openssl/crypto/kmac/kmac.c
terry zhao 97c213814b Update kmac.c
fix nmake compiler error

```
crypto\kmac\kmac.c : warning treated as error - no object file generated
crypto\kmac\kmac.c : warning C4819: The file contains a character that cannot be represented in the current code page (936). Save the file in Unicode format to prevent data loss
```

CLA: trivial

Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7846)
2018-12-08 11:00:18 +01:00

470 lines
13 KiB
C

/*
* Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* See SP800-185 "Appendix A - KMAC, .... in Terms of Keccak[c]"
*
* Inputs are:
* K = Key (len(K) < 2^2040 bits)
* X = Input
* L = Output length (0 <= L < 2^2040 bits)
* S = Customization String Default="" (len(S) < 2^2040 bits)
*
* KMAC128(K, X, L, S)
* {
* newX = bytepad(encode_string(K), 168) || X || right_encode(L).
* T = bytepad(encode_string("KMAC") || encode_string(S), 168).
* return KECCAK[256](T || newX || 00, L).
* }
*
* KMAC256(K, X, L, S)
* {
* newX = bytepad(encode_string(K), 136) || X || right_encode(L).
* T = bytepad(encode_string("KMAC") || encode_string(S), 136).
* return KECCAK[512](T || newX || 00, L).
* }
*
* KMAC128XOF(K, X, L, S)
* {
* newX = bytepad(encode_string(K), 168) || X || right_encode(0).
* T = bytepad(encode_string("KMAC") || encode_string(S), 168).
* return KECCAK[256](T || newX || 00, L).
* }
*
* KMAC256XOF(K, X, L, S)
* {
* newX = bytepad(encode_string(K), 136) || X || right_encode(0).
* T = bytepad(encode_string("KMAC") || encode_string(S), 136).
* return KECCAK[512](T || newX || 00, L).
* }
*
*/
#include <stdlib.h>
#include <openssl/evp.h>
#include "internal/cryptlib.h"
#include "internal/evp_int.h"
#define KMAC_MAX_BLOCKSIZE ((1600 - 128*2) / 8) /* 168 */
#define KMAC_MIN_BLOCKSIZE ((1600 - 256*2) / 8) /* 136 */
/* Length encoding will be a 1 byte size + length in bits (2 bytes max) */
#define KMAC_MAX_ENCODED_HEADER_LEN 3
/*
* Custom string max size is chosen such that:
* len(encoded_string(custom) + len(kmac_encoded_string) <= KMAC_MIN_BLOCKSIZE
* i.e: (KMAC_MAX_CUSTOM + KMAC_MAX_ENCODED_LEN) + 6 <= 136
*/
#define KMAC_MAX_CUSTOM 127
/* Maximum size of encoded custom string */
#define KMAC_MAX_CUSTOM_ENCODED (KMAC_MAX_CUSTOM + KMAC_MAX_ENCODED_HEADER_LEN)
/* Maximum key size in bytes = 2040 / 8 */
#define KMAC_MAX_KEY 255
/*
* Maximum Encoded Key size will be padded to a multiple of the blocksize
* i.e KMAC_MAX_KEY + KMAC_MAX_ENCODED_LEN = 258
* Padded to a multiple of KMAC_MAX_BLOCKSIZE
*/
#define KMAC_MAX_KEY_ENCODED (KMAC_MAX_BLOCKSIZE * 2)
/* Fixed value of encode_string("KMAC") */
static const unsigned char kmac_string[] = {
0x01, 0x20, 0x4B, 0x4D, 0x41, 0x43
};
#define KMAC_FLAG_XOF_MODE 1
/* typedef EVP_MAC_IMPL */
struct evp_mac_impl_st {
EVP_MD_CTX *ctx;
const EVP_MD *md;
size_t out_len;
int key_len;
int custom_len;
/* If xof_mode = 1 then we use right_encode(0) */
int xof_mode;
/* key and custom are stored in encoded form */
unsigned char key[KMAC_MAX_KEY_ENCODED];
unsigned char custom[KMAC_MAX_CUSTOM_ENCODED];
};
static int encode_string(unsigned char *out, int *out_len,
const unsigned char *in, int in_len);
static int right_encode(unsigned char *out, int *out_len, size_t bits);
static int bytepad(unsigned char *out, int *out_len,
const unsigned char *in1, int in1_len,
const unsigned char *in2, int in2_len,
int w);
static int kmac_bytepad_encode_key(unsigned char *out, int *out_len,
const unsigned char *in, int in_len,
int w);
static int kmac_ctrl_str(EVP_MAC_IMPL *kctx, const char *type,
const char *value);
static void kmac_free(EVP_MAC_IMPL *kctx)
{
if (kctx != NULL) {
EVP_MD_CTX_free(kctx->ctx);
OPENSSL_cleanse(kctx->key, kctx->key_len);
OPENSSL_cleanse(kctx->custom, kctx->custom_len);
OPENSSL_free(kctx);
}
}
static EVP_MAC_IMPL *kmac_new(const EVP_MD *md)
{
EVP_MAC_IMPL *kctx = NULL;
if ((kctx = OPENSSL_zalloc(sizeof(*kctx))) == NULL
|| (kctx->ctx = EVP_MD_CTX_new()) == NULL) {
kmac_free(kctx);
return NULL;
}
kctx->md = md;
kctx->out_len = md->md_size;
return kctx;
}
static EVP_MAC_IMPL *kmac128_new(void)
{
return kmac_new(evp_keccak_kmac128());
}
static EVP_MAC_IMPL *kmac256_new(void)
{
return kmac_new(evp_keccak_kmac256());
}
static int kmac_copy(EVP_MAC_IMPL *gdst, EVP_MAC_IMPL *gsrc)
{
gdst->md = gsrc->md;
gdst->out_len = gsrc->out_len;
gdst->key_len = gsrc->key_len;
gdst->custom_len = gsrc->custom_len;
gdst->xof_mode = gsrc->xof_mode;
memcpy(gdst->key, gsrc->key, gsrc->key_len);
memcpy(gdst->custom, gsrc->custom, gdst->custom_len);
return EVP_MD_CTX_copy(gdst->ctx, gsrc->ctx);
}
/*
* The init() assumes that any ctrl methods are set beforehand for
* md, key and custom. Setting the fields afterwards will have no
* effect on the output mac.
