openssl/crypto/threads_win.c
Georgi Valkov 71ae466181 threads_win: fix improper cast to long * instead of LONG *
InterlockedExchangeAdd expects arguments of type LONG *, LONG
but the int arguments were improperly cast to long *, long

Note:
- LONG is always 32 bit
- long is 32 bit on Win32 VC x86/x64 and MingW-W64
- long is 64 bit on cygwin64

Signed-off-by: Georgi Valkov <gvalkov@gmail.com>

Reviewed-by: Paul Dale <ppzgs1@gmail.com>
Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com>
Reviewed-by: Neil Horman <nhorman@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24941)
2024-09-05 17:09:50 +02:00

749 lines
19 KiB
C

/*
* Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#if defined(_WIN32)
# include <windows.h>
# if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600
# define USE_RWLOCK
# endif
#endif
#include <assert.h>
/*
* VC++ 2008 or earlier x86 compilers do not have an inline implementation
* of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit.
* https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements
* To work around this problem, we implement a manual locking mechanism for
* only VC++ 2008 or earlier x86 compilers.
*/
#if ((defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600) || (defined(__MINGW32__) && !defined(__MINGW64__)))
# define NO_INTERLOCKEDOR64
#endif
#include <openssl/crypto.h>
#include <crypto/cryptlib.h>
#include "internal/common.h"
#include "internal/thread_arch.h"
#include "internal/rcu.h"
#include "rcu_internal.h"
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS)
# ifdef USE_RWLOCK
typedef struct {
SRWLOCK lock;
int exclusive;
} CRYPTO_win_rwlock;
# endif
/*
* users is broken up into 2 parts
* bits 0-31 current readers
* bit 32-63 ID
*/
# define READER_SHIFT 0
# define ID_SHIFT 32
/* TODO: READER_SIZE 16 in threads_pthread.c */
# define READER_SIZE 32
# define ID_SIZE 32
# define READER_MASK (((uint64_t)1 << READER_SIZE) - 1)
# define ID_MASK (((uint64_t)1 << ID_SIZE) - 1)
# define READER_COUNT(x) ((uint32_t)(((uint64_t)(x) >> READER_SHIFT) & \
READER_MASK))
# define ID_VAL(x) ((uint32_t)(((uint64_t)(x) >> ID_SHIFT) & ID_MASK))
# define VAL_READER ((int64_t)1 << READER_SHIFT)
# define VAL_ID(x) ((uint64_t)x << ID_SHIFT)
/*
* This defines a quescent point (qp)
* This is the barrier beyond which a writer
* must wait before freeing data that was
* atomically updated
*/
struct rcu_qp {
volatile uint64_t users;
};
struct thread_qp {
struct rcu_qp *qp;
unsigned int depth;
CRYPTO_RCU_LOCK *lock;
};
# define MAX_QPS 10
/*
* This is the per thread tracking data
* that is assigned to each thread participating
* in an rcu qp
*
* qp points to the qp that it last acquired
*
*/
struct rcu_thr_data {
struct thread_qp thread_qps[MAX_QPS];
};
/*
* This is the internal version of a CRYPTO_RCU_LOCK
* it is cast from CRYPTO_RCU_LOCK
*/
struct rcu_lock_st {
/* Callbacks to call for next ossl_synchronize_rcu */
struct rcu_cb_item *cb_items;
/* The context we are being created against */
OSSL_LIB_CTX *ctx;
/* rcu generation counter for in-order retirement */
uint32_t id_ctr;
/* TODO: can be moved before id_ctr for better alignment */
/* Array of quiescent points for synchronization */
struct rcu_qp *qp_group;
/* Number of elements in qp_group array */
uint32_t group_count;
/* Index of the current qp in the qp_group array */
uint32_t reader_idx;
/* value of the next id_ctr value to be retired */
uint32_t next_to_retire;
/* index of the next free rcu_qp in the qp_group */
uint32_t current_alloc_idx;
/* number of qp's in qp_group array currently being retired */
uint32_t writers_alloced;
/* lock protecting write side operations */
CRYPTO_MUTEX *write_lock;
/* lock protecting updates to writers_alloced/current_alloc_idx */
CRYPTO_MUTEX *alloc_lock;
/* signal to wake threads waiting on alloc_lock */
CRYPTO_CONDVAR *alloc_signal;
/* lock to enforce in-order retirement */
CRYPTO_MUTEX *prior_lock;
/* signal to wake threads waiting on prior_lock */
CRYPTO_CONDVAR *prior_signal;
/* lock used with NO_INTERLOCKEDOR64: VS2010 x86 */
CRYPTO_RWLOCK *rw_lock;
};
/* TODO: count should be unsigned, e.g uint32_t */
