openssl/crypto/encode_decode/decoder_pkey.c
Matt Caswell da1c088f59 Copyright year updates
Reviewed-by: Richard Levitte <levitte@openssl.org>
Release: yes
2023-09-07 09:59:15 +01:00

881 lines
29 KiB
C

/*
* Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/core_names.h>
#include <openssl/core_object.h>
#include <openssl/provider.h>
#include <openssl/evp.h>
#include <openssl/ui.h>
#include <openssl/decoder.h>
#include <openssl/safestack.h>
#include <openssl/trace.h>
#include "crypto/evp.h"
#include "crypto/decoder.h"
#include "crypto/evp/evp_local.h"
#include "crypto/lhash.h"
#include "encoder_local.h"
#include "internal/namemap.h"
#include "internal/sizes.h"
int OSSL_DECODER_CTX_set_passphrase(OSSL_DECODER_CTX *ctx,
const unsigned char *kstr,
size_t klen)
{
return ossl_pw_set_passphrase(&ctx->pwdata, kstr, klen);
}
int OSSL_DECODER_CTX_set_passphrase_ui(OSSL_DECODER_CTX *ctx,
const UI_METHOD *ui_method,
void *ui_data)
{
return ossl_pw_set_ui_method(&ctx->pwdata, ui_method, ui_data);
}
int OSSL_DECODER_CTX_set_pem_password_cb(OSSL_DECODER_CTX *ctx,
pem_password_cb *cb, void *cbarg)
{
return ossl_pw_set_pem_password_cb(&ctx->pwdata, cb, cbarg);
}
int OSSL_DECODER_CTX_set_passphrase_cb(OSSL_DECODER_CTX *ctx,
OSSL_PASSPHRASE_CALLBACK *cb,
void *cbarg)
{
return ossl_pw_set_ossl_passphrase_cb(&ctx->pwdata, cb, cbarg);
}
/*
* Support for OSSL_DECODER_CTX_new_for_pkey:
* The construct data, and collecting keymgmt information for it
*/
DEFINE_STACK_OF(EVP_KEYMGMT)
struct decoder_pkey_data_st {
OSSL_LIB_CTX *libctx;
char *propq;
int selection;
STACK_OF(EVP_KEYMGMT) *keymgmts;
char *object_type; /* recorded object data type, may be NULL */
void **object; /* Where the result should end up */
};
static int decoder_construct_pkey(OSSL_DECODER_INSTANCE *decoder_inst,
const OSSL_PARAM *params,
void *construct_data)
{
struct decoder_pkey_data_st *data = construct_data;
OSSL_DECODER *decoder = OSSL_DECODER_INSTANCE_get_decoder(decoder_inst);
void *decoderctx = OSSL_DECODER_INSTANCE_get_decoder_ctx(decoder_inst);
const OSSL_PROVIDER *decoder_prov = OSSL_DECODER_get0_provider(decoder);
EVP_KEYMGMT *keymgmt = NULL;
const OSSL_PROVIDER *keymgmt_prov = NULL;
int i, end;
/*
* |object_ref| points to a provider reference to an object, its exact
* contents entirely opaque to us, but may be passed to any provider
* function that expects this (such as OSSL_FUNC_keymgmt_load().
*
* This pointer is considered volatile, i.e. whatever it points at
* is assumed to be freed as soon as this function returns.
*/
void *object_ref = NULL;
size_t object_ref_sz = 0;
const OSSL_PARAM *p;
p = OSSL_PARAM_locate_const(params, OSSL_OBJECT_PARAM_DATA_TYPE);
if (p != NULL) {
char *object_type = NULL;
if (!OSSL_PARAM_get_utf8_string(p, &object_type, 0))
return 0;
OPENSSL_free(data->object_type);
data->object_type = object_type;
}
/*
* For stuff that should end up in an EVP_PKEY, we only accept an object
* reference for the moment. This enforces that the key data itself
* remains with the provider.
*/
p = OSSL_PARAM_locate_const(params, OSSL_OBJECT_PARAM_REFERENCE);
if (p == NULL || p->data_type != OSSL_PARAM_OCTET_STRING)
return 0;
object_ref = p->data;
object_ref_sz = p->data_size;
/*
* First, we try to find a keymgmt that comes from the same provider as
* the decoder that passed the params.