*/
static int kmac_init(EVP_MAC_IMPL *kctx)
{
EVP_MD_CTX *ctx = kctx->ctx;
unsigned char out[KMAC_MAX_BLOCKSIZE];
int out_len, block_len;
/* Check key has been set */
if (kctx->key_len == 0) {
EVPerr(EVP_F_KMAC_INIT, EVP_R_NO_KEY_SET);
return 0;
}
if (!EVP_DigestInit_ex(kctx->ctx, kctx->md, NULL))
return 0;
block_len = EVP_MD_block_size(kctx->md);
/* Set default custom string if it is not already set */
if (kctx->custom_len == 0)
(void)kmac_ctrl_str(kctx, "custom", "");
return bytepad(out, &out_len, kmac_string, sizeof(kmac_string),
kctx->custom, kctx->custom_len, block_len)
&& EVP_DigestUpdate(ctx, out, out_len)
&& EVP_DigestUpdate(ctx, kctx->key, kctx->key_len);
}
static size_t kmac_size(EVP_MAC_IMPL *kctx)
{
return kctx->out_len;
}
static int kmac_update(EVP_MAC_IMPL *kctx, const unsigned char *data,
size_t datalen)
{
return EVP_DigestUpdate(kctx->ctx, data, datalen);
}
static int kmac_final(EVP_MAC_IMPL *kctx, unsigned char *out)
{
EVP_MD_CTX *ctx = kctx->ctx;
int lbits, len;
unsigned char encoded_outlen[KMAC_MAX_ENCODED_HEADER_LEN];
/* KMAC XOF mode sets the encoded length to 0 */
lbits = (kctx->xof_mode ? 0 : (kctx->out_len * 8));
return right_encode(encoded_outlen, &len, lbits)
&& EVP_DigestUpdate(ctx, encoded_outlen, len)
&& EVP_DigestFinalXOF(ctx, out, kctx->out_len);
}
/*
* The following Ctrl functions can be set any time before final():
* - EVP_MAC_CTRL_SET_SIZE: The requested output length.
* - EVP_MAC_CTRL_SET_XOF: If set, this indicates that right_encoded(0) is
* part of the digested data, otherwise it uses
* right_encoded(requested output length).
* All other Ctrl functions should be set before init().
*/
static int kmac_ctrl(EVP_MAC_IMPL *kctx, int cmd, va_list args)
{
const unsigned char *p;
size_t len;
size_t size;
switch (cmd) {
case EVP_MAC_CTRL_SET_XOF:
kctx->xof_mode = va_arg(args, int);
return 1;
case EVP_MAC_CTRL_SET_SIZE:
size = va_arg(args, size_t);
kctx->out_len = size;
return 1;
case EVP_MAC_CTRL_SET_KEY:
p = va_arg(args, const unsigned char *);
len = va_arg(args, size_t);
if (len < 4 || len > KMAC_MAX_KEY) {
EVPerr(EVP_F_KMAC_CTRL, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
return kmac_bytepad_encode_key(kctx->key, &kctx->key_len, p, len,
EVP_MD_block_size(kctx->md));
case EVP_MAC_CTRL_SET_CUSTOM:
p = va_arg(args, const unsigned char *);
len = va_arg(args, size_t);
if (len > KMAC_MAX_CUSTOM) {
EVPerr(EVP_F_KMAC_CTRL, EVP_R_INVALID_CUSTOM_LENGTH);
return 0;
}
return encode_string(kctx->custom, &kctx->custom_len, p, len);
default:
return -2;
}
}
static int kmac_ctrl_int(EVP_MAC_IMPL *kctx, int cmd, ...)
