mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
4f22f40507
Reviewed-by: Richard Levitte <levitte@openssl.org>
1225 lines
31 KiB
C
1225 lines
31 KiB
C
/*
|
|
* Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* The Elliptic Curve Public-Key Crypto Library (ECC Code) included
|
|
* herein is developed by SUN MICROSYSTEMS, INC., and is contributed
|
|
* to the OpenSSL project.
|
|
*
|
|
* The ECC Code is licensed pursuant to the OpenSSL open source
|
|
* license provided below.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
|
|
/*
|
|
* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
|
|
* fail.
|
|
*/
|
|
# define MAX_ITERATIONS 50
|
|
|
|
static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
|
|
64, 65, 68, 69, 80, 81, 84, 85
|
|
};
|
|
|
|
/* Platform-specific macros to accelerate squaring. */
|
|
# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
|
# define SQR1(w) \
|
|
SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
|
|
SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
|
|
SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
|
|
SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
|
|
# define SQR0(w) \
|
|
SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
|
|
SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
|
|
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
|
|
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
|
|
# endif
|
|
# ifdef THIRTY_TWO_BIT
|
|
# define SQR1(w) \
|
|
SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
|
|
SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
|
|
# define SQR0(w) \
|
|
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
|
|
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
|
|
# endif
|
|
|
|
# if !defined(OPENSSL_BN_ASM_GF2m)
|
|
/*
|
|
* Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
|
|
* a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
|
|
* the variables have the right amount of space allocated.
|
|
*/
|
|
# ifdef THIRTY_TWO_BIT
|
|
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
|
|
const BN_ULONG b)
|
|
{
|
|
register BN_ULONG h, l, s;
|
|
BN_ULONG tab[8], top2b = a >> 30;
|
|
register BN_ULONG a1, a2, a4;
|
|
|
|
a1 = a & (0x3FFFFFFF);
|
|
a2 = a1 << 1;
|
|
a4 = a2 << 1;
|
|
|
|
tab[0] = 0;
|
|
tab[1] = a1;
|
|
tab[2] = a2;
|
|
tab[3] = a1 ^ a2;
|
|
tab[4] = a4;
|
|
tab[5] = a1 ^ a4;
|
|
tab[6] = a2 ^ a4;
|
|
tab[7] = a1 ^ a2 ^ a4;
|
|
|
|
s = tab[b & 0x7];
|
|
l = s;
|
|
s = tab[b >> 3 & 0x7];
|
|
l ^= s << 3;
|
|
h = s >> 29;
|
|
s = tab[b >> 6 & 0x7];
|
|
l ^= s << 6;
|
|
h ^= s >> 26;
|
|
s = tab[b >> 9 & 0x7];
|
|
l ^= s << 9;
|
|
h ^= s >> 23;
|
|
s = tab[b >> 12 & 0x7];
|
|
l ^= s << 12;
|
|
h ^= s >> 20;
|
|
s = tab[b >> 15 & 0x7];
|
|
l ^= s << 15;
|
