mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
28a31a0a10
In 1.1.0 changing the ciphersuite during a renegotiation can result in a crash leading to a DoS attack. In master this does not occur with TLS (instead you get an internal error, which is still wrong but not a security issue) - but the problem still exists in the DTLS code. The problem is caused by changing the flag indicating whether to use ETM or not immediately on negotiation of ETM, rather than at CCS. Therefore, during a renegotiation, if the ETM state is changing (usually due to a change of ciphersuite), then an error/crash will occur. Due to the fact that there are separate CCS messages for read and write we actually now need two flags to determine whether to use ETM or not. CVE-2017-3733 Reviewed-by: Richard Levitte <levitte@openssl.org>
713 lines
24 KiB
C
713 lines
24 KiB
C
/*
|
|
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/* ====================================================================
|
|
* Copyright 2005 Nokia. All rights reserved.
|
|
*
|
|
* The portions of the attached software ("Contribution") is developed by
|
|
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
|
|
* license.
|
|
*
|
|
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
|
|
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
|
|
* support (see RFC 4279) to OpenSSL.
|
|
*
|
|
* No patent licenses or other rights except those expressly stated in
|
|
* the OpenSSL open source license shall be deemed granted or received
|
|
* expressly, by implication, estoppel, or otherwise.
|
|
*
|
|
* No assurances are provided by Nokia that the Contribution does not
|
|
* infringe the patent or other intellectual property rights of any third
|
|
* party or that the license provides you with all the necessary rights
|
|
* to make use of the Contribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
|
|
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
|
|
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
|
|
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
|
|
* OTHERWISE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "ssl_locl.h"
|
|
#include <openssl/comp.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/kdf.h>
|
|
#include <openssl/rand.h>
|
|
|
|
/* seed1 through seed5 are concatenated */
|
|
static int tls1_PRF(SSL *s,
|
|
const void *seed1, size_t seed1_len,
|
|
const void *seed2, size_t seed2_len,
|
|
const void *seed3, size_t seed3_len,
|
|
const void *seed4, size_t seed4_len,
|
|
const void *seed5, size_t seed5_len,
|
|
const unsigned char *sec, size_t slen,
|
|
unsigned char *out, size_t olen)
|
|
{
|
|
const EVP_MD *md = ssl_prf_md(s);
|
|
EVP_PKEY_CTX *pctx = NULL;
|
|
|
|
int ret = 0;
|
|
|
|
if (md == NULL) {
|
|
/* Should never happen */
|
|
SSLerr(SSL_F_TLS1_PRF, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_TLS1_PRF, NULL);
|
|
if (pctx == NULL || EVP_PKEY_derive_init(pctx) <= 0
|
|
|| EVP_PKEY_CTX_set_tls1_prf_md(pctx, md) <= 0
|
|
|| EVP_PKEY_CTX_set1_tls1_prf_secret(pctx, sec, (int)slen) <= 0)
|
|
goto err;
|
|
|
|
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed1, (int)seed1_len) <= 0)
|
|
goto err;
|
|
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed2, (int)seed2_len) <= 0)
