postgresql/contrib/cube/cubescan.l

113 lines
2.4 KiB
Plaintext
Raw Normal View History

%{
/*
* A scanner for EMP-style numeric ranges
2010-09-21 04:08:53 +08:00
* contrib/cube/cubescan.l
*/
/* No reason to constrain amount of data slurped */
#define YY_READ_BUF_SIZE 16777216
/* Avoid exit() on fatal scanner errors (a bit ugly -- see yy_fatal_error) */
#undef fprintf
Improve handling of ereport(ERROR) and elog(ERROR). In commit 71450d7fd6c7cf7b3e38ac56e363bff6a681973c, we added code to inform suitably-intelligent compilers that ereport() doesn't return if the elevel is ERROR or higher. This patch extends that to elog(), and also fixes a double-evaluation hazard that the previous commit created in ereport(), as well as reducing the emitted code size. The elog() improvement requires the compiler to support __VA_ARGS__, which should be available in just about anything nowadays since it's required by C99. But our minimum language baseline is still C89, so add a configure test for that. The previous commit assumed that ereport's elevel could be evaluated twice, which isn't terribly safe --- there are already counterexamples in xlog.c. On compilers that have __builtin_constant_p, we can use that to protect the second test, since there's no possible optimization gain if the compiler doesn't know the value of elevel. Otherwise, use a local variable inside the macros to prevent double evaluation. The local-variable solution is inferior because (a) it leads to useless code being emitted when elevel isn't constant, and (b) it increases the optimization level needed for the compiler to recognize that subsequent code is unreachable. But it seems better than not teaching non-gcc compilers about unreachability at all. Lastly, if the compiler has __builtin_unreachable(), we can use that instead of abort(), resulting in a noticeable code savings since no function call is actually emitted. However, it seems wise to do this only in non-assert builds. In an assert build, continue to use abort(), so that the behavior will be predictable and debuggable if the "impossible" happens. These changes involve making the ereport and elog macros emit do-while statement blocks not just expressions, which forces small changes in a few call sites. Andres Freund, Tom Lane, Heikki Linnakangas
2013-01-14 07:39:20 +08:00
#define fprintf(file, fmt, msg) fprintf_to_ereport(fmt, msg)
static void
fprintf_to_ereport(const char *fmt, const char *msg)
{
ereport(ERROR, (errmsg_internal("%s", msg)));
}
/* Handles to the buffer that the lexer uses internally */
static YY_BUFFER_STATE scanbufhandle;
/* this is now declared in cubeparse.y: */
/* static char *scanbuf; */
/* static int scanbuflen; */
%}
%option 8bit
%option never-interactive
%option nodefault
%option noinput
%option nounput
%option noyywrap
%option warn
%option prefix="cube_yy"
n [0-9]+
integer [+-]?{n}
real [+-]?({n}\.{n}?|\.{n})
float ({integer}|{real})([eE]{integer})?
%%
{float} yylval = yytext; return CUBEFLOAT;
\[ yylval = "("; return O_BRACKET;
\] yylval = ")"; return C_BRACKET;
\( yylval = "("; return O_PAREN;
\) yylval = ")"; return C_PAREN;
\, yylval = ")"; return COMMA;
[ \t\n\r\f]+ /* discard spaces */
. return yytext[0]; /* alert parser of the garbage */
%%
void
yyerror(NDBOX **result, const char *message)
{
if (*yytext == YY_END_OF_BUFFER_CHAR)
{
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("bad cube representation"),
/* translator: %s is typically "syntax error" */
errdetail("%s at end of input", message)));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("bad cube representation"),
/* translator: first %s is typically "syntax error" */
errdetail("%s at or near \"%s\"", message, yytext)));
}
}
/*
* Called before any actual parsing is done
*/
void
cube_scanner_init(const char *str)
{
Size slen = strlen(str);
/*
* Might be left over after ereport()
*/
if (YY_CURRENT_BUFFER)
yy_delete_buffer(YY_CURRENT_BUFFER);
/*
* Make a scan buffer with special termination needed by flex.
*/
scanbuflen = slen;
scanbuf = palloc(slen + 2);
memcpy(scanbuf, str, slen);
scanbuf[slen] = scanbuf[slen + 1] = YY_END_OF_BUFFER_CHAR;
scanbufhandle = yy_scan_buffer(scanbuf, slen + 2);
BEGIN(INITIAL);
}
/*
* Called after parsing is done to clean up after cube_scanner_init()
*/
void
cube_scanner_finish(void)
{
yy_delete_buffer(scanbufhandle);
pfree(scanbuf);
}