*/
end = sk_EVP_KEYMGMT_num(data->keymgmts);
for (i = 0; i < end; i++) {
keymgmt = sk_EVP_KEYMGMT_value(data->keymgmts, i);
keymgmt_prov = EVP_KEYMGMT_get0_provider(keymgmt);
if (keymgmt_prov == decoder_prov
&& evp_keymgmt_has_load(keymgmt)
&& EVP_KEYMGMT_is_a(keymgmt, data->object_type))
break;
}
if (i < end) {
/* To allow it to be freed further down */
if (!EVP_KEYMGMT_up_ref(keymgmt))
return 0;
} else if ((keymgmt = EVP_KEYMGMT_fetch(data->libctx,
data->object_type,
data->propq)) != NULL) {
keymgmt_prov = EVP_KEYMGMT_get0_provider(keymgmt);
}
if (keymgmt != NULL) {
EVP_PKEY *pkey = NULL;
void *keydata = NULL;
/*
* If the EVP_KEYMGMT and the OSSL_DECODER are from the
* same provider, we assume that the KEYMGMT has a key loading
* function that can handle the provider reference we hold.
*
* Otherwise, we export from the decoder and import the
* result in the keymgmt.
*/
if (keymgmt_prov == decoder_prov) {
keydata = evp_keymgmt_load(keymgmt, object_ref, object_ref_sz);
} else {
struct evp_keymgmt_util_try_import_data_st import_data;
import_data.keymgmt = keymgmt;
import_data.keydata = NULL;
if (data->selection == 0)
/* import/export functions do not tolerate 0 selection */
import_data.selection = OSSL_KEYMGMT_SELECT_ALL;
else
import_data.selection = data->selection;
/*
* No need to check for errors here, the value of
* |import_data.keydata| is as much an indicator.
*/
(void)decoder->export_object(decoderctx,
object_ref, object_ref_sz,
&evp_keymgmt_util_try_import,
&import_data);
keydata = import_data.keydata;
import_data.keydata = NULL;
}
if (keydata != NULL
&& (pkey = evp_keymgmt_util_make_pkey(keymgmt, keydata)) == NULL)
evp_keymgmt_freedata(keymgmt, keydata);
*data->object = pkey;
/*
* evp_keymgmt_util_make_pkey() increments the reference count when
* assigning the EVP_PKEY, so we can free the keymgmt here.
*/
EVP_KEYMGMT_free(keymgmt);
}
/*
* We successfully looked through, |*ctx->object| determines if we
* actually found something.
*/
return (*data->object != NULL);
}
static void decoder_clean_pkey_construct_arg(void *construct_data)
{
struct decoder_pkey_data_st *data = construct_data;
if (data != NULL) {
sk_EVP_KEYMGMT_pop_free(data->keymgmts, EVP_KEYMGMT_free);
OPENSSL_free(data->propq);
OPENSSL_free(data->object_type);
OPENSSL_free(data);
}
}
struct collect_data_st {
OSSL_LIB_CTX *libctx;
OSSL_DECODER_CTX *ctx;
const char *keytype; /* the keytype requested, if any */
int keytype_id; /* if keytype_resolved is set, keymgmt name_id; else 0 */
int sm2_id; /* if keytype_resolved is set and EC, SM2 name_id; else 0 */
int total; /* number of matching results */
char error_occurred;
char keytype_resolved;
STACK_OF(EVP_KEYMGMT) *keymgmts;
};
static void collect_decoder_keymgmt(EVP_KEYMGMT *keymgmt, OSSL_DECODER *decoder,
void *provctx, struct collect_data_st *data)
{
void *decoderctx = NULL;
OSSL_DECODER_INSTANCE *di = NULL;
/*
* We already checked the EVP_KEYMGMT is applicable in check_keymgmt so we
* don't check it again here.