/* a negative value could result in unexpected behaviour */
static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock,
int count)
{
struct rcu_qp *new =
OPENSSL_zalloc(sizeof(*new) * count);
lock->group_count = count;
return new;
}
CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
{
struct rcu_lock_st *new;
if (num_writers < 1)
num_writers = 1;
ctx = ossl_lib_ctx_get_concrete(ctx);
if (ctx == NULL)
return 0;
new = OPENSSL_zalloc(sizeof(*new));
if (new == NULL)
return NULL;
new->ctx = ctx;
new->rw_lock = CRYPTO_THREAD_lock_new();
new->write_lock = ossl_crypto_mutex_new();
new->alloc_signal = ossl_crypto_condvar_new();
new->prior_signal = ossl_crypto_condvar_new();
new->alloc_lock = ossl_crypto_mutex_new();
new->prior_lock = ossl_crypto_mutex_new();
new->qp_group = allocate_new_qp_group(new, num_writers + 1);
if (new->qp_group == NULL
|| new->alloc_signal == NULL
|| new->prior_signal == NULL
|| new->write_lock == NULL
|| new->alloc_lock == NULL
|| new->prior_lock == NULL
|| new->rw_lock == NULL) {
CRYPTO_THREAD_lock_free(new->rw_lock);
OPENSSL_free(new->qp_group);
ossl_crypto_condvar_free(&new->alloc_signal);
ossl_crypto_condvar_free(&new->prior_signal);
ossl_crypto_mutex_free(&new->alloc_lock);
ossl_crypto_mutex_free(&new->prior_lock);
ossl_crypto_mutex_free(&new->write_lock);
OPENSSL_free(new);
new = NULL;
}
return new;
}
void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
{
CRYPTO_THREAD_lock_free(lock->rw_lock);
OPENSSL_free(lock->qp_group);
ossl_crypto_condvar_free(&lock->alloc_signal);
ossl_crypto_condvar_free(&lock->prior_signal);
ossl_crypto_mutex_free(&lock->alloc_lock);
ossl_crypto_mutex_free(&lock->prior_lock);
ossl_crypto_mutex_free(&lock->write_lock);
OPENSSL_free(lock);
}
/* Read side acquisition of the current qp */
static ossl_inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock)
{
uint32_t qp_idx;
uint32_t tmp;
uint64_t tmp64;
/* get the current qp index */
for (;;) {
CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&qp_idx,
lock->rw_lock);
CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, VAL_READER, &tmp64,
lock->rw_lock);
CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&tmp,
lock->rw_lock);
if (qp_idx == tmp)
break;
CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, -VAL_READER, &tmp64,
lock->rw_lock);
}
return &lock->qp_group[qp_idx];
}
static void ossl_rcu_free_local_data(void *arg)
{
OSSL_LIB_CTX *ctx = arg;
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
OPENSSL_free(data);
CRYPTO_THREAD_set_local(lkey, NULL);
}
void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
{
struct rcu_thr_data *data;
int i;
int available_qp = -1;
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
/*
* we're going to access current_qp here so ask the
* processor to fetch it
*/
data = CRYPTO_THREAD_get_local(lkey);
if (data == NULL) {
data = OPENSSL_zalloc(sizeof(*data));
OPENSSL_assert(data != NULL);
CRYPTO_THREAD_set_local(lkey, data);
ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
}
for (i = 0; i < MAX_QPS; i++) {
if (data->thread_qps[i].qp == NULL && available_qp == -1)
available_qp = i;
/* If we have a hold on this lock already, we're good */
if (data->thread_qps[i].lock == lock)
return;
}
/*
* if we get here, then we don't have a hold on this lock yet
*/
assert(available_qp != -1);
data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
data->thread_qps[available_qp].depth = 1;
data->thread_qps[available_qp].lock = lock;
}
void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
{
ossl_crypto_mutex_lock(lock->write_lock);
}
void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
{
ossl_crypto_mutex_unlock(lock->write_lock);
}
void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
{
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
int i;
LONG64 ret;
assert(data != NULL);
for (i = 0; i < MAX_QPS; i++) {
if (data->thread_qps[i].lock == lock) {
data->thread_qps[i].depth--;
if (data->thread_qps[i].depth == 0) {
CRYPTO_atomic_add64(&data->thread_qps[i].qp->users,
-VAL_READER, (uint64_t *)&ret,
lock->rw_lock);
OPENSSL_assert(ret >= 0);
data->thread_qps[i].qp = NULL;
