clear */
memset(values, '\0', (1 + num_categories) * sizeof(char *));
/*
2002-09-05 04:31:48 +08:00
* now loop through the sql results and assign each value in
* sequence to the next category
*/
for (i = 0; i < num_categories; i++)
{
HeapTuple spi_tuple;
char *rowid = NULL;
/* see if we've gone too far already */
if (call_cntr >= max_calls)
break;
/* get the next sql result tuple */
spi_tuple = spi_tuptable->vals[call_cntr];
/* get the rowid from the current sql result tuple */
rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
2002-09-05 04:31:48 +08:00
/*
* If this is the first pass through the values for this
* rowid set it, otherwise make sure it hasn't changed on
* us. Also check to see if the rowid is the same as that
* of the last tuple sent -- if so, skip this tuple
* entirely
*/
if (i == 0)
values[0] = pstrdup(rowid);
if ((rowid != NULL) && (strcmp(rowid, values[0]) == 0))
{
if ((lastrowid != NULL) && (strcmp(rowid, lastrowid) == 0))
break;
else if (allnulls == true)
allnulls = false;
/*
2002-09-05 04:31:48 +08:00
* Get the next category item value, which is alway
* attribute number three.
*
2002-09-05 04:31:48 +08:00
* Be careful to sssign the value to the array index
* based on which category we are presently
* processing.
*/
values[1 + i] = SPI_getvalue(spi_tuple, spi_tupdesc, 3);
/*
2002-09-05 04:31:48 +08:00
* increment the counter since we consume a row for
* each category, but not for last pass because the
* API will do that for us
*/
if (i < (num_categories - 1))
call_cntr = ++funcctx->call_cntr;
}
else
{
/*
2002-09-05 04:31:48 +08:00
* We'll fill in NULLs for the missing values, but we
* need to decrement the counter since this sql result
* row doesn't belong to the current output tuple.
*/
call_cntr = --funcctx->call_cntr;
break;
}
if (rowid != NULL)
xpfree(rowid);
}
xpfree(fctx->lastrowid);
if (values[0] != NULL)
{
2002-09-05 04:31:48 +08:00
/*
* switch to memory context appropriate for multiple
* function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
lastrowid = fctx->lastrowid = pstrdup(values[0]);
MemoryContextSwitchTo(oldcontext);
}
if (!allnulls)
{
/* build the tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);
/* make the tuple into a datum */
result = HeapTupleGetDatum(tuple);
/* Clean up */
for (i = 0; i < num_categories + 1; i++)
if (values[i] != NULL)
xpfree(values[i]);
xpfree(values);
2002-09-05 04:31:48 +08:00
SRF_RETURN_NEXT(funcctx, result);
}
else
{
/*
* Skipping this tuple entirely, but we need to advance
2002-09-05 04:31:48 +08:00
* the counter like the API would if we had returned one.
*/
call_cntr = ++funcctx->call_cntr;
/* we'll start over at the top */
xpfree(values);
/* see if we've gone too far already */
if (call_cntr >= max_calls)
{
/* release SPI related resources */
SPI_finish();
2002-09-05 04:31:48 +08:00
SRF_RETURN_DONE(funcctx);
}
}
}
}
2002-09-05 04:31:48 +08:00
else
/* do when there is no more left */
{
/* release SPI related resources */
SPI_finish();
2002-09-05 04:31:48 +08:00
SRF_RETURN_DONE(funcctx);
}
}
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/*
2003-08-04 08:43:34 +08:00
* crosstab_hash - reimplement crosstab as materialized function and
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
* properly deal with missing values (i.e. don't pack remaining
* values to the left)
2003-08-04 08:43:34 +08:00
*
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
* crosstab - create a crosstab of rowids and values columns from a
* SQL statement returning one rowid column, one category column,
* and one value column.
*
* e.g. given sql which produces:
*
* rowid cat value
* ------+-------+-------
* row1 cat1 val1
* row1 cat2 val2
* row1 cat4 val4
* row2 cat1 val5
* row2 cat2 val6
* row2 cat3 val7
* row2 cat4 val8
*
* crosstab returns:
* <===== values columns =====>
* rowid cat1 cat2 cat3 cat4
* ------+-------+-------+-------+-------
* row1 val1 val2 null val4
* row2 val5 val6 val7 val8
*
* NOTES:
* 1. SQL result must be ordered by 1.
* 2. The number of values columns depends on the tuple description
* of the function's declared return type.
* 2. Missing values (i.e. missing category) are filled in with nulls.
* 3. Extra values (i.e. not in category results) are skipped.
*/
PG_FUNCTION_INFO_V1(crosstab_hash);
Datum
crosstab_hash(PG_FUNCTION_ARGS)
{
2003-08-04 08:43:34 +08:00
char *sql = GET_STR(PG_GETARG_TEXT_P(0));
char *cats_sql = GET_STR(PG_GETARG_TEXT_P(1));
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
TupleDesc tupdesc;
MemoryContext per_query_ctx;
MemoryContext oldcontext;
int num_categories;
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* check to see if caller supports us returning a tuplestore */
if (!rsinfo || !(rsinfo->allowedModes & SFRM_Materialize))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("materialize mode required, but it is not " \
"allowed in this context")));
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* get the requested return tuple description */
tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc);
/*
* Check to make sure we have a reasonable tuple descriptor
*
2003-08-04 08:43:34 +08:00
* Note we will attempt to coerce the values into whatever the return
* attribute type is and depend on the "in" function to complain if
* needed.