|
h ^= s >> 17;
|
|
s = tab[b >> 18 & 0x7];
|
|
l ^= s << 18;
|
|
h ^= s >> 14;
|
|
s = tab[b >> 21 & 0x7];
|
|
l ^= s << 21;
|
|
h ^= s >> 11;
|
|
s = tab[b >> 24 & 0x7];
|
|
l ^= s << 24;
|
|
h ^= s >> 8;
|
|
s = tab[b >> 27 & 0x7];
|
|
l ^= s << 27;
|
|
h ^= s >> 5;
|
|
s = tab[b >> 30];
|
|
l ^= s << 30;
|
|
h ^= s >> 2;
|
|
|
|
/* compensate for the top two bits of a */
|
|
|
|
if (top2b & 01) {
|
|
l ^= b << 30;
|
|
h ^= b >> 2;
|
|
}
|
|
if (top2b & 02) {
|
|
l ^= b << 31;
|
|
h ^= b >> 1;
|
|
}
|
|
|
|
*r1 = h;
|
|
*r0 = l;
|
|
}
|
|
# endif
|
|
# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
|
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
|
|
const BN_ULONG b)
|
|
{
|
|
register BN_ULONG h, l, s;
|
|
BN_ULONG tab[16], top3b = a >> 61;
|
|
register BN_ULONG a1, a2, a4, a8;
|
|
|
|
a1 = a & (0x1FFFFFFFFFFFFFFFULL);
|
|
a2 = a1 << 1;
|
|
a4 = a2 << 1;
|
|
a8 = a4 << 1;
|
|
|
|
tab[0] = 0;
|
|
tab[1] = a1;
|
|
tab[2] = a2;
|
|
tab[3] = a1 ^ a2;
|
|
tab[4] = a4;
|
|
tab[5] = a1 ^ a4;
|
|
tab[6] = a2 ^ a4;
|
|
tab[7] = a1 ^ a2 ^ a4;
|
|
tab[8] = a8;
|
|
tab[9] = a1 ^ a8;
|
|
tab[10] = a2 ^ a8;
|
|
tab[11] = a1 ^ a2 ^ a8;
|
|
tab[12] = a4 ^ a8;
|
|
tab[13] = a1 ^ a4 ^ a8;
|
|
tab[14] = a2 ^ a4 ^ a8;
|
|
tab[15] = a1 ^ a2 ^ a4 ^ a8;
|
|
|
|
s = tab[b & 0xF];
|
|
l = s;
|
|
s = tab[b >> 4 & 0xF];
|
|
l ^= s << 4;
|
|
h = s >> 60;
|
|
s = tab[b >> 8 & 0xF];
|
|
l ^= s << 8;
|
|
h ^= s >> 56;
|
|
s = tab[b >> 12 & 0xF];
|
|
l ^= s << 12;
|
|
h ^= s >> 52;
|
|
s = tab[b >> 16 & 0xF];
|
|
l ^= s << 16;
|
|
h ^= s >> 48;
|
|
s = tab[b >> 20 & 0xF];
|
|
l ^= s << 20;
|
|
h ^= s >> 44;
|
|
s = tab[b >> 24 & 0xF];
|
|
l ^= s << 24;
|
|
h ^= s >> 40;
|
|
s = tab[b >> 28 & 0xF];
|
|
l ^= s << 28;
|
|
h ^= s >> 36;
|
|
s = tab[b >> 32 & 0xF];
|
|
l ^= s << 32;
|
|
h ^= s >> 32;
|
|
s = tab[b >> 36 & 0xF];
|
|
l ^= s << 36;
|
|
h ^= s >> 28;
|
|
s = tab[b >> 40 & 0xF];
|
|
l ^= s << 40;
|
|
h ^= s >> 24;
|
|
s = tab[b >> 44 & 0xF];
|
|
l ^= s << 44;
|
|
h ^= s >> 20;
|
|
s = tab[b >> 48 & 0xF];
|
|
l ^= s << 48;
|
|
h ^= s >> 16;
|
|
s = tab[b >> 52 & 0xF];
|
|
l ^= s << 52;
|
|
h ^= s >> 12;
|
|
s = tab[b >> 56 & 0xF];
|
|
l ^= s << 56;
|
|
h ^= s >> 8;
|
|
s = tab[b >> 60];
|
|
l ^= s << 60;
|
|
h ^= s >> 4;
|
|
|
|
/* compensate for the top three bits of a */
|
|
|
|
if (top3b & 01) {
|
|
l ^= b << 61;
|
|
h ^= b >> 3;
|
|
}
|
|
if (top3b & 02) {
|
|
l ^= b << 62;
|
|
h ^= b >> 2;
|
|
}
|
|
if (top3b & 04) {
|
|
l ^= b << 63;
|
|
h ^= b >> 1;
|
|
}
|
|
|
|
*r1 = h;
|
|
*r0 = l;
|
|
}
|
|
# endif
|
|
|
|
/*
|
|
* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
|
|
* result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
|
|
* ensure that the variables have the right amount of space allocated.