|
|
goto err;
|
|
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed3, (int)seed3_len) <= 0)
|
|
goto err;
|
|
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed4, (int)seed4_len) <= 0)
|
|
goto err;
|
|
if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed5, (int)seed5_len) <= 0)
|
|
goto err;
|
|
|
|
if (EVP_PKEY_derive(pctx, out, &olen) <= 0)
|
|
goto err;
|
|
ret = 1;
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(pctx);
|
|
return ret;
|
|
}
|
|
|
|
static int tls1_generate_key_block(SSL *s, unsigned char *km, size_t num)
|
|
{
|
|
int ret;
|
|
ret = tls1_PRF(s,
|
|
TLS_MD_KEY_EXPANSION_CONST,
|
|
TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random,
|
|
SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE,
|
|
NULL, 0, NULL, 0, s->session->master_key,
|
|
s->session->master_key_length, km, num);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int tls1_change_cipher_state(SSL *s, int which)
|
|
{
|
|
unsigned char *p, *mac_secret;
|
|
unsigned char tmp1[EVP_MAX_KEY_LENGTH];
|
|
unsigned char tmp2[EVP_MAX_KEY_LENGTH];
|
|
unsigned char iv1[EVP_MAX_IV_LENGTH * 2];
|
|
unsigned char iv2[EVP_MAX_IV_LENGTH * 2];
|
|
unsigned char *ms, *key, *iv;
|
|
EVP_CIPHER_CTX *dd;
|
|
const EVP_CIPHER *c;
|
|
#ifndef OPENSSL_NO_COMP
|
|
const SSL_COMP *comp;
|
|
#endif
|
|
const EVP_MD *m;
|
|
int mac_type;
|
|
size_t *mac_secret_size;
|
|
EVP_MD_CTX *mac_ctx;
|
|
EVP_PKEY *mac_key;
|
|
size_t n, i, j, k, cl;
|
|
int reuse_dd = 0;
|
|
|
|
c = s->s3->tmp.new_sym_enc;
|
|
m = s->s3->tmp.new_hash;
|
|
mac_type = s->s3->tmp.new_mac_pkey_type;
|
|
#ifndef OPENSSL_NO_COMP
|
|
comp = s->s3->tmp.new_compression;
|
|
#endif
|
|
|
|
if (which & SSL3_CC_READ) {
|
|
if (s->ext.use_etm)
|
|
s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
|
|
else
|
|
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
|
|
|
|
if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
|
|
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
|
|
else
|
|
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
|
|
|
|
if (s->enc_read_ctx != NULL)
|
|
reuse_dd = 1;
|
|
else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL)
|
|
goto err;
|
|
else
|
|
/*
|
|
* make sure it's initialised in case we exit later with an error
|
|
*/
|
|
EVP_CIPHER_CTX_reset(s->enc_read_ctx);
|
|
dd = s->enc_read_ctx;
|
|
mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
|
|
if (mac_ctx == NULL)
|
|
goto err;
|
|
#ifndef OPENSSL_NO_COMP
|
|
COMP_CTX_free(s->expand);
|
|
s->expand = NULL;
|
|
if (comp != NULL) {
|
|
s->expand = COMP_CTX_new(comp->method);
|
|
if (s->expand == NULL) {
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
|
|
SSL_R_COMPRESSION_LIBRARY_ERROR);
|
|
goto err2;
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* this is done by dtls1_reset_seq_numbers for DTLS
|
|
*/
|
|
if (!SSL_IS_DTLS(s))
|
|
RECORD_LAYER_reset_read_sequence(&s->rlayer);
|
|
mac_secret = &(s->s3->read_mac_secret[0]);
|
|
mac_secret_size = &(s->s3->read_mac_secret_size);
|
|
} else {
|
|
if (s->ext.use_etm)
|
|
s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
|
|
else
|
|
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
|
|
|
|