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
*/
if (tupdesc->natts < 2)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("query-specified return tuple and " \
"crosstab function are not compatible")));
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* load up the categories hash table */
num_categories = load_categories_hash(cats_sql, per_query_ctx);
/* let the caller know we're sending back a tuplestore */
rsinfo->returnMode = SFRM_Materialize;
/* now go build it */
rsinfo->setResult = get_crosstab_tuplestore(sql,
num_categories,
tupdesc,
per_query_ctx);
/*
* SFRM_Materialize mode expects us to return a NULL Datum. The actual
* tuples are in our tuplestore and passed back through
* rsinfo->setResult. rsinfo->setDesc is set to the tuple description
* that we actually used to build our tuples with, so the caller can
* verify we did what it was expecting.
*/
rsinfo->setDesc = tupdesc;
MemoryContextSwitchTo(oldcontext);
return (Datum) 0;
}
/*
* load up the categories hash table
*/
static int
load_categories_hash(char *cats_sql, MemoryContext per_query_ctx)
{
2003-08-04 08:43:34 +08:00
HASHCTL ctl;
int ret;
int proc;
MemoryContext SPIcontext;
int num_categories = 0;
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* initialize the category hash table */
ctl.keysize = MAX_CATNAME_LEN;
ctl.entrysize = sizeof(crosstab_HashEnt);
/*
2003-08-04 08:43:34 +08:00
* use INIT_CATS, defined above as a guess of how many hash table
* entries to create, initially
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
*/
crosstab_HashTable = hash_create("crosstab hash", INIT_CATS, &ctl, HASH_ELEM);
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
/* internal error */
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
elog(ERROR, "load_categories_hash: SPI_connect returned %d", ret);
/* Retrieve the category name rows */
ret = SPI_execute(cats_sql, true, 0);
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
num_categories = proc = SPI_processed;
/* Check for qualifying tuples */
if ((ret == SPI_OK_SELECT) && (proc > 0))
{
2003-08-04 08:43:34 +08:00
SPITupleTable *spi_tuptable = SPI_tuptable;
TupleDesc spi_tupdesc = spi_tuptable->tupdesc;
int i;
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/*
2003-08-04 08:43:34 +08:00
* The provided categories SQL query must always return one
* column: category - the label or identifier for each column
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
*/
if (spi_tupdesc->natts != 1)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("provided \"categories\" SQL must " \
"return 1 column of at least one row")));
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
for (i = 0; i < proc; i++)
{
2003-08-04 08:43:34 +08:00
crosstab_cat_desc *catdesc;
char *catname;
HeapTuple spi_tuple;
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* get the next sql result tuple */
spi_tuple = spi_tuptable->vals[i];
/* get the category from the current sql result tuple */
catname = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
SPIcontext = MemoryContextSwitchTo(per_query_ctx);
catdesc = (crosstab_cat_desc *) palloc(sizeof(crosstab_cat_desc));
catdesc->catname = catname;
catdesc->attidx = i;
/* Add the proc description block to the hashtable */
crosstab_HashTableInsert(catdesc);
MemoryContextSwitchTo(SPIcontext);
}
}
if (SPI_finish() != SPI_OK_FINISH)
/* internal error */
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
elog(ERROR, "load_categories_hash: SPI_finish() failed");
return num_categories;
}
/*
* create and populate the crosstab tuplestore using the provided source query
*/
static Tuplestorestate *
get_crosstab_tuplestore(char *sql,
int num_categories,
TupleDesc tupdesc,
MemoryContext per_query_ctx)
{
2003-08-04 08:43:34 +08:00
Tuplestorestate *tupstore;
AttInMetadata *attinmeta = TupleDescGetAttInMetadata(tupdesc);
char **values;
HeapTuple tuple;
int ret;
int proc;
MemoryContext SPIcontext;
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* initialize our tuplestore */
tupstore = tuplestore_begin_heap(true, false, work_mem);
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
/* internal error */
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
elog(ERROR, "get_crosstab_tuplestore: SPI_connect returned %d", ret);
/* Now retrieve the crosstab source rows */
ret = SPI_execute(sql, true, 0);
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
proc = SPI_processed;
/* Check for qualifying tuples */
if ((ret == SPI_OK_SELECT) && (proc > 0))
{
2003-08-04 08:43:34 +08:00
SPITupleTable *spi_tuptable = SPI_tuptable;
TupleDesc spi_tupdesc = spi_tuptable->tupdesc;
int ncols = spi_tupdesc->natts;
char *rowid;
char *lastrowid = NULL;
int i,
j;
int result_ncols;
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
if (num_categories == 0)
{
/* no qualifying category tuples */
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
2004-08-29 13:07:03 +08:00
errmsg("provided \"categories\" SQL must " \
"return 1 column of at least one row")));
}
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/*
2003-08-04 08:43:34 +08:00
* The provided SQL query must always return at least three
* columns:
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
*
* 1. rowname the label for each row - column 1 in the final result
2003-08-04 08:43:34 +08:00
* 2. category the label for each value-column in the final
* result 3. value the values used to populate the
* value-columns
*
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
* If there are more than three columns, the last two are taken as
2003-08-04 08:43:34 +08:00
* "category" and "values". The first column is taken as
* "rowname". Additional columns (2 thru N-2) are assumed the same
* for the same "rowname", and are copied into the result tuple
* from the first time we encounter a particular rowname.