|
|
*/
|
|
static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
|
|
const BN_ULONG b1, const BN_ULONG b0)
|
|
{
|
|
BN_ULONG m1, m0;
|
|
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
|
|
bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
|
|
bn_GF2m_mul_1x1(r + 1, r, a0, b0);
|
|
bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
|
|
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
|
|
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
|
|
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
|
|
}
|
|
# else
|
|
void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
|
|
BN_ULONG b0);
|
|
# endif
|
|
|
|
/*
|
|
* Add polynomials a and b and store result in r; r could be a or b, a and b
|
|
* could be equal; r is the bitwise XOR of a and b.
|
|
*/
|
|
int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
|
|
{
|
|
int i;
|
|
const BIGNUM *at, *bt;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
if (a->top < b->top) {
|
|
at = b;
|
|
bt = a;
|
|
} else {
|
|
at = a;
|
|
bt = b;
|
|
}
|
|
|
|
if (bn_wexpand(r, at->top) == NULL)
|
|
return 0;
|
|
|
|
for (i = 0; i < bt->top; i++) {
|
|
r->d[i] = at->d[i] ^ bt->d[i];
|
|
}
|
|
for (; i < at->top; i++) {
|
|
r->d[i] = at->d[i];
|
|
}
|
|
|
|
r->top = at->top;
|
|
bn_correct_top(r);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*-
|
|
* Some functions allow for representation of the irreducible polynomials
|
|
* as an int[], say p. The irreducible f(t) is then of the form:
|
|
* t^p[0] + t^p[1] + ... + t^p[k]
|
|
* where m = p[0] > p[1] > ... > p[k] = 0.
|
|
*/
|
|
|
|
/* Performs modular reduction of a and store result in r. r could be a. */
|
|
int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
|
|
{
|
|
int j, k;
|
|
int n, dN, d0, d1;
|
|
BN_ULONG zz, *z;
|
|
|
|
bn_check_top(a);
|
|
|
|
if (!p[0]) {
|
|
/* reduction mod 1 => return 0 */
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Since the algorithm does reduction in the r value, if a != r, copy the
|
|
* contents of a into r so we can do reduction in r.
|
|
*/
|
|
if (a != r) {
|
|
if (!bn_wexpand(r, a->top))
|
|
return 0;
|
|
for (j = 0; j < a->top; j++) {
|
|
r->d[j] = a->d[j];
|
|
}
|
|
r->top = a->top;
|
|
}
|
|
z = r->d;
|
|
|
|
/* start reduction */
|
|
dN = p[0] / BN_BITS2;
|
|
for (j = r->top - 1; j > dN;) {
|
|
zz = z[j];
|
|
if (z[j] == 0) {
|
|
j--;
|
|
continue;
|
|
}
|
|
z[j] = 0;
|
|
|
|
for (k = 1; p[k] != 0; k++) {
|
|
/* reducing component t^p[k] */
|
|
n = p[0] - p[k];
|
|
d0 = n % BN_BITS2;
|
|
d1 = BN_BITS2 - d0;
|
|
n /= BN_BITS2;
|
|
z[j - n] ^= (zz >> d0);
|
|
if (d0)
|
|
z[j - n - 1] ^= (zz << d1);
|
|
}
|
|
|
|
/* reducing component t^0 */
|
|
n = dN;
|
|
d0 = p[0] % BN_BITS2;
|
|
d1 = BN_BITS2 - d0;
|
|
z[j - n] ^= (zz >> d0);
|
|
if (d0)
|
|
z[j - n - 1] ^= (zz << d1);
|
|
}
|
|
|
|
/* final round of reduction */
|
|
while (j == dN) {
|
|
|
|
d0 = p[0] % BN_BITS2;
|
|
zz = z[dN] >> d0;
|
|
if (zz == 0)
|
|
break;
|
|
d1 = BN_BITS2 - d0;
|
|
|
|
/* clear up the top d1 bits */
|
|
if (d0)
|
|
z[dN] = (z[dN] << d1) >> d1;
|
|
else
|
|
z[dN] = 0;
|
|
z[0] ^= zz; /* reduction t^0 component */
|
|
|
|
for (k = 1; p[k] != 0; k++) {
|
|
BN_ULONG tmp_ulong;
|
|
|
|
/* reducing component t^p[k] */
|
|
n = p[k] / BN_BITS2;
|
|
d0 = p[k] % BN_BITS2;