*/
if (keymgmt->name_id != decoder->base.id)
/* Mismatch is not an error, continue. */
return;
if ((decoderctx = decoder->newctx(provctx)) == NULL) {
data->error_occurred = 1;
return;
}
if ((di = ossl_decoder_instance_new(decoder, decoderctx)) == NULL) {
decoder->freectx(decoderctx);
data->error_occurred = 1;
return;
}
OSSL_TRACE_BEGIN(DECODER) {
BIO_printf(trc_out,
"(ctx %p) Checking out decoder %p:\n"
" %s with %s\n",
(void *)data->ctx, (void *)decoder,
OSSL_DECODER_get0_name(decoder),
OSSL_DECODER_get0_properties(decoder));
} OSSL_TRACE_END(DECODER);
if (!ossl_decoder_ctx_add_decoder_inst(data->ctx, di)) {
ossl_decoder_instance_free(di);
data->error_occurred = 1;
return;
}
++data->total;
}
static void collect_decoder(OSSL_DECODER *decoder, void *arg)
{
struct collect_data_st *data = arg;
STACK_OF(EVP_KEYMGMT) *keymgmts = data->keymgmts;
int i, end_i;
EVP_KEYMGMT *keymgmt;
const OSSL_PROVIDER *prov;
void *provctx;
if (data->error_occurred)
return;
prov = OSSL_DECODER_get0_provider(decoder);
provctx = OSSL_PROVIDER_get0_provider_ctx(prov);
/*
* Either the caller didn't give us a selection, or if they did, the decoder
* must tell us if it supports that selection to be accepted. If the decoder
* doesn't have |does_selection|, it's seen as taking anything.
*/
if (decoder->does_selection != NULL
&& !decoder->does_selection(provctx, data->ctx->selection))
return;
OSSL_TRACE_BEGIN(DECODER) {
BIO_printf(trc_out,
"(ctx %p) Checking out decoder %p:\n"
" %s with %s\n",
(void *)data->ctx, (void *)decoder,
OSSL_DECODER_get0_name(decoder),
OSSL_DECODER_get0_properties(decoder));
} OSSL_TRACE_END(DECODER);
end_i = sk_EVP_KEYMGMT_num(keymgmts);
for (i = 0; i < end_i; ++i) {
keymgmt = sk_EVP_KEYMGMT_value(keymgmts, i);
collect_decoder_keymgmt(keymgmt, decoder, provctx, data);
if (data->error_occurred)
return;
}
}
/*
* Is this EVP_KEYMGMT applicable given the key type given in the call to
* ossl_decoder_ctx_setup_for_pkey (if any)?
*/
static int check_keymgmt(EVP_KEYMGMT *keymgmt, struct collect_data_st *data)
{
/* If no keytype was specified, everything matches. */
if (data->keytype == NULL)
return 1;
if (!data->keytype_resolved) {
/* We haven't cached the IDs from the keytype string yet. */
OSSL_NAMEMAP *namemap = ossl_namemap_stored(data->libctx);
data->keytype_id = ossl_namemap_name2num(namemap, data->keytype);
/*
* If keytype is a value ambiguously used for both EC and SM2,
* collect the ID for SM2 as well.
*/
if (data->keytype_id != 0
&& (strcmp(data->keytype, "id-ecPublicKey") == 0
|| strcmp(data->keytype, "1.2.840.10045.2.1") == 0))
data->sm2_id = ossl_namemap_name2num(namemap, "SM2");
/*
* If keytype_id is zero the name was not found, but we still
* set keytype_resolved to avoid trying all this again.
*/
data->keytype_resolved = 1;
}
/* Specified keytype could not be resolved, so nothing matches. */
if (data->keytype_id == 0)
return 0;
/* Does not match the keytype specified, so skip. */
if (keymgmt->name_id != data->keytype_id
&& keymgmt->name_id != data->sm2_id)
return 0;
return 1;
}
static void collect_keymgmt(EVP_KEYMGMT *keymgmt, void *arg)
{
struct collect_data_st *data = arg;
if (!check_keymgmt(keymgmt, data))
return;
/*
* We have to ref EVP_KEYMGMT here because in the success case,
* data->keymgmts is referenced by the constructor we register in the
* OSSL_DECODER_CTX. The registered cleanup function
* (decoder_clean_pkey_construct_arg) unrefs every element of the stack and
* frees it.