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
*/
if (ncols < 3)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid source data SQL statement"),
errdetail("The provided SQL must return 3 " \
2003-08-04 08:43:34 +08:00
" columns; rowid, category, and values.")));
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
result_ncols = (ncols - 2) + num_categories;
/* Recheck to make sure we tuple descriptor still looks reasonable */
if (tupdesc->natts != result_ncols)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("query-specified return " \
"tuple has %d columns but crosstab " \
2003-08-04 08:43:34 +08:00
"returns %d", tupdesc->natts, result_ncols)));
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* allocate space */
values = (char **) palloc(result_ncols * sizeof(char *));
/* and make sure it's clear */
memset(values, '\0', result_ncols * sizeof(char *));
for (i = 0; i < proc; i++)
{
2003-08-04 08:43:34 +08:00
HeapTuple spi_tuple;
crosstab_cat_desc *catdesc;
char *catname;
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
/* get the next sql result tuple */
spi_tuple = spi_tuptable->vals[i];
/* get the rowid from the current sql result tuple */
rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
/* if rowid is null, skip this tuple entirely */
if (rowid == NULL)
continue;
/*
* if we're on a new output row, grab the column values up to
* column N-2 now
*/
if ((lastrowid == NULL) || (strcmp(rowid, lastrowid) != 0))
{
/*
* a new row means we need to flush the old one first,
* unless we're on the very first row
*/
if (lastrowid != NULL)
{
2003-08-04 08:43:34 +08:00
/*
* switch to appropriate context while storing the
* tuple
*/
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
SPIcontext = MemoryContextSwitchTo(per_query_ctx);
/* rowid changed, flush the previous output row */
tuple = BuildTupleFromCStrings(attinmeta, values);
tuplestore_puttuple(tupstore, tuple);
for (j = 0; j < result_ncols; j++)
xpfree(values[j]);
/* now reset the context */
MemoryContextSwitchTo(SPIcontext);
}
values[0] = rowid;
for (j = 1; j < ncols - 2; j++)
values[j] = SPI_getvalue(spi_tuple, spi_tupdesc, j + 1);
}
/* look up the category and fill in the appropriate column */
catname = SPI_getvalue(spi_tuple, spi_tupdesc, ncols - 1);
if (catname != NULL)
{
crosstab_HashTableLookup(catname, catdesc);
if (catdesc)
2003-08-04 08:43:34 +08:00
values[catdesc->attidx + ncols - 2] =
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
SPI_getvalue(spi_tuple, spi_tupdesc, ncols);
}
xpfree(lastrowid);
lastrowid = pstrdup(rowid);
}
/* switch to appropriate context while storing the tuple */
SPIcontext = MemoryContextSwitchTo(per_query_ctx);
/* flush the last output row */
tuple = BuildTupleFromCStrings(attinmeta, values);
tuplestore_puttuple(tupstore, tuple);
/* now reset the context */
MemoryContextSwitchTo(SPIcontext);
}
if (SPI_finish() != SPI_OK_FINISH)
/* internal error */
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
elog(ERROR, "get_crosstab_tuplestore: SPI_finish() failed");
tuplestore_donestoring(tupstore);
return tupstore;
}
/*
* connectby_text - produce a result set from a hierarchical (parent/child)
* table.
*
* e.g. given table foo:
*
* keyid parent_keyid pos
* ------+------------+--
2003-08-04 08:43:34 +08:00
* row1 NULL 0
* row2 row1 0
* row3 row1 0
* row4 row2 1
* row5 row2 0
* row6 row4 0
* row7 row3 0
* row8 row6 0
* row9 row5 0
*
*
* connectby(text relname, text keyid_fld, text parent_keyid_fld
2003-08-04 08:43:34 +08:00
* [, text orderby_fld], text start_with, int max_depth
* [, text branch_delim])
* connectby('foo', 'keyid', 'parent_keyid', 'pos', 'row2', 0, '~') returns:
*
2003-08-04 08:43:34 +08:00
* keyid parent_id level branch serial
* ------+-----------+--------+-----------------------
2003-08-04 08:43:34 +08:00
* row2 NULL 0 row2 1
* row5 row2 1 row2~row5 2
* row9 row5 2 row2~row5~row9 3
* row4 row2 1 row2~row4 4
* row6 row4 2 row2~row4~row6 5
* row8 row6 3 row2~row4~row6~row8 6
*
*/
PG_FUNCTION_INFO_V1(connectby_text);
#define CONNECTBY_NCOLS 4
#define CONNECTBY_NCOLS_NOBRANCH 3
Datum
connectby_text(PG_FUNCTION_ARGS)
{
2002-09-05 04:31:48 +08:00
char *relname = GET_STR(PG_GETARG_TEXT_P(0));
char *key_fld = GET_STR(PG_GETARG_TEXT_P(1));
char *parent_key_fld = GET_STR(PG_GETARG_TEXT_P(2));
char *start_with = GET_STR(PG_GETARG_TEXT_P(3));
int max_depth = PG_GETARG_INT32(4);
char *branch_delim = NULL;
bool show_branch = false;
bool show_serial = false;
2002-09-05 04:31:48 +08:00
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
TupleDesc tupdesc;
AttInMetadata *attinmeta;
MemoryContext per_query_ctx;
MemoryContext oldcontext;
/* check to see if caller supports us returning a tuplestore */
if (!rsinfo || !(rsinfo->allowedModes & SFRM_Materialize))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("materialize mode required, but it is not " \
"allowed in this context")));
if (fcinfo->nargs == 6)
{
branch_delim = GET_STR(PG_GETARG_TEXT_P(5));
show_branch = true;
}
else
/* default is no show, tilde for the delimiter */
branch_delim = pstrdup("~");
per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* get the requested return tuple description */
tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc);
/* does it meet our needs */
validateConnectbyTupleDesc(tupdesc, show_branch, show_serial);
/* OK, use it then */
attinmeta = TupleDescGetAttInMetadata(tupdesc);
/* check to see if caller supports us returning a tuplestore */