|
|
d1 = BN_BITS2 - d0;
|
|
z[n] ^= (zz << d0);
|
|
if (d0 && (tmp_ulong = zz >> d1))
|
|
z[n + 1] ^= tmp_ulong;
|
|
}
|
|
|
|
}
|
|
|
|
bn_correct_top(r);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Performs modular reduction of a by p and store result in r. r could be a.
|
|
* This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
|
|
* function is only provided for convenience; for best performance, use the
|
|
* BN_GF2m_mod_arr function.
|
|
*/
|
|
int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
|
|
{
|
|
int ret = 0;
|
|
int arr[6];
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
|
|
if (!ret || ret > (int)OSSL_NELEM(arr)) {
|
|
BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
|
|
return 0;
|
|
}
|
|
ret = BN_GF2m_mod_arr(r, a, arr);
|
|
bn_check_top(r);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the product of two polynomials a and b, reduce modulo p, and store
|
|
* the result in r. r could be a or b; a could be b.
|
|
*/
|
|
int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const int p[], BN_CTX *ctx)
|
|
{
|
|
int zlen, i, j, k, ret = 0;
|
|
BIGNUM *s;
|
|
BN_ULONG x1, x0, y1, y0, zz[4];
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
if (a == b) {
|
|
return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((s = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
zlen = a->top + b->top + 4;
|
|
if (!bn_wexpand(s, zlen))
|
|
goto err;
|
|
s->top = zlen;
|
|
|
|
for (i = 0; i < zlen; i++)
|
|
s->d[i] = 0;
|
|
|
|
for (j = 0; j < b->top; j += 2) {
|
|
y0 = b->d[j];
|
|
y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
|
|
for (i = 0; i < a->top; i += 2) {
|
|
x0 = a->d[i];
|
|
x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
|
|
bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
|
|
for (k = 0; k < 4; k++)
|
|
s->d[i + j + k] ^= zz[k];
|
|
}
|
|
}
|
|
|
|
bn_correct_top(s);
|
|
if (BN_GF2m_mod_arr(r, s, p))
|
|
ret = 1;
|
|
bn_check_top(r);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the product of two polynomials a and b, reduce modulo p, and store
|
|
* the result in r. r could be a or b; a could equal b. This function calls
|
|
* down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
|
|
* only provided for convenience; for best performance, use the
|
|
* BN_GF2m_mod_mul_arr function.
|
|
*/
|
|
int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/* Square a, reduce the result mod p, and store it in a. r could be a. */
|
|
int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
|
|
BN_CTX *ctx)
|
|
{
|
|
int i, ret = 0;
|
|
BIGNUM *s;
|
|
|
|
bn_check_top(a);
|
|
BN_CTX_start(ctx);
|
|
if ((s = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if (!bn_wexpand(s, 2 * a->top))
|
|
goto err;
|
|
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
s->d[2 * i + 1] = SQR1(a->d[i]);
|
|
s->d[2 * i] = SQR0(a->d[i]);
|
|
}
|
|
|
|
s->top = 2 * a->top;
|
|
bn_correct_top(s);
|
|
if (!BN_GF2m_mod_arr(r, s, p))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Square a, reduce the result mod p, and store it in a. r could be a. This
|
|
* function calls down to the BN_GF2m_mod_sqr_arr implementation; this
|
|
* wrapper function is only provided for convenience; for best performance,
|
|
* use the BN_GF2m_mod_sqr_arr function.