if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
|
|
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
|
|
else
|
|
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
|
|
if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s))
|
|
reuse_dd = 1;
|
|
else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL)
|
|
goto err;
|
|
dd = s->enc_write_ctx;
|
|
if (SSL_IS_DTLS(s)) {
|
|
mac_ctx = EVP_MD_CTX_new();
|
|
if (mac_ctx == NULL)
|
|
goto err;
|
|
s->write_hash = mac_ctx;
|
|
} else {
|
|
mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
|
|
if (mac_ctx == NULL)
|
|
goto err;
|
|
}
|
|
#ifndef OPENSSL_NO_COMP
|
|
COMP_CTX_free(s->compress);
|
|
s->compress = NULL;
|
|
if (comp != NULL) {
|
|
s->compress = COMP_CTX_new(comp->method);
|
|
if (s->compress == NULL) {
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
|
|
SSL_R_COMPRESSION_LIBRARY_ERROR);
|
|
goto err2;
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* this is done by dtls1_reset_seq_numbers for DTLS
|
|
*/
|
|
if (!SSL_IS_DTLS(s))
|
|
RECORD_LAYER_reset_write_sequence(&s->rlayer);
|
|
mac_secret = &(s->s3->write_mac_secret[0]);
|
|
mac_secret_size = &(s->s3->write_mac_secret_size);
|
|
}
|
|
|
|
if (reuse_dd)
|
|
EVP_CIPHER_CTX_reset(dd);
|
|
|
|
p = s->s3->tmp.key_block;
|
|
i = *mac_secret_size = s->s3->tmp.new_mac_secret_size;
|
|
|
|
/* TODO(size_t): convert me */
|
|
cl = EVP_CIPHER_key_length(c);
|
|
j = cl;
|
|
/* Was j=(exp)?5:EVP_CIPHER_key_length(c); */
|
|
/* If GCM/CCM mode only part of IV comes from PRF */
|
|
if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
|
|
k = EVP_GCM_TLS_FIXED_IV_LEN;
|
|
else if (EVP_CIPHER_mode(c) == EVP_CIPH_CCM_MODE)
|
|
k = EVP_CCM_TLS_FIXED_IV_LEN;
|
|
else
|
|
k = EVP_CIPHER_iv_length(c);
|
|
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
|
|
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
|
|
ms = &(p[0]);
|
|
n = i + i;
|
|
key = &(p[n]);
|
|
n += j + j;
|
|
iv = &(p[n]);
|
|
n += k + k;
|
|
} else {
|
|
n = i;
|
|
ms = &(p[n]);
|
|
n += i + j;
|
|
key = &(p[n]);
|
|
n += j + k;
|
|
iv = &(p[n]);
|
|
n += k;
|
|
}
|
|
|
|
if (n > s->s3->tmp.key_block_length) {
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err2;
|
|
}
|
|
|
|
memcpy(mac_secret, ms, i);
|
|
|
|
if (!(EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
|
|
/* TODO(size_t): Convert this function */
|
|
mac_key = EVP_PKEY_new_mac_key(mac_type, NULL,
|
|
mac_secret, (int)*mac_secret_size);
|
|
if (mac_key == NULL
|
|
|| EVP_DigestSignInit(mac_ctx, NULL, m, NULL, mac_key) <= 0) {
|
|
EVP_PKEY_free(mac_key);
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err2;
|
|
}
|
|
EVP_PKEY_free(mac_key);
|
|
}
|
|
#ifdef SSL_DEBUG
|
|
printf("which = %04X\nmac key=", which);
|
|
{
|
|
size_t z;
|
|
for (z = 0; z < i; z++)
|
|
printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n');
|
|
}
|
|
#endif
|
|
|
|
if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) {
|
|
if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE))
|
|
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, (int)k,
|
|
iv)) {
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err2;
|
|
}
|
|
} else if (EVP_CIPHER_mode(c) == EVP_CIPH_CCM_MODE) {
|
|
int taglen;
|
|
if (s->s3->tmp.