Attached is an update to contrib/tablefunc. It implements a new hashed version of crosstab. This fixes a major deficiency in real-world use of the original version. Easiest to undestand with an illustration: Data: ------------------------------------------------------------------- select * from cth; id | rowid | rowdt | attribute | val ----+-------+---------------------+----------------+--------------- 1 | test1 | 2003-03-01 00:00:00 | temperature | 42 2 | test1 | 2003-03-01 00:00:00 | test_result | PASS 3 | test1 | 2003-03-01 00:00:00 | volts | 2.6987 4 | test2 | 2003-03-02 00:00:00 | temperature | 53 5 | test2 | 2003-03-02 00:00:00 | test_result | FAIL 6 | test2 | 2003-03-02 00:00:00 | test_startdate | 01 March 2003 7 | test2 | 2003-03-02 00:00:00 | volts | 3.1234 (7 rows) Original crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1,2',4) AS c(rowid text, temperature text, test_result text, test_startdate text, volts text); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+----------------+-------- test1 | 42 | PASS | 2.6987 | test2 | 53 | FAIL | 01 March 2003 | 3.1234 (2 rows) Hashed crosstab: ------------------------------------------------------------------- SELECT * FROM crosstab( 'SELECT rowid, attribute, val FROM cth ORDER BY 1', 'SELECT DISTINCT attribute FROM cth ORDER BY 1') AS c(rowid text, temperature int4, test_result text, test_startdate timestamp, volts float8); rowid | temperature | test_result | test_startdate | volts -------+-------------+-------------+---------------------+-------- test1 | 42 | PASS | | 2.6987 test2 | 53 | FAIL | 2003-03-01 00:00:00 | 3.1234 (2 rows) Notice that the original crosstab slides data over to the left in the result tuple when it encounters missing data. In order to work around this you have to be make your source sql do all sorts of contortions (cartesian join of distinct rowid with distinct attribute; left join that back to the real source data). The new version avoids this by building a hash table using a second distinct attribute query. The new version also allows for "extra" columns (see the README) and allows the result columns to be coerced into differing datatypes if they are suitable (as shown above). In testing a "real-world" data set (69 distinct rowid's, 27 distinct categories/attributes, multiple missing data points) I saw about a 5-fold improvement in execution time (from about 2200 ms old, to 440 ms new). I left the original version intact because: 1) BC, 2) it is probably slightly faster if you know that you have no missing attributes. README and regression test adjustments included. If there are no objections, please apply. Joe Conway
2003-03-20 14:46:30 +08:00
if (!rsinfo || !(rsinfo->allowedModes & SFRM_Materialize))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("materialize mode required, but it is not " \
"allowed in this context")));
/* OK, go to work */
rsinfo->returnMode = SFRM_Materialize;
rsinfo->setResult = connectby(relname,
key_fld,
parent_key_fld,
2003-08-04 08:43:34 +08:00
NULL,
branch_delim,
start_with,
max_depth,
show_branch,
show_serial,
per_query_ctx,
attinmeta);
rsinfo->setDesc = tupdesc;
MemoryContextSwitchTo(oldcontext);
/*
2002-09-05 04:31:48 +08:00
* SFRM_Materialize mode expects us to return a NULL Datum. The actual
* tuples are in our tuplestore and passed back through
* rsinfo->setResult. rsinfo->setDesc is set to the tuple description
* that we actually used to build our tuples with, so the caller can
* verify we did what it was expecting.
*/
return (Datum) 0;
}
PG_FUNCTION_INFO_V1(connectby_text_serial);
Datum
connectby_text_serial(PG_FUNCTION_ARGS)
{
char *relname = GET_STR(PG_GETARG_TEXT_P(0));
char *key_fld = GET_STR(PG_GETARG_TEXT_P(1));
char *parent_key_fld = GET_STR(PG_GETARG_TEXT_P(2));
char *orderby_fld = GET_STR(PG_GETARG_TEXT_P(3));
char *start_with = GET_STR(PG_GETARG_TEXT_P(4));
int max_depth = PG_GETARG_INT32(5);
char *branch_delim = NULL;
bool show_branch = false;
bool show_serial = true;
2003-08-04 08:43:34 +08:00
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
TupleDesc tupdesc;
AttInMetadata *attinmeta;
MemoryContext per_query_ctx;
MemoryContext oldcontext;
/* check to see if caller supports us returning a tuplestore */
if (!rsinfo || !(rsinfo->allowedModes & SFRM_Materialize))
elog(ERROR, "connectby: materialize mode required, but it is not "
"allowed in this context");
if (fcinfo->nargs == 7)
{
branch_delim = GET_STR(PG_GETARG_TEXT_P(6));
show_branch = true;
}
else
/* default is no show, tilde for the delimiter */
branch_delim = pstrdup("~");
per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* get the requested return tuple description */
tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc);
/* does it meet our needs */
validateConnectbyTupleDesc(tupdesc, show_branch, show_serial);
/* OK, use it then */
attinmeta = TupleDescGetAttInMetadata(tupdesc);
/* check to see if caller supports us returning a tuplestore */
if (!rsinfo->allowedModes & SFRM_Materialize)
elog(ERROR, "connectby requires Materialize mode, but it is not "
"allowed in this context");
/* OK, go to work */
rsinfo->returnMode = SFRM_Materialize;
rsinfo->setResult = connectby(relname,
key_fld,
parent_key_fld,
2003-08-04 08:43:34 +08:00
orderby_fld,
branch_delim,
start_with,
max_depth,
show_branch,
show_serial,
per_query_ctx,
attinmeta);
rsinfo->setDesc = tupdesc;
MemoryContextSwitchTo(oldcontext);
/*
* SFRM_Materialize mode expects us to return a NULL Datum. The actual
* tuples are in our tuplestore and passed back through
* rsinfo->setResult. rsinfo->setDesc is set to the tuple description
* that we actually used to build our tuples with, so the caller can
* verify we did what it was expecting.