|
|
*/
|
|
int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Invert a, reduce modulo p, and store the result in r. r could be a. Uses
|
|
* Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
|
|
* Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
|
|
* Curve Cryptography Over Binary Fields".
|
|
*/
|
|
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
|
|
int ret = 0;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if ((b = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((c = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((u = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((v = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod(u, a, p))
|
|
goto err;
|
|
if (BN_is_zero(u))
|
|
goto err;
|
|
|
|
if (!BN_copy(v, p))
|
|
goto err;
|
|
# if 0
|
|
if (!BN_one(b))
|
|
goto err;
|
|
|
|
while (1) {
|
|
while (!BN_is_odd(u)) {
|
|
if (BN_is_zero(u))
|
|
goto err;
|
|
if (!BN_rshift1(u, u))
|
|
goto err;
|
|
if (BN_is_odd(b)) {
|
|
if (!BN_GF2m_add(b, b, p))
|
|
goto err;
|
|
}
|
|
if (!BN_rshift1(b, b))
|
|
goto err;
|
|
}
|
|
|
|
if (BN_abs_is_word(u, 1))
|
|
break;
|
|
|
|
if (BN_num_bits(u) < BN_num_bits(v)) {
|
|
tmp = u;
|
|
u = v;
|
|
v = tmp;
|
|
tmp = b;
|
|
b = c;
|
|
c = tmp;
|
|
}
|
|
|
|
if (!BN_GF2m_add(u, u, v))
|
|
goto err;
|
|
if (!BN_GF2m_add(b, b, c))
|
|
goto err;
|
|
}
|
|
# else
|
|
{
|
|
int i;
|
|
int ubits = BN_num_bits(u);
|
|
int vbits = BN_num_bits(v); /* v is copy of p */
|
|
int top = p->top;
|
|
BN_ULONG *udp, *bdp, *vdp, *cdp;
|
|
|
|
if (!bn_wexpand(u, top))
|
|
goto err;
|
|
udp = u->d;
|
|
for (i = u->top; i < top; i++)
|
|
udp[i] = 0;
|
|
u->top = top;
|
|
if (!bn_wexpand(b, top))
|
|
goto err;
|
|
bdp = b->d;
|
|
bdp[0] = 1;
|
|
for (i = 1; i < top; i++)
|
|
bdp[i] = 0;
|
|
b->top = top;
|
|
if (!bn_wexpand(c, top))
|
|
goto err;
|
|
cdp = c->d;
|
|
for (i = 0; i < top; i++)
|
|
cdp[i] = 0;
|
|
c->top = top;
|
|
vdp = v->d; /* It pays off to "cache" *->d pointers,
|
|
* because it allows optimizer to be more
|
|
* aggressive. But we don't have to "cache"
|
|
* p->d, because *p is declared 'const'... */
|
|
while (1) {
|
|
while (ubits && !(udp[0] & 1)) {
|
|
BN_ULONG u0, u1, b0, b1, mask;
|
|
|
|
u0 = udp[0];
|
|
b0 = bdp[0];
|
|
mask = (BN_ULONG)0 - (b0 & 1);
|
|
b0 ^= p->d[0] & mask;
|
|
for (i = 0; i < top - 1; i++) {
|
|
u1 = udp[i + 1];
|
|
udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
|
|
u0 = u1;
|
|
b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
|
|
bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
|
|
b0 = b1;
|
|
}
|
|
udp[i] = u0 >> 1;
|
|
bdp[i] = b0 >> 1;
|
|
ubits--;
|
|
}
|
|
|
|
if (ubits <= BN_BITS2) {
|
|
if (udp[0] == 0) /* poly was reducible */
|
|
goto err;
|
|
if (udp[0] == 1)
|
|
break;
|
|
}
|
|
|
|
if (ubits < vbits) {
|
|
i = ubits;
|
|
ubits = vbits;
|
|
vbits = i;
|
|
tmp = u;
|
|
u = v;
|
|
v = tmp;
|
|
tmp = b;
|
|
b = c;
|
|
c = tmp;
|
|
udp = vdp;
|
|
vdp = v->d;
|
|
bdp = cdp;
|
|
cdp = c->d;
|
|
}
|
|
for (i = 0; i < top; i++) {
|
|
udp[i] ^= vdp[i];
|
|
bdp[i] ^= cdp[i];
|
|
}
|
|
if (ubits == vbits) {
|
|
BN_ULONG ul;
|
|
int utop = (ubits - 1) / BN_BITS2;
|
|
|
|
while ((ul = udp[utop]) == 0 && utop)
|
|
utop--;
|
|
ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
|
|
}
|
|
}
|
|
bn_correct_top(b);
|
|
}
|
|
# endif
|
|
|
|
if (!BN_copy(r, b))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
|
|
err:
|
|
# ifdef BN_DEBUG /* BN_CTX_end would complain about the
|
|
* expanded form */
|
|
bn_correct_top(c);
|
|
bn_correct_top(u);
|
|
bn_correct_top(v);
|
|
# endif
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Invert xx, reduce modulo p, and store the result in r. r could be xx.
|
|
* This function calls down to the BN_GF2m_mod_inv implementation; this
|
|
* wrapper function is only provided for convenience; for best performance,
|
|
* use the BN_GF2m_mod_inv function.
|
|
*/
|
|
int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
|
|
BN_CTX *ctx)
|
|
{
|
|
BIGNUM *field;
|
|
int ret = 0;
|
|
|
|
bn_check_top(xx);
|
|
BN_CTX_start(ctx);
|
|
if ((field = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if (!BN_GF2m_arr2poly(p, field))
|
|
goto err;
|
|
|
|
ret = BN_GF2m_mod_inv(r, xx, field, ctx);
|
|
bn_check_top(r);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
# ifndef OPENSSL_SUN_GF2M_DIV
|
|
/*
|
|
* Divide y by x, reduce modulo p, and store the result in r. r could be x
|
|
* or y, x could equal y.
|
|
*/
|
|
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
|
|
const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *xinv = NULL;
|
|
int ret = 0;
|
|
|
|
bn_check_top(y);
|
|
bn_check_top(x);
|
|
bn_check_top(p);
|
|
|
|
BN_CTX_start(ctx);
|
|
xinv = BN_CTX_get(ctx);
|
|
if (xinv == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
# else
|
|
/*
|
|
* Divide y by x, reduce modulo p, and store the result in r. r could be x
|
|
* or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
|
|
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
|
|
* Great Divide".