*/
if (!EVP_KEYMGMT_up_ref(keymgmt))
return;
if (sk_EVP_KEYMGMT_push(data->keymgmts, keymgmt) <= 0) {
EVP_KEYMGMT_free(keymgmt);
data->error_occurred = 1;
}
}
/*
* This function does the actual binding of decoders to the OSSL_DECODER_CTX. It
* searches for decoders matching 'keytype', which is a string like "RSA", "DH",
* etc. If 'keytype' is NULL, decoders for all keytypes are bound.
*/
static int ossl_decoder_ctx_setup_for_pkey(OSSL_DECODER_CTX *ctx,
const char *keytype,
OSSL_LIB_CTX *libctx,
const char *propquery)
{
int ok = 0;
struct decoder_pkey_data_st *process_data = NULL;
struct collect_data_st collect_data = { NULL };
STACK_OF(EVP_KEYMGMT) *keymgmts = NULL;
OSSL_TRACE_BEGIN(DECODER) {
const char *input_type = ctx->start_input_type;
const char *input_structure = ctx->input_structure;
BIO_printf(trc_out,
"(ctx %p) Looking for decoders producing %s%s%s%s%s%s\n",
(void *)ctx,
keytype != NULL ? keytype : "",
keytype != NULL ? " keys" : "keys of any type",
input_type != NULL ? " from " : "",
input_type != NULL ? input_type : "",
input_structure != NULL ? " with " : "",
input_structure != NULL ? input_structure : "");
} OSSL_TRACE_END(DECODER);
/* Allocate data. */
if ((process_data = OPENSSL_zalloc(sizeof(*process_data))) == NULL)
goto err;
if ((propquery != NULL
&& (process_data->propq = OPENSSL_strdup(propquery)) == NULL))
goto err;
/* Allocate our list of EVP_KEYMGMTs. */
keymgmts = sk_EVP_KEYMGMT_new_null();
if (keymgmts == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_CRYPTO_LIB);
goto err;
}
process_data->object = NULL;
process_data->libctx = libctx;
process_data->selection = ctx->selection;
process_data->keymgmts = keymgmts;
/*
* Enumerate all keymgmts into a stack.
*
* We could nest EVP_KEYMGMT_do_all_provided inside
* OSSL_DECODER_do_all_provided or vice versa but these functions become
* bottlenecks if called repeatedly, which is why we collect the
* EVP_KEYMGMTs into a stack here and call both functions only once.
*
* We resolve the keytype string to a name ID so we don't have to resolve it
* multiple times, avoiding repeated calls to EVP_KEYMGMT_is_a, which is a
* performance bottleneck. However, we do this lazily on the first call to
* collect_keymgmt made by EVP_KEYMGMT_do_all_provided, rather than do it
* upfront, as this ensures that the names for all loaded providers have
* been registered by the time we try to resolve the keytype string.
*/
collect_data.ctx = ctx;
collect_data.libctx = libctx;
collect_data.keymgmts = keymgmts;
collect_data.keytype = keytype;
EVP_KEYMGMT_do_all_provided(libctx, collect_keymgmt, &collect_data);
if (collect_data.error_occurred)
goto err;
/* Enumerate all matching decoders. */
OSSL_DECODER_do_all_provided(libctx, collect_decoder, &collect_data);
if (collect_data.error_occurred)
goto err;
OSSL_TRACE_BEGIN(DECODER) {
BIO_printf(trc_out,
"(ctx %p) Got %d decoders producing keys\n",
(void *)ctx, collect_data.total);
} OSSL_TRACE_END(DECODER);
/*
* Finish initializing the decoder context. If one or more decoders matched
* above then the number of decoders attached to the OSSL_DECODER_CTX will
* be nonzero. Else nothing was found and we do nothing.
*/
if (OSSL_DECODER_CTX_get_num_decoders(ctx) != 0) {
if (!OSSL_DECODER_CTX_set_construct(ctx, decoder_construct_pkey)
|| !OSSL_DECODER_CTX_set_construct_data(ctx, process_data)
|| !OSSL_DECODER_CTX_set_cleanup(ctx,
decoder_clean_pkey_construct_arg))
goto err;
process_data = NULL; /* Avoid it being freed */
}
ok = 1;
err:
decoder_clean_pkey_construct_arg(process_data);
return ok;
}
/* Only const here because deep_copy requires it */
static EVP_KEYMGMT *keymgmt_dup(const EVP_KEYMGMT *keymgmt)
{
if (!EVP_KEYMGMT_up_ref((EVP_KEYMGMT *)keymgmt))
return NULL;
return (EVP_KEYMGMT *)keymgmt;
}
/*
* Duplicates a template OSSL_DECODER_CTX that has been setup for an EVP_PKEY
* operation and sets up the duplicate for a new operation.