*/
return (Datum) 0;
}
/*
* connectby - does the real work for connectby_text()
*/
static Tuplestorestate *
connectby(char *relname,
char *key_fld,
char *parent_key_fld,
2003-08-04 08:43:34 +08:00
char *orderby_fld,
char *branch_delim,
char *start_with,
int max_depth,
bool show_branch,
2003-08-04 08:43:34 +08:00
bool show_serial,
MemoryContext per_query_ctx,
AttInMetadata *attinmeta)
{
2002-09-05 04:31:48 +08:00
Tuplestorestate *tupstore = NULL;
int ret;
MemoryContext oldcontext;
2003-08-04 08:43:34 +08:00
int serial = 1;
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
/* internal error */
elog(ERROR, "connectby: SPI_connect returned %d", ret);
/* switch to longer term context to create the tuple store */
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* initialize our tuplestore */
tupstore = tuplestore_begin_heap(true, false, work_mem);
MemoryContextSwitchTo(oldcontext);
/* now go get the whole tree */
tupstore = build_tuplestore_recursively(key_fld,
2002-09-05 04:31:48 +08:00
parent_key_fld,
relname,
orderby_fld,
2002-09-05 04:31:48 +08:00
branch_delim,
start_with,
start_with, /* current_branch */
0, /* initial level is 0 */
&serial, /* initial serial is 1 */
2002-09-05 04:31:48 +08:00
max_depth,
show_branch,
show_serial,
2002-09-05 04:31:48 +08:00
per_query_ctx,
attinmeta,
tupstore);
SPI_finish();
return tupstore;
}
static Tuplestorestate *
build_tuplestore_recursively(char *key_fld,
char *parent_key_fld,
char *relname,
char *orderby_fld,
char *branch_delim,
char *start_with,
char *branch,
int level,
int *serial,
int max_depth,
bool show_branch,
bool show_serial,
MemoryContext per_query_ctx,
AttInMetadata *attinmeta,
Tuplestorestate *tupstore)
{
2002-09-05 04:31:48 +08:00
TupleDesc tupdesc = attinmeta->tupdesc;
MemoryContext oldcontext;
StringInfo sql = makeStringInfo();
int ret;
int proc;
int serial_column;
StringInfo branchstr = NULL;
StringInfo chk_branchstr = NULL;
StringInfo chk_current_key = NULL;
char **values;
char *current_key;
char *current_key_parent;
char current_level[INT32_STRLEN];
char serial_str[INT32_STRLEN];
char *current_branch;
HeapTuple tuple;
2002-09-05 04:31:48 +08:00
if (max_depth > 0 && level > max_depth)
return tupstore;
/* start a new branch */
branchstr = makeStringInfo();
/* need these to check for recursion */
chk_branchstr = makeStringInfo();
chk_current_key = makeStringInfo();
/* Build initial sql statement */
if (!show_serial)
{
appendStringInfo(sql, "SELECT %s, %s FROM %s WHERE %s = %s AND %s IS NOT NULL AND %s <> %s",
2003-08-04 08:43:34 +08:00
key_fld,
parent_key_fld,
relname,
parent_key_fld,
quote_literal_cstr(start_with),
key_fld, key_fld, parent_key_fld);
2003-08-04 08:43:34 +08:00
serial_column = 0;
}
else
{
appendStringInfo(sql, "SELECT %s, %s FROM %s WHERE %s = %s AND %s IS NOT NULL AND %s <> %s ORDER BY %s",
2003-08-04 08:43:34 +08:00
key_fld,
parent_key_fld,
relname,
parent_key_fld,
quote_literal_cstr(start_with),
key_fld, key_fld, parent_key_fld,
2003-08-04 08:43:34 +08:00
orderby_fld);
serial_column = 1;
}
if (show_branch)
values = (char **) palloc((CONNECTBY_NCOLS + serial_column) * sizeof(char *));
else
values = (char **) palloc((CONNECTBY_NCOLS_NOBRANCH + serial_column) * sizeof(char *));
/* First time through, do a little setup */
if (level == 0)
{
/* root value is the one we initially start with */
values[0] = start_with;
/* root value has no parent */
values[1] = NULL;
/* root level is 0 */
sprintf(current_level, "%d", level);
values[2] = current_level;
/* root branch is just starting root value */
if (show_branch)
values[3] = start_with;
/* root starts the serial with 1 */
if (show_serial)
{
sprintf(serial_str, "%d", (*serial)++);
if (show_branch)
values[4] = serial_str;
else
values[3] = serial_str;
}
/* construct the tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);
/* switch to long lived context while storing the tuple */
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* now store it */
tuplestore_puttuple(tupstore, tuple);
/* now reset the context */
MemoryContextSwitchTo(oldcontext);
/* increment level */
level++;
}
/* Retrieve the desired rows */
ret = SPI_execute(sql->data, true, 0);
proc = SPI_processed;
/* Check for qualifying tuples */
if ((ret == SPI_OK_SELECT) && (proc > 0))
{
2002-09-05 04:31:48 +08:00
HeapTuple spi_tuple;
SPITupleTable *tuptable = SPI_tuptable;
TupleDesc spi_tupdesc = tuptable->tupdesc;
int i;
/* First time through, do a little more setup */
if (level == 0)
{
/*
* Check that return tupdesc is compatible with the one we got
2002-09-05 04:31:48 +08:00