|
|
new_cipher->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8))
|
|
taglen = EVP_CCM8_TLS_TAG_LEN;
|
|
else
|
|
taglen = EVP_CCM_TLS_TAG_LEN;
|
|
if (!EVP_CipherInit_ex(dd, c, NULL, NULL, NULL, (which & SSL3_CC_WRITE))
|
|
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_IVLEN, 12, NULL)
|
|
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_TAG, taglen, NULL)
|
|
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_CCM_SET_IV_FIXED, (int)k, iv)
|
|
|| !EVP_CipherInit_ex(dd, NULL, NULL, key, NULL, -1)) {
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err2;
|
|
}
|
|
} else {
|
|
if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) {
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err2;
|
|
}
|
|
}
|
|
/* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
|
|
if ((EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER) && *mac_secret_size
|
|
&& !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY,
|
|
(int)*mac_secret_size, mac_secret)) {
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err2;
|
|
}
|
|
#ifdef OPENSSL_SSL_TRACE_CRYPTO
|
|
if (s->msg_callback) {
|
|
int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0;
|
|
if (*mac_secret_size)
|
|
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_MAC,
|
|
mac_secret, *mac_secret_size,
|
|
s, s->msg_callback_arg);
|
|
if (c->key_len)
|
|
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY,
|
|
key, c->key_len, s, s->msg_callback_arg);
|
|
if (k) {
|
|
if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
|
|
wh |= TLS1_RT_CRYPTO_FIXED_IV;
|
|
else
|
|
wh |= TLS1_RT_CRYPTO_IV;
|
|
s->msg_callback(2, s->version, wh, iv, k, s, s->msg_callback_arg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SSL_DEBUG
|
|
printf("which = %04X\nkey=", which);
|
|
{
|
|
int z;
|
|
for (z = 0; z < EVP_CIPHER_key_length(c); z++)
|
|
printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n');
|
|
}
|
|
printf("\niv=");
|
|
{
|
|
size_t z;
|
|
for (z = 0; z < k; z++)
|
|
printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n');
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
OPENSSL_cleanse(tmp1, sizeof(tmp1));
|
|
OPENSSL_cleanse(tmp2, sizeof(tmp1));
|
|
OPENSSL_cleanse(iv1, sizeof(iv1));
|
|
OPENSSL_cleanse(iv2, sizeof(iv2));
|
|
return (1);
|
|
err:
|
|
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
|
|
err2:
|
|
OPENSSL_cleanse(tmp1, sizeof(tmp1));
|
|
OPENSSL_cleanse(tmp2, sizeof(tmp1));
|
|
OPENSSL_cleanse(iv1, sizeof(iv1));
|
|
OPENSSL_cleanse(iv2, sizeof(iv2));
|
|
return (0);
|
|
}
|
|
|
|
int tls1_setup_key_block(SSL *s)
|
|
{
|
|
unsigned char *p;
|
|
const EVP_CIPHER *c;
|
|
const EVP_MD *hash;
|
|
SSL_COMP *comp;
|
|
int mac_type = NID_undef;
|
|
size_t num, mac_secret_size = 0;
|
|
int ret = 0;
|
|
|
|
if (s->s3->tmp.key_block_length != 0)
|
|
return (1);
|
|
|
|
if (!ssl_cipher_get_evp(s->session, &c, &hash, &mac_type, &mac_secret_size,
|
|
&comp, s->ext.use_etm)) {
|
|
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
|
|
return (0);
|
|
}
|
|
|
|
s->s3->tmp.new_sym_enc = c;
|
|
s->s3->tmp.new_hash = hash;
|
|
s->s3->tmp.new_mac_pkey_type = mac_type;
|
|
s->s3->tmp.new_mac_secret_size = mac_secret_size;
|
|
num = EVP_CIPHER_key_length(c) + mac_secret_size + EVP_CIPHER_iv_length(c);
|
|
num *= 2;
|
|
|
|
ssl3_cleanup_key_block(s);
|
|
|
|