data->thread_qps[i].lock = NULL;
}
return;
}
}
}
/*
* Write side allocation routine to get the current qp
* and replace it with a new one
*/
static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
{
uint64_t new_id;
uint32_t current_idx;
uint32_t tmp;
uint64_t tmp64;
ossl_crypto_mutex_lock(lock->alloc_lock);
/*
* we need at least one qp to be available with one
* left over, so that readers can start working on
* one that isn't yet being waited on
*/
while (lock->group_count - lock->writers_alloced < 2)
/* we have to wait for one to be free */
ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock);
current_idx = lock->current_alloc_idx;
/* Allocate the qp */
lock->writers_alloced++;
/* increment the allocation index */
lock->current_alloc_idx =
(lock->current_alloc_idx + 1) % lock->group_count;
/* get and insert a new id */
new_id = VAL_ID(lock->id_ctr);
lock->id_ctr++;
/*
* Even though we are under a write side lock here
* We need to use atomic instructions to ensure that the results
* of this update are published to the read side prior to updating the
* reader idx below
*/
CRYPTO_atomic_and(&lock->qp_group[current_idx].users, ID_MASK, &tmp64,
lock->rw_lock);
CRYPTO_atomic_add64(&lock->qp_group[current_idx].users, new_id, &tmp64,
lock->rw_lock);
/* update the reader index to be the prior qp */
tmp = lock->current_alloc_idx;
InterlockedExchange((LONG volatile *)&lock->reader_idx, tmp);
/* wake up any waiters */
ossl_crypto_condvar_broadcast(lock->alloc_signal);
ossl_crypto_mutex_unlock(lock->alloc_lock);
return &lock->qp_group[current_idx];
}
static void retire_qp(CRYPTO_RCU_LOCK *lock,
struct rcu_qp *qp)
{
ossl_crypto_mutex_lock(lock->alloc_lock);
lock->writers_alloced--;
ossl_crypto_condvar_broadcast(lock->alloc_signal);
ossl_crypto_mutex_unlock(lock->alloc_lock);
}
void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
{
struct rcu_qp *qp;
uint64_t count;
struct rcu_cb_item *cb_items, *tmpcb;
/* before we do anything else, lets grab the cb list */
cb_items = InterlockedExchangePointer((void * volatile *)&lock->cb_items,
NULL);
qp = update_qp(lock);
/* wait for the reader count to reach zero */
do {
CRYPTO_atomic_load(&qp->users, &count, lock->rw_lock);
} while (READER_COUNT(count) != 0);
/* retire in order */
ossl_crypto_mutex_lock(lock->prior_lock);
while (lock->next_to_retire != ID_VAL(count))
ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock);
lock->next_to_retire++;
ossl_crypto_condvar_broadcast(lock->prior_signal);
ossl_crypto_mutex_unlock(lock->prior_lock);
retire_qp(lock, qp);
/* handle any callbacks that we have */
while (cb_items != NULL) {
tmpcb = cb_items;
cb_items = cb_items->next;
tmpcb->fn(tmpcb->data);
OPENSSL_free(tmpcb);
}
/* and we're done */
return;
}
int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
{
struct rcu_cb_item *new;
new = OPENSSL_zalloc(sizeof(struct rcu_cb_item));
if (new == NULL)
return 0;
new->data = data;
new->fn = cb;
new->next = InterlockedExchangePointer((void * volatile *)&lock->cb_items,
new);
return 1;
}
void *ossl_rcu_uptr_deref(void **p)
{
return (void *)*p;
}
void ossl_rcu_assign_uptr(void **p, void **v)
{
InterlockedExchangePointer((void * volatile *)p, (void *)*v);
}
CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
{
CRYPTO_RWLOCK *lock;
# ifdef USE_RWLOCK
CRYPTO_win_rwlock *rwlock;
if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL)
/* Don't set error, to avoid recursion blowup. */
return NULL;
rwlock = lock;
InitializeSRWLock(&rwlock->lock);
# else
if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL)
/* Don't set error, to avoid recursion blowup. */
return NULL;
# if !defined(_WIN32_WCE)
/* 0x400 is the spin count value suggested in the documentation */
if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) {
OPENSSL_free(lock);
return NULL;
}
# else
InitializeCriticalSection(lock);
# endif
# endif
return lock;
}
__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
CRYPTO_win_rwlock *rwlock = lock;
AcquireSRWLockShared(&rwlock->lock);
# else
EnterCriticalSection(lock);
# endif
return 1;
}
__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
CRYPTO_win_rwlock *rwlock = lock;