* from the query, but only at level 0 -- no need to check
* more than once
*/
if (!compatConnectbyTupleDescs(tupdesc, spi_tupdesc))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
2003-08-04 08:43:34 +08:00
errdetail("Return and SQL tuple descriptions are " \
"incompatible.")));
}
for (i = 0; i < proc; i++)
{
> Now I'm testing connectby() in the /contrib/tablefunc in 7.3b1, which would > be a useful function for many users. However, I found the fact that > if connectby_tree has the following data, connectby() tries to search the end > of roots without knowing that the relations are infinite(-5-9-10-11-9-10-11-) . > I hope connectby() supports a check routine to find infinite relations. > > > CREATE TABLE connectby_tree(keyid int, parent_keyid int); > INSERT INTO connectby_tree VALUES(1,NULL); > INSERT INTO connectby_tree VALUES(2,1); > INSERT INTO connectby_tree VALUES(3,1); > INSERT INTO connectby_tree VALUES(4,2); > INSERT INTO connectby_tree VALUES(5,2); > INSERT INTO connectby_tree VALUES(6,4); > INSERT INTO connectby_tree VALUES(7,3); > INSERT INTO connectby_tree VALUES(8,6); > INSERT INTO connectby_tree VALUES(9,5); > > INSERT INTO connectby_tree VALUES(10,9); > INSERT INTO connectby_tree VALUES(11,10); > INSERT INTO connectby_tree VALUES(9,11); <-- infinite > The attached patch fixes the infinite recursion bug in contrib/tablefunc/tablefunc.c:connectby found by Masaru Sugawara. test=# SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', '2', 4, '~') AS t(keyid int, parent_keyid int, level int, branch text); keyid | parent_keyid | level | branch -------+--------------+-------+------------- 2 | | 0 | 2 4 | 2 | 1 | 2~4 6 | 4 | 2 | 2~4~6 8 | 6 | 3 | 2~4~6~8 5 | 2 | 1 | 2~5 9 | 5 | 2 | 2~5~9 10 | 9 | 3 | 2~5~9~10 11 | 10 | 4 | 2~5~9~10~11 (8 rows) test=# SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', '2', 5, '~') AS t(keyid int, parent_keyid int, level int, branch text); ERROR: infinite recursion detected I implemented it by checking the branch string for repeated keys (whether or not the branch is returned). The performance hit was pretty minimal -- about 1% for a moderately complex test case (220000 record table, 9 level tree with 3800 members). Joe Conway
2002-09-12 08:19:44 +08:00
/* initialize branch for this pass */
appendStringInfo(branchstr, "%s", branch);
appendStringInfo(chk_branchstr, "%s%s%s", branch_delim, branch, branch_delim);
/* get the next sql result tuple */
spi_tuple = tuptable->vals[i];
/* get the current key and parent */
current_key = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
appendStringInfo(chk_current_key, "%s%s%s", branch_delim, current_key, branch_delim);
current_key_parent = pstrdup(SPI_getvalue(spi_tuple, spi_tupdesc, 2));
/* get the current level */
sprintf(current_level, "%d", level);
/* check to see if this key is also an ancestor */
if (strstr(chk_branchstr->data, chk_current_key->data))
elog(ERROR, "infinite recursion detected");
/* OK, extend the branch */
> Now I'm testing connectby() in the /contrib/tablefunc in 7.3b1, which would > be a useful function for many users. However, I found the fact that > if connectby_tree has the following data, connectby() tries to search the end > of roots without knowing that the relations are infinite(-5-9-10-11-9-10-11-) . > I hope connectby() supports a check routine to find infinite relations. > > > CREATE TABLE connectby_tree(keyid int, parent_keyid int); > INSERT INTO connectby_tree VALUES(1,NULL); > INSERT INTO connectby_tree VALUES(2,1); > INSERT INTO connectby_tree VALUES(3,1); > INSERT INTO connectby_tree VALUES(4,2); > INSERT INTO connectby_tree VALUES(5,2); > INSERT INTO connectby_tree VALUES(6,4); > INSERT INTO connectby_tree VALUES(7,3); > INSERT INTO connectby_tree VALUES(8,6); > INSERT INTO connectby_tree VALUES(9,5); > > INSERT INTO connectby_tree VALUES(10,9); > INSERT INTO connectby_tree VALUES(11,10); > INSERT INTO connectby_tree VALUES(9,11); <-- infinite > The attached patch fixes the infinite recursion bug in contrib/tablefunc/tablefunc.c:connectby found by Masaru Sugawara. test=# SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', '2', 4, '~') AS t(keyid int, parent_keyid int, level int, branch text); keyid | parent_keyid | level | branch -------+--------------+-------+------------- 2 | | 0 | 2 4 | 2 | 1 | 2~4 6 | 4 | 2 | 2~4~6 8 | 6 | 3 | 2~4~6~8 5 | 2 | 1 | 2~5 9 | 5 | 2 | 2~5~9 10 | 9 | 3 | 2~5~9~10 11 | 10 | 4 | 2~5~9~10~11 (8 rows) test=# SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', '2', 5, '~') AS t(keyid int, parent_keyid int, level int, branch text); ERROR: infinite recursion detected I implemented it by checking the branch string for repeated keys (whether or not the branch is returned). The performance hit was pretty minimal -- about 1% for a moderately complex test case (220000 record table, 9 level tree with 3800 members). Joe Conway