* It does not duplicate the pwdata on the assumption that this does not form
* part of the template. That is set up later.
*/
static OSSL_DECODER_CTX *
ossl_decoder_ctx_for_pkey_dup(OSSL_DECODER_CTX *src,
EVP_PKEY **pkey,
const char *input_type,
const char *input_structure)
{
OSSL_DECODER_CTX *dest;
struct decoder_pkey_data_st *process_data_src, *process_data_dest = NULL;
if (src == NULL)
return NULL;
if ((dest = OSSL_DECODER_CTX_new()) == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
return NULL;
}
if (!OSSL_DECODER_CTX_set_input_type(dest, input_type)
|| !OSSL_DECODER_CTX_set_input_structure(dest, input_structure)) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
goto err;
}
dest->selection = src->selection;
if (src->decoder_insts != NULL) {
dest->decoder_insts
= sk_OSSL_DECODER_INSTANCE_deep_copy(src->decoder_insts,
ossl_decoder_instance_dup,
ossl_decoder_instance_free);
if (dest->decoder_insts == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
goto err;
}
}
if (!OSSL_DECODER_CTX_set_construct(dest,
OSSL_DECODER_CTX_get_construct(src))) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
goto err;
}
process_data_src = OSSL_DECODER_CTX_get_construct_data(src);
if (process_data_src != NULL) {
process_data_dest = OPENSSL_zalloc(sizeof(*process_data_dest));
if (process_data_dest == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_CRYPTO_LIB);
goto err;
}
if (process_data_src->propq != NULL) {
process_data_dest->propq = OPENSSL_strdup(process_data_src->propq);
if (process_data_dest->propq == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_CRYPTO_LIB);
goto err;
}
}
if (process_data_src->keymgmts != NULL) {
process_data_dest->keymgmts
= sk_EVP_KEYMGMT_deep_copy(process_data_src->keymgmts,
keymgmt_dup,
EVP_KEYMGMT_free);
if (process_data_dest->keymgmts == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_EVP_LIB);
goto err;
}
}
process_data_dest->object = (void **)pkey;
process_data_dest->libctx = process_data_src->libctx;
process_data_dest->selection = process_data_src->selection;
if (!OSSL_DECODER_CTX_set_construct_data(dest, process_data_dest)) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
goto err;
}
process_data_dest = NULL;
}
if (!OSSL_DECODER_CTX_set_cleanup(dest,
OSSL_DECODER_CTX_get_cleanup(src))) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
goto err;
}
return dest;
err:
if (process_data_dest != NULL) {
OPENSSL_free(process_data_dest->propq);
sk_EVP_KEYMGMT_pop_free(process_data_dest->keymgmts, EVP_KEYMGMT_free);
OPENSSL_free(process_data_dest);
}
OSSL_DECODER_CTX_free(dest);
return NULL;
}
typedef struct {
char *input_type;
char *input_structure;
char *keytype;
int selection;
char *propquery;
OSSL_DECODER_CTX *template;
} DECODER_CACHE_ENTRY;
DEFINE_LHASH_OF_EX(DECODER_CACHE_ENTRY);
typedef struct {
CRYPTO_RWLOCK *lock;
LHASH_OF(DECODER_CACHE_ENTRY) *hashtable;
} DECODER_CACHE;
static void decoder_cache_entry_free(DECODER_CACHE_ENTRY *entry)
{
if (entry == NULL)
return;
OPENSSL_free(entry->input_type);
OPENSSL_free(entry->input_structure);
OPENSSL_free(entry->keytype);
OPENSSL_free(entry->propquery);
OSSL_DECODER_CTX_free(entry->template);
OPENSSL_free(entry);
}