|
|
*/
|
|
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
|
|
const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *u, *v;
|
|
int ret = 0;
|
|
|
|
bn_check_top(y);
|
|
bn_check_top(x);
|
|
bn_check_top(p);
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
a = BN_CTX_get(ctx);
|
|
b = BN_CTX_get(ctx);
|
|
u = BN_CTX_get(ctx);
|
|
v = BN_CTX_get(ctx);
|
|
if (v == NULL)
|
|
goto err;
|
|
|
|
/* reduce x and y mod p */
|
|
if (!BN_GF2m_mod(u, y, p))
|
|
goto err;
|
|
if (!BN_GF2m_mod(a, x, p))
|
|
goto err;
|
|
if (!BN_copy(b, p))
|
|
goto err;
|
|
|
|
while (!BN_is_odd(a)) {
|
|
if (!BN_rshift1(a, a))
|
|
goto err;
|
|
if (BN_is_odd(u))
|
|
if (!BN_GF2m_add(u, u, p))
|
|
goto err;
|
|
if (!BN_rshift1(u, u))
|
|
goto err;
|
|
}
|
|
|
|
do {
|
|
if (BN_GF2m_cmp(b, a) > 0) {
|
|
if (!BN_GF2m_add(b, b, a))
|
|
goto err;
|
|
if (!BN_GF2m_add(v, v, u))
|
|
goto err;
|
|
do {
|
|
if (!BN_rshift1(b, b))
|
|
goto err;
|
|
if (BN_is_odd(v))
|
|
if (!BN_GF2m_add(v, v, p))
|
|
goto err;
|
|
if (!BN_rshift1(v, v))
|
|
goto err;
|
|
} while (!BN_is_odd(b));
|
|
} else if (BN_abs_is_word(a, 1))
|
|
break;
|
|
else {
|
|
if (!BN_GF2m_add(a, a, b))
|
|
goto err;
|
|
if (!BN_GF2m_add(u, u, v))
|
|
goto err;
|
|
do {
|
|
if (!BN_rshift1(a, a))
|
|
goto err;
|
|
if (BN_is_odd(u))
|
|
if (!BN_GF2m_add(u, u, p))
|
|
goto err;
|
|
if (!BN_rshift1(u, u))
|
|
goto err;
|
|
} while (!BN_is_odd(a));
|
|
}
|
|
} while (1);
|
|
|
|
if (!BN_copy(r, u))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
# endif
|
|
|
|
/*
|
|
* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
|
|
* * or yy, xx could equal yy. This function calls down to the
|
|
* BN_GF2m_mod_div implementation; this wrapper function is only provided for
|
|
* convenience; for best performance, use the BN_GF2m_mod_div function.
|
|
*/
|
|
int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
|
|
const int p[], BN_CTX *ctx)
|
|
{
|
|
BIGNUM *field;
|
|
int ret = 0;
|
|
|
|
bn_check_top(yy);
|
|
bn_check_top(xx);
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((field = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if (!BN_GF2m_arr2poly(p, field))
|
|
goto err;
|
|
|
|
ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
|
|
bn_check_top(r);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the bth power of a, reduce modulo p, and store the result in r. r
|
|
* could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
|
|
* P1363.
|
|
*/
|
|
int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const int p[], BN_CTX *ctx)
|
|
{
|
|
int ret = 0, i, n;
|
|
BIGNUM *u;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
if (BN_is_zero(b))
|
|
return (BN_one(r));
|
|
|
|
if (BN_abs_is_word(b, 1))
|
|
return (BN_copy(r, a) != NULL);
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((u = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod_arr(u, a, p))
|
|
goto err;
|
|
|
|
n = BN_num_bits(b) - 1;
|
|
for (i = n - 1; i >= 0; i--) {
|
|
if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
|
|
goto err;
|
|
if (BN_is_bit_set(b, i)) {
|
|
if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
|
|
goto err;
|
|
}
|
|
}
|
|
if (!BN_copy(r, u))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the bth power of a, reduce modulo p, and store the result in r. r
|
|
* could be a. This function calls down to the BN_GF2m_mod_exp_arr
|
|
* implementation; this wrapper function is only provided for convenience;
|
|
* for best performance, use the BN_GF2m_mod_exp_arr function.
|
|
*/
|
|
int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the square root of a, reduce modulo p, and store the result in r.
|
|
* r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
|
|
*/
|
|
int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
BIGNUM *u;
|
|
|
|
bn_check_top(a);
|
|
|
|
if (!p[0]) {
|
|
/* reduction mod 1 => return 0 */
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((u = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_set_bit(u, p[0] - 1))
|
|
goto err;
|
|
ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
|
|
bn_check_top(r);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the square root of a, reduce modulo p, and store the result in r.