2002-09-12 08:19:44 +08:00
appendStringInfo(branchstr, "%s%s", branch_delim, current_key);
current_branch = branchstr->data;
/* build a tuple */
values[0] = pstrdup(current_key);
values[1] = current_key_parent;
values[2] = current_level;
if (show_branch)
values[3] = current_branch;
if (show_serial)
{
sprintf(serial_str, "%d", (*serial)++);
if (show_branch)
values[4] = serial_str;
else
values[3] = serial_str;
}
tuple = BuildTupleFromCStrings(attinmeta, values);
xpfree(current_key);
xpfree(current_key_parent);
/* switch to long lived context while storing the tuple */
oldcontext = MemoryContextSwitchTo(per_query_ctx);
/* store the tuple for later use */
tuplestore_puttuple(tupstore, tuple);
/* now reset the context */
MemoryContextSwitchTo(oldcontext);
heap_freetuple(tuple);
/* recurse using current_key_parent as the new start_with */
tupstore = build_tuplestore_recursively(key_fld,
2002-09-05 04:31:48 +08:00
parent_key_fld,
relname,
orderby_fld,
2002-09-05 04:31:48 +08:00
branch_delim,
values[0],
current_branch,
level + 1,
serial,
2002-09-05 04:31:48 +08:00
max_depth,
show_branch,
show_serial,
2002-09-05 04:31:48 +08:00
per_query_ctx,
attinmeta,
tupstore);
> Now I'm testing connectby() in the /contrib/tablefunc in 7.3b1, which would > be a useful function for many users. However, I found the fact that > if connectby_tree has the following data, connectby() tries to search the end > of roots without knowing that the relations are infinite(-5-9-10-11-9-10-11-) . > I hope connectby() supports a check routine to find infinite relations. > > > CREATE TABLE connectby_tree(keyid int, parent_keyid int); > INSERT INTO connectby_tree VALUES(1,NULL); > INSERT INTO connectby_tree VALUES(2,1); > INSERT INTO connectby_tree VALUES(3,1); > INSERT INTO connectby_tree VALUES(4,2); > INSERT INTO connectby_tree VALUES(5,2); > INSERT INTO connectby_tree VALUES(6,4); > INSERT INTO connectby_tree VALUES(7,3); > INSERT INTO connectby_tree VALUES(8,6); > INSERT INTO connectby_tree VALUES(9,5); > > INSERT INTO connectby_tree VALUES(10,9); > INSERT INTO connectby_tree VALUES(11,10); > INSERT INTO connectby_tree VALUES(9,11); <-- infinite > The attached patch fixes the infinite recursion bug in contrib/tablefunc/tablefunc.c:connectby found by Masaru Sugawara. test=# SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', '2', 4, '~') AS t(keyid int, parent_keyid int, level int, branch text); keyid | parent_keyid | level | branch -------+--------------+-------+------------- 2 | | 0 | 2 4 | 2 | 1 | 2~4 6 | 4 | 2 | 2~4~6 8 | 6 | 3 | 2~4~6~8 5 | 2 | 1 | 2~5 9 | 5 | 2 | 2~5~9 10 | 9 | 3 | 2~5~9~10 11 | 10 | 4 | 2~5~9~10~11 (8 rows) test=# SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', '2', 5, '~') AS t(keyid int, parent_keyid int, level int, branch text); ERROR: infinite recursion detected I implemented it by checking the branch string for repeated keys (whether or not the branch is returned). The performance hit was pretty minimal -- about 1% for a moderately complex test case (220000 record table, 9 level tree with 3800 members). Joe Conway
2002-09-12 08:19:44 +08:00
/* reset branch for next pass */
xpfree(branchstr->data);
initStringInfo(branchstr);
xpfree(chk_branchstr->data);
initStringInfo(chk_branchstr);
xpfree(chk_current_key->data);
initStringInfo(chk_current_key);
}
}
return tupstore;
}
/*
* Check expected (query runtime) tupdesc suitable for Connectby
*/
static void
validateConnectbyTupleDesc(TupleDesc tupdesc, bool show_branch, bool show_serial)
{
2003-08-04 08:43:34 +08:00
int serial_column = 0;
if (show_serial)
2003-08-04 08:43:34 +08:00
serial_column = 1;
/* are there the correct number of columns */
if (show_branch)
{
if (tupdesc->natts != (CONNECTBY_NCOLS + serial_column))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("Query-specified return tuple has " \
"wrong number of columns.")));
}
else
{
if (tupdesc->natts != CONNECTBY_NCOLS_NOBRANCH + serial_column)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("Query-specified return tuple has " \
"wrong number of columns.")));
}
/* check that the types of the first two columns match */
if (tupdesc->attrs[0]->atttypid != tupdesc->attrs[1]->atttypid)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("First two columns must be the same type.")));