AcquireSRWLockExclusive(&rwlock->lock);
rwlock->exclusive = 1;
# else
EnterCriticalSection(lock);
# endif
return 1;
}
int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
CRYPTO_win_rwlock *rwlock = lock;
if (rwlock->exclusive) {
rwlock->exclusive = 0;
ReleaseSRWLockExclusive(&rwlock->lock);
} else {
ReleaseSRWLockShared(&rwlock->lock);
}
# else
LeaveCriticalSection(lock);
# endif
return 1;
}
void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
{
if (lock == NULL)
return;
# ifndef USE_RWLOCK
DeleteCriticalSection(lock);
# endif
OPENSSL_free(lock);
return;
}
# define ONCE_UNINITED 0
# define ONCE_ININIT 1
# define ONCE_DONE 2
/*
* We don't use InitOnceExecuteOnce because that isn't available in WinXP which
* we still have to support.
*/
int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
{
LONG volatile *lock = (LONG *)once;
LONG result;
if (*lock == ONCE_DONE)
return 1;
do {
result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED);
if (result == ONCE_UNINITED) {
init();
*lock = ONCE_DONE;
return 1;
}
} while (result == ONCE_ININIT);
return (*lock == ONCE_DONE);
}
int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
{
*key = TlsAlloc();
if (*key == TLS_OUT_OF_INDEXES)
return 0;
return 1;
}
void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
{
DWORD last_error;
void *ret;
/*
* TlsGetValue clears the last error even on success, so that callers may
* distinguish it successfully returning NULL or failing. It is documented
* to never fail if the argument is a valid index from TlsAlloc, so we do
* not need to handle this.
*
* However, this error-mangling behavior interferes with the caller's use of
* GetLastError. In particular SSL_get_error queries the error queue to
* determine whether the caller should look at the OS's errors. To avoid
* destroying state, save and restore the Windows error.
*
* https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx
*/
last_error = GetLastError();
ret = TlsGetValue(*key);
SetLastError(last_error);
return ret;
}
int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
{
if (TlsSetValue(*key, val) == 0)
return 0;
return 1;
}
int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
{
if (TlsFree(*key) == 0)
return 0;
return 1;
}
CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
{
return GetCurrentThreadId();
}
int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
{
return (a == b);
}
int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
{
*ret = (int)InterlockedExchangeAdd((LONG volatile *)val, (LONG)amount)
+ amount;
return 1;
}
int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
return 0;
*val += op;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
# else
*ret = (uint64_t)InterlockedAdd64((LONG64 volatile *)val, (LONG64)op);
return 1;
# endif
}
int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
return 0;
*val &= op;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
# else
*ret = (uint64_t)InterlockedAnd64((LONG64 volatile *)val, (LONG64)op) & op;
return 1;
# endif
}
int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
return 0;
*val |= op;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
# else
*ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op;
return 1;
# endif
}
int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
return 0;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
# else
*ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0);
return 1;
# endif
}
int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
return 0;
*dst = val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
# else
InterlockedExchange64(dst, val);
return 1;
# endif
}
int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
{
# if (defined(NO_INTERLOCKEDOR64))
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
return 0;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
# else
/* On Windows, LONG (but not long) is always the same size as int. */
*ret = (int)InterlockedOr((LONG volatile *)val, 0);
return 1;
# endif
}
int openssl_init_fork_handlers(void)
{
return 0;
}
int openssl_get_fork_id(void)
{
return 0;
}
#endif