if ((p = OPENSSL_malloc(num)) == NULL) {
|
|
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
s->s3->tmp.key_block_length = num;
|
|
s->s3->tmp.key_block = p;
|
|
|
|
#ifdef SSL_DEBUG
|
|
printf("client random\n");
|
|
{
|
|
int z;
|
|
for (z = 0; z < SSL3_RANDOM_SIZE; z++)
|
|
printf("%02X%c", s->s3->client_random[z],
|
|
((z + 1) % 16) ? ' ' : '\n');
|
|
}
|
|
printf("server random\n");
|
|
{
|
|
int z;
|
|
for (z = 0; z < SSL3_RANDOM_SIZE; z++)
|
|
printf("%02X%c", s->s3->server_random[z],
|
|
((z + 1) % 16) ? ' ' : '\n');
|
|
}
|
|
printf("master key\n");
|
|
{
|
|
size_t z;
|
|
for (z = 0; z < s->session->master_key_length; z++)
|
|
printf("%02X%c", s->session->master_key[z],
|
|
((z + 1) % 16) ? ' ' : '\n');
|
|
}
|
|
#endif
|
|
if (!tls1_generate_key_block(s, p, num))
|
|
goto err;
|
|
#ifdef SSL_DEBUG
|
|
printf("\nkey block\n");
|
|
{
|
|
size_t z;
|
|
for (z = 0; z < num; z++)
|
|
printf("%02X%c", p[z], ((z + 1) % 16) ? ' ' : '\n');
|
|
}
|
|
#endif
|
|
|
|
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)
|
|
&& s->method->version <= TLS1_VERSION) {
|
|
/*
|
|
* enable vulnerability countermeasure for CBC ciphers with known-IV
|
|
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
|
|
*/
|
|
s->s3->need_empty_fragments = 1;
|
|
|
|
if (s->session->cipher != NULL) {
|
|
if (s->session->cipher->algorithm_enc == SSL_eNULL)
|
|
s->s3->need_empty_fragments = 0;
|
|
|
|
#ifndef OPENSSL_NO_RC4
|
|
if (s->session->cipher->algorithm_enc == SSL_RC4)
|
|
s->s3->need_empty_fragments = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
err:
|
|
return (ret);
|
|
}
|
|
|
|
size_t tls1_final_finish_mac(SSL *s, const char *str, size_t slen,
|
|
unsigned char *out)
|
|
{
|
|
size_t hashlen;
|
|
unsigned char hash[EVP_MAX_MD_SIZE];
|
|
|
|
if (!ssl3_digest_cached_records(s, 0))
|
|
return 0;
|
|
|
|
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
|
|
return 0;
|
|
|
|
if (!tls1_PRF(s, str, slen, hash, hashlen, NULL, 0, NULL, 0, NULL, 0,
|
|
s->session->master_key, s->session->master_key_length,
|
|
out, TLS1_FINISH_MAC_LENGTH))
|
|
return 0;
|
|
OPENSSL_cleanse(hash, hashlen);
|
|
return TLS1_FINISH_MAC_LENGTH;
|
|
}
|
|
|
|
int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
|
|
size_t len, size_t *secret_size)
|
|
{
|
|
/*
|
|
* TODO(TLS1.3): We haven't implemented TLS1.3 key derivation yet. For now
|
|
* we will just force no use of EMS (which adds complications around the
|
|
* handshake hash). This will need to be removed later
|
|
*/
|
|
if ((s->session->flags & SSL_SESS_FLAG_EXTMS)
|
|
&& !SSL_IS_TLS13(s)) {
|
|
unsigned char hash[EVP_MAX_MD_SIZE * 2];
|
|
size_t hashlen;
|
|
/*
|
|
* Digest cached records keeping record buffer (if present): this wont
|
|
* affect client auth because we're freezing the buffer at the same
|
|
* point (after client key exchange and before certificate verify)
|
|
*/
|
|
if (!ssl3_digest_cached_records(s, 1))
|
|
return 0;
|
|
if(!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
|
|
return 0;
|
|
#ifdef SSL_DEBUG
|
|
fprintf(stderr, "Handshake hashes:\n");
|
|
BIO_dump_fp(stderr, (char *)hash, hashlen);
|
|
#endif
|
|
tls1_PRF(s,
|
|
TLS_MD_EXTENDED_MASTER_SECRET_CONST,
|
|
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE,
|
|
hash, hashlen,
|
|
NULL, 0,
|
|
NULL, 0,
|
|
NULL, 0, p, len, s->session->master_key,