/* check that the type of the third column is INT4 */
if (tupdesc->attrs[2]->atttypid != INT4OID)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("Third column must be type %s.",
2003-08-04 08:43:34 +08:00
format_type_be(INT4OID))));
/* check that the type of the fourth column is TEXT if applicable */
if (show_branch && tupdesc->attrs[3]->atttypid != TEXTOID)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("Fourth column must be type %s.",
2003-08-04 08:43:34 +08:00
format_type_be(TEXTOID))));
/* check that the type of the fifth column is INT4 */
if (show_branch && show_serial && tupdesc->attrs[4]->atttypid != INT4OID)
elog(ERROR, "Query-specified return tuple not valid for Connectby: "
"fifth column must be type %s", format_type_be(INT4OID));
/* check that the type of the fifth column is INT4 */
if (!show_branch && show_serial && tupdesc->attrs[3]->atttypid != INT4OID)
elog(ERROR, "Query-specified return tuple not valid for Connectby: "
"fourth column must be type %s", format_type_be(INT4OID));
2003-08-04 08:43:34 +08:00
/* OK, the tupdesc is valid for our purposes */
}
/*
* Check if spi sql tupdesc and return tupdesc are compatible
*/
static bool
compatConnectbyTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc)
{
2002-09-05 04:31:48 +08:00
Oid ret_atttypid;
Oid sql_atttypid;
/* check the key_fld types match */
ret_atttypid = ret_tupdesc->attrs[0]->atttypid;
sql_atttypid = sql_tupdesc->attrs[0]->atttypid;
if (ret_atttypid != sql_atttypid)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("SQL key field datatype does " \
"not match return key field datatype.")));
/* check the parent_key_fld types match */
ret_atttypid = ret_tupdesc->attrs[1]->atttypid;
sql_atttypid = sql_tupdesc->attrs[1]->atttypid;
if (ret_atttypid != sql_atttypid)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("SQL parent key field datatype does " \
2003-08-04 08:43:34 +08:00
"not match return parent key field datatype.")));
/* OK, the two tupdescs are compatible for our purposes */
return true;
}
/*
* Check if two tupdescs match in type of attributes
*/
static bool
compatCrosstabTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc)
{
int i;
2002-09-05 04:31:48 +08:00
Form_pg_attribute ret_attr;
Oid ret_atttypid;
Form_pg_attribute sql_attr;
Oid sql_atttypid;
/* check the rowid types match */
ret_atttypid = ret_tupdesc->attrs[0]->atttypid;
sql_atttypid = sql_tupdesc->attrs[0]->atttypid;
if (ret_atttypid != sql_atttypid)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("invalid return type"),
errdetail("SQL rowid datatype does not match " \
"return rowid datatype.")));
/*
2002-09-05 04:31:48 +08:00
* - attribute [1] of the sql tuple is the category; no need to check
* it - attribute [2] of the sql tuple should match attributes [1] to
* [natts] of the return tuple
*/
sql_attr = sql_tupdesc->attrs[2];
for (i = 1; i < ret_tupdesc->natts; i++)
{
ret_attr = ret_tupdesc->attrs[i];
if (ret_attr->atttypid != sql_attr->atttypid)
return false;
}
/* OK, the two tupdescs are compatible for our purposes */
return true;
}
static TupleDesc
make_crosstab_tupledesc(TupleDesc spi_tupdesc, int num_categories)
{
2002-09-05 04:31:48 +08:00
Form_pg_attribute sql_attr;
Oid sql_atttypid;
TupleDesc tupdesc;
int natts;
AttrNumber attnum;
char attname[NAMEDATALEN];
int i;
/*
2002-09-05 04:31:48 +08:00
* We need to build a tuple description with one column for the
* rowname, and num_categories columns for the values. Each must be of
2002-09-05 04:31:48 +08:00
* the same type as the corresponding spi result input column.
*/
natts = num_categories + 1;
tupdesc = CreateTemplateTupleDesc(natts, false);
/* first the rowname column */
attnum = 1;
sql_attr = spi_tupdesc->attrs[0];
sql_atttypid = sql_attr->atttypid;
strcpy(attname, "rowname");
TupleDescInitEntry(tupdesc, attnum, attname, sql_atttypid,
-1, 0);
/* now the category values columns */
sql_attr = spi_tupdesc->attrs[2];
sql_atttypid = sql_attr->atttypid;
for (i = 0; i < num_categories; i++)
{
attnum++;
sprintf(attname, "category_%d", i + 1);
TupleDescInitEntry(tupdesc, attnum, attname, sql_atttypid,
-1, 0);
}
return tupdesc;
}
/*
* Return a properly quoted literal value.
* Uses quote_literal in quote.c
*/
static char *
quote_literal_cstr(char *rawstr)
{
text *rawstr_text;
text *result_text;
char *result;
rawstr_text = DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(rawstr)));
result_text = DatumGetTextP(DirectFunctionCall1(quote_literal, PointerGetDatum(rawstr_text)));
result = DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(result_text)));
return result;
}