{
int rv;
va_list args;
va_start(args, cmd);
rv = kmac_ctrl(kctx, cmd, args);
va_end(args);
return rv;
}
static int kmac_ctrl_str_cb(void *kctx, int cmd, void *buf, size_t buflen)
{
return kmac_ctrl_int(kctx, cmd, buf, buflen);
}
static int kmac_ctrl_str(EVP_MAC_IMPL *kctx, const char *type,
const char *value)
{
if (value == NULL)
return 0;
if (strcmp(type, "outlen") == 0)
return kmac_ctrl_int(kctx, EVP_MAC_CTRL_SET_SIZE, (size_t)atoi(value));
if (strcmp(type, "xof") == 0)
return kmac_ctrl_int(kctx, EVP_MAC_CTRL_SET_XOF, atoi(value));
if (strcmp(type, "key") == 0)
return EVP_str2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_KEY,
value);
if (strcmp(type, "hexkey") == 0)
return EVP_hex2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_KEY,
value);
if (strcmp(type, "custom") == 0)
return EVP_str2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_CUSTOM,
value);
if (strcmp(type, "hexcustom") == 0)
return EVP_hex2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_CUSTOM,
value);
return -2;
}
/*
* Encoding/Padding Methods.
*/
/* Returns the number of bytes required to store 'bits' into a byte array */
static unsigned int get_encode_size(size_t bits)
{
unsigned int cnt = 0, sz = sizeof(size_t);
while (bits && (cnt < sz)) {
++cnt;
bits >>= 8;
}
/* If bits is zero 1 byte is required */
if (cnt == 0)
cnt = 1;
return cnt;
}
/*
* Convert an integer into bytes . The number of bytes is appended
* to the end of the buffer. Returns an array of bytes 'out' of size
* *out_len.
*
* e.g if bits = 32, out[2] = { 0x20, 0x01 }
*
*/
static int right_encode(unsigned char *out, int *out_len, size_t bits)
{
unsigned int len = get_encode_size(bits);
int i;
/* The length is constrained to a single byte: 2040/8 = 255 */
if (len > 0xFF)
return 0;
/* MSB's are at the start of the bytes array */
for (i = len - 1; i >= 0; --i) {
out[i] = (unsigned char)(bits & 0xFF);
bits >>= 8;
}
/* Tack the length onto the end */
out[len] = (unsigned char)len;
/* The Returned length includes the tacked on byte */
*out_len = len + 1;
return 1;
}
/*
* Encodes a string with a left encoded length added. Note that the
* in_len is converted to bits (*8).
*
* e.g- in="KMAC" gives out[6] = { 0x01, 0x20, 0x4B, 0x4D, 0x41, 0x43 }
* len bits K M A C
*/
static int encode_string(unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
if (in == NULL) {
*out_len = 0;
} else {
int i, bits, len;
bits = 8 * in_len;
len = get_encode_size(bits);
if (len > 0xFF)
return 0;
out[0] = len;
for (i = len; i > 0; --i) {
out[i] = (bits & 0xFF);
bits >>= 8;
}
memcpy(out + len + 1, in, in_len);
*out_len = (1 + len + in_len);
}
return 1;
}
/*
* Returns a zero padded encoding of the inputs in1 and an optional
* in2 (can be NULL). The padded output must be a multiple of the blocksize 'w'.
* The value of w is in bytes (< 256).
*
* The returned output is:
* zero_padded(multiple of w, (left_encode(w) || in1 [|| in2])
*/
static int bytepad(unsigned char *out, int *out_len,
const unsigned char *in1, int in1_len,
const unsigned char *in2, int in2_len, int w)
{
int len;
unsigned char *p = out;
int sz = w;
/* Left encoded w */
*p++ = 1;
*p++ = w;
/* || in1 */
memcpy(p, in1, in1_len);
p += in1_len;
/* [ || in2 ] */
if (in2 != NULL && in2_len > 0) {
memcpy(p, in2, in2_len);
p += in2_len;
}
/* Figure out the pad size (divisible by w) */
len = p - out;
while (len > sz) {
sz += w;
}
/* zero pad the end of the buffer */
memset(p, 0, sz - len);
*out_len = sz;
return 1;
}
/*
* Returns out = bytepad(encode_string(in), w)
*/
static int kmac_bytepad_encode_key(unsigned char *out, int *out_len,
const unsigned char *in, int in_len,
int w)
{
unsigned char tmp[KMAC_MAX_KEY + KMAC_MAX_ENCODED_HEADER_LEN];
int tmp_len;
if (!encode_string(tmp, &tmp_len, in, in_len))
return 0;
return bytepad(out, out_len, tmp, tmp_len, NULL, 0, w);
}
const EVP_MAC kmac128_meth = {
EVP_MAC_KMAC128,
kmac128_new,
kmac_copy,
kmac_free,
kmac_size,
kmac_init,
kmac_update,
kmac_final,
kmac_ctrl,
kmac_ctrl_str
};
const EVP_MAC kmac256_meth = {
EVP_MAC_KMAC256,
kmac256_new,
kmac_copy,
kmac_free,
kmac_size,
kmac_init,
kmac_update,
kmac_final,
kmac_ctrl,
kmac_ctrl_str
};