|
|
SSL3_MASTER_SECRET_SIZE);
|
|
OPENSSL_cleanse(hash, hashlen);
|
|
} else {
|
|
tls1_PRF(s,
|
|
TLS_MD_MASTER_SECRET_CONST,
|
|
TLS_MD_MASTER_SECRET_CONST_SIZE,
|
|
s->s3->client_random, SSL3_RANDOM_SIZE,
|
|
NULL, 0,
|
|
s->s3->server_random, SSL3_RANDOM_SIZE,
|
|
NULL, 0, p, len, s->session->master_key,
|
|
SSL3_MASTER_SECRET_SIZE);
|
|
}
|
|
#ifdef SSL_DEBUG
|
|
fprintf(stderr, "Premaster Secret:\n");
|
|
BIO_dump_fp(stderr, (char *)p, len);
|
|
fprintf(stderr, "Client Random:\n");
|
|
BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);
|
|
fprintf(stderr, "Server Random:\n");
|
|
BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);
|
|
fprintf(stderr, "Master Secret:\n");
|
|
BIO_dump_fp(stderr, (char *)s->session->master_key,
|
|
SSL3_MASTER_SECRET_SIZE);
|
|
#endif
|
|
|
|
#ifdef OPENSSL_SSL_TRACE_CRYPTO
|
|
if (s->msg_callback) {
|
|
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER,
|
|
p, len, s, s->msg_callback_arg);
|
|
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM,
|
|
s->s3->client_random, SSL3_RANDOM_SIZE,
|
|
s, s->msg_callback_arg);
|
|
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM,
|
|
s->s3->server_random, SSL3_RANDOM_SIZE,
|
|
s, s->msg_callback_arg);
|
|
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER,
|
|
s->session->master_key,
|
|
SSL3_MASTER_SECRET_SIZE, s, s->msg_callback_arg);
|
|
}
|
|
#endif
|
|
|
|
*secret_size = SSL3_MASTER_SECRET_SIZE;
|
|
return 1;
|
|
}
|
|
|
|
int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
|
|
const char *label, size_t llen,
|
|
const unsigned char *context,
|
|
size_t contextlen, int use_context)
|
|
{
|
|
unsigned char *val = NULL;
|
|
size_t vallen = 0, currentvalpos;
|
|
int rv;
|
|
|
|
/*
|
|
* construct PRF arguments we construct the PRF argument ourself rather
|
|
* than passing separate values into the TLS PRF to ensure that the
|
|
* concatenation of values does not create a prohibited label.
|
|
*/
|
|
vallen = llen + SSL3_RANDOM_SIZE * 2;
|
|
if (use_context) {
|
|
vallen += 2 + contextlen;
|
|
}
|
|
|
|
val = OPENSSL_malloc(vallen);
|
|
if (val == NULL)
|
|
goto err2;
|
|
currentvalpos = 0;
|
|
memcpy(val + currentvalpos, (unsigned char *)label, llen);
|
|
currentvalpos += llen;
|
|
memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
|
|
currentvalpos += SSL3_RANDOM_SIZE;
|
|
memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
|
|
currentvalpos += SSL3_RANDOM_SIZE;
|
|
|
|
if (use_context) {
|
|
val[currentvalpos] = (contextlen >> 8) & 0xff;
|
|
currentvalpos++;
|
|
val[currentvalpos] = contextlen & 0xff;
|
|
currentvalpos++;
|
|
if ((contextlen > 0) || (context != NULL)) {
|
|
memcpy(val + currentvalpos, context, contextlen);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
|
|
* label len) = 15, so size of val > max(prohibited label len) = 15 and
|
|
* the comparisons won't have buffer overflow
|
|
*/
|
|
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
|
|
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
|
|
goto err1;
|
|
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
|
|
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
|
|
goto err1;
|
|
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
|
|
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
|
|
goto err1;
|
|
if (memcmp(val, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