|
|
* r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
|
|
* implementation; this wrapper function is only provided for convenience;
|
|
* for best performance, use the BN_GF2m_mod_sqrt_arr function.
|
|
*/
|
|
int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
|
|
* 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
|
|
*/
|
|
int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret = 0, count = 0, j;
|
|
BIGNUM *a, *z, *rho, *w, *w2, *tmp;
|
|
|
|
bn_check_top(a_);
|
|
|
|
if (!p[0]) {
|
|
/* reduction mod 1 => return 0 */
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
a = BN_CTX_get(ctx);
|
|
z = BN_CTX_get(ctx);
|
|
w = BN_CTX_get(ctx);
|
|
if (w == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod_arr(a, a_, p))
|
|
goto err;
|
|
|
|
if (BN_is_zero(a)) {
|
|
BN_zero(r);
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
|
|
if (p[0] & 0x1) { /* m is odd */
|
|
/* compute half-trace of a */
|
|
if (!BN_copy(z, a))
|
|
goto err;
|
|
for (j = 1; j <= (p[0] - 1) / 2; j++) {
|
|
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z, z, a))
|
|
goto err;
|
|
}
|
|
|
|
} else { /* m is even */
|
|
|
|
rho = BN_CTX_get(ctx);
|
|
w2 = BN_CTX_get(ctx);
|
|
tmp = BN_CTX_get(ctx);
|
|
if (tmp == NULL)
|
|
goto err;
|
|
do {
|
|
if (!BN_rand(rho, p[0], 0, 0))
|
|
goto err;
|
|
if (!BN_GF2m_mod_arr(rho, rho, p))
|
|
goto err;
|
|
BN_zero(z);
|
|
if (!BN_copy(w, rho))
|
|
goto err;
|
|
for (j = 1; j <= p[0] - 1; j++) {
|
|
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z, z, tmp))
|
|
goto err;
|
|
if (!BN_GF2m_add(w, w2, rho))
|
|
goto err;
|
|
}
|
|
count++;
|
|
} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
|
|
if (BN_is_zero(w)) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(w, z, w))
|
|
goto err;
|
|
if (BN_GF2m_cmp(w, a)) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_copy(r, z))
|
|
goto err;
|
|
bn_check_top(r);
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
|
|
* 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
|
|
* implementation; this wrapper function is only provided for convenience;
|
|
* for best performance, use the BN_GF2m_mod_solve_quad_arr function.
|
|
*/
|
|
int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
|
|
* x^i) into an array of integers corresponding to the bits with non-zero
|
|
* coefficient. Array is terminated with -1. Up to max elements of the array
|
|
* will be filled. Return value is total number of array elements that would
|
|
* be filled if array was large enough.
|
|
*/
|
|
int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
|
|
{
|
|
int i, j, k = 0;
|
|
BN_ULONG mask;
|
|
|
|
if (BN_is_zero(a))
|
|
return 0;
|
|
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
if (!a->d[i])
|
|
/* skip word if a->d[i] == 0 */
|
|
continue;
|
|
mask = BN_TBIT;
|
|
for (j = BN_BITS2 - 1; j >= 0; j--) {
|
|
if (a->d[i] & mask) {
|
|
if (k < max)
|
|
p[k] = BN_BITS2 * i + j;
|
|
k++;
|
|
}
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
|
|
if (k < max) {
|
|
p[k] = -1;
|
|
k++;
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
/*
|
|
* Convert the coefficient array representation of a polynomial to a
|
|
* bit-string. The array must be terminated by -1.
|
|
*/
|
|
int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
|
|
{
|
|
int i;
|
|
|
|
bn_check_top(a);
|
|
BN_zero(a);
|
|
for (i = 0; p[i] != -1; i++) {
|
|
if (BN_set_bit(a, p[i]) == 0)
|
|
return 0;
|
|
}
|
|
bn_check_top(a);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif
|