|
|
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE) == 0)
|
|
goto err1;
|
|
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
|
|
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
|
|
goto err1;
|
|
|
|
rv = tls1_PRF(s,
|
|
val, vallen,
|
|
NULL, 0,
|
|
NULL, 0,
|
|
NULL, 0,
|
|
NULL, 0,
|
|
s->session->master_key, s->session->master_key_length,
|
|
out, olen);
|
|
|
|
goto ret;
|
|
err1:
|
|
SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
|
|
rv = 0;
|
|
goto ret;
|
|
err2:
|
|
SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE);
|
|
rv = 0;
|
|
ret:
|
|
OPENSSL_clear_free(val, vallen);
|
|
return (rv);
|
|
}
|
|
|
|
int tls1_alert_code(int code)
|
|
{
|
|
switch (code) {
|
|
case SSL_AD_CLOSE_NOTIFY:
|
|
return (SSL3_AD_CLOSE_NOTIFY);
|
|
case SSL_AD_UNEXPECTED_MESSAGE:
|
|
return (SSL3_AD_UNEXPECTED_MESSAGE);
|
|
case SSL_AD_BAD_RECORD_MAC:
|
|
return (SSL3_AD_BAD_RECORD_MAC);
|
|
case SSL_AD_DECRYPTION_FAILED:
|
|
return (TLS1_AD_DECRYPTION_FAILED);
|
|
case SSL_AD_RECORD_OVERFLOW:
|
|
return (TLS1_AD_RECORD_OVERFLOW);
|
|
case SSL_AD_DECOMPRESSION_FAILURE:
|
|
return (SSL3_AD_DECOMPRESSION_FAILURE);
|
|
case SSL_AD_HANDSHAKE_FAILURE:
|
|
return (SSL3_AD_HANDSHAKE_FAILURE);
|
|
case SSL_AD_NO_CERTIFICATE:
|
|
return (-1);
|
|
case SSL_AD_BAD_CERTIFICATE:
|
|
return (SSL3_AD_BAD_CERTIFICATE);
|
|
case SSL_AD_UNSUPPORTED_CERTIFICATE:
|
|
return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
|
|
case SSL_AD_CERTIFICATE_REVOKED:
|
|
return (SSL3_AD_CERTIFICATE_REVOKED);
|
|
case SSL_AD_CERTIFICATE_EXPIRED:
|
|
return (SSL3_AD_CERTIFICATE_EXPIRED);
|
|
case SSL_AD_CERTIFICATE_UNKNOWN:
|
|
return (SSL3_AD_CERTIFICATE_UNKNOWN);
|
|
case SSL_AD_ILLEGAL_PARAMETER:
|
|
return (SSL3_AD_ILLEGAL_PARAMETER);
|
|
case SSL_AD_UNKNOWN_CA:
|
|
return (TLS1_AD_UNKNOWN_CA);
|
|
case SSL_AD_ACCESS_DENIED:
|
|
return (TLS1_AD_ACCESS_DENIED);
|
|
case SSL_AD_DECODE_ERROR:
|
|
return (TLS1_AD_DECODE_ERROR);
|
|
case SSL_AD_DECRYPT_ERROR:
|
|
return (TLS1_AD_DECRYPT_ERROR);
|
|
case SSL_AD_EXPORT_RESTRICTION:
|
|
return (TLS1_AD_EXPORT_RESTRICTION);
|
|
case SSL_AD_PROTOCOL_VERSION:
|
|
return (TLS1_AD_PROTOCOL_VERSION);
|
|
case SSL_AD_INSUFFICIENT_SECURITY:
|
|
return (TLS1_AD_INSUFFICIENT_SECURITY);
|
|
case SSL_AD_INTERNAL_ERROR:
|
|
return (TLS1_AD_INTERNAL_ERROR);
|
|
case SSL_AD_USER_CANCELLED:
|
|
return (TLS1_AD_USER_CANCELLED);
|
|
case SSL_AD_NO_RENEGOTIATION:
|
|
return (TLS1_AD_NO_RENEGOTIATION);
|
|
case SSL_AD_UNSUPPORTED_EXTENSION:
|
|
return (TLS1_AD_UNSUPPORTED_EXTENSION);
|
|
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
|
|
return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
|
|
case SSL_AD_UNRECOGNIZED_NAME:
|
|
return (TLS1_AD_UNRECOGNIZED_NAME);
|
|
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
|
|
return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
|
|
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
|
|
return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
|
|
case SSL_AD_UNKNOWN_PSK_IDENTITY:
|
|
return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
|
|
case SSL_AD_INAPPROPRIATE_FALLBACK:
|
|
return (TLS1_AD_INAPPROPRIATE_FALLBACK);
|
|
case SSL_AD_NO_APPLICATION_PROTOCOL:
|
|
return (TLS1_AD_NO_APPLICATION_PROTOCOL);
|
|
default:
|
|
return (-1);
|
|
}
|
|
}
|