static unsigned long decoder_cache_entry_hash(const DECODER_CACHE_ENTRY *cache)
{
unsigned long hash = 17;
hash = (hash * 23)
+ (cache->propquery == NULL
? 0 : ossl_lh_strcasehash(cache->propquery));
hash = (hash * 23)
+ (cache->input_structure == NULL
? 0 : ossl_lh_strcasehash(cache->input_structure));
hash = (hash * 23)
+ (cache->input_type == NULL
? 0 : ossl_lh_strcasehash(cache->input_type));
hash = (hash * 23)
+ (cache->keytype == NULL
? 0 : ossl_lh_strcasehash(cache->keytype));
hash ^= cache->selection;
return hash;
}
static ossl_inline int nullstrcmp(const char *a, const char *b, int casecmp)
{
if (a == NULL || b == NULL) {
if (a == NULL) {
if (b == NULL)
return 0;
else
return 1;
} else {
return -1;
}
} else {
if (casecmp)
return OPENSSL_strcasecmp(a, b);
else
return strcmp(a, b);
}
}
static int decoder_cache_entry_cmp(const DECODER_CACHE_ENTRY *a,
const DECODER_CACHE_ENTRY *b)
{
int cmp;
if (a->selection != b->selection)
return (a->selection < b->selection) ? -1 : 1;
cmp = nullstrcmp(a->keytype, b->keytype, 1);
if (cmp != 0)
return cmp;
cmp = nullstrcmp(a->input_type, b->input_type, 1);
if (cmp != 0)
return cmp;
cmp = nullstrcmp(a->input_structure, b->input_structure, 1);
if (cmp != 0)
return cmp;
cmp = nullstrcmp(a->propquery, b->propquery, 0);
return cmp;
}
void *ossl_decoder_cache_new(OSSL_LIB_CTX *ctx)
{
DECODER_CACHE *cache = OPENSSL_malloc(sizeof(*cache));
if (cache == NULL)
return NULL;
cache->lock = CRYPTO_THREAD_lock_new();
if (cache->lock == NULL) {
OPENSSL_free(cache);
return NULL;
}
cache->hashtable = lh_DECODER_CACHE_ENTRY_new(decoder_cache_entry_hash,
decoder_cache_entry_cmp);
if (cache->hashtable == NULL) {
CRYPTO_THREAD_lock_free(cache->lock);
OPENSSL_free(cache);
return NULL;
}
return cache;
}
void ossl_decoder_cache_free(void *vcache)
{
DECODER_CACHE *cache = (DECODER_CACHE *)vcache;
lh_DECODER_CACHE_ENTRY_doall(cache->hashtable, decoder_cache_entry_free);
lh_DECODER_CACHE_ENTRY_free(cache->hashtable);
CRYPTO_THREAD_lock_free(cache->lock);
OPENSSL_free(cache);
}
/*
* Called whenever a provider gets activated/deactivated. In that case the
* decoders that are available might change so we flush our cache.
*/
int ossl_decoder_cache_flush(OSSL_LIB_CTX *libctx)
{
DECODER_CACHE *cache
= ossl_lib_ctx_get_data(libctx, OSSL_LIB_CTX_DECODER_CACHE_INDEX);
if (cache == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
return 0;
}
if (!CRYPTO_THREAD_write_lock(cache->lock)) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
return 0;
}
lh_DECODER_CACHE_ENTRY_doall(cache->hashtable, decoder_cache_entry_free);
lh_DECODER_CACHE_ENTRY_flush(cache->hashtable);
CRYPTO_THREAD_unlock(cache->lock);
return 1;
}
OSSL_DECODER_CTX *
OSSL_DECODER_CTX_new_for_pkey(EVP_PKEY **pkey,
const char *input_type,
const char *input_structure,
const char *keytype, int selection,
OSSL_LIB_CTX *libctx, const char *propquery)
{
OSSL_DECODER_CTX *ctx = NULL;
OSSL_PARAM decoder_params[] = {
OSSL_PARAM_END,
OSSL_PARAM_END
};
DECODER_CACHE *cache
= ossl_lib_ctx_get_data(libctx, OSSL_LIB_CTX_DECODER_CACHE_INDEX);
DECODER_CACHE_ENTRY cacheent, *res, *newcache = NULL;
if (cache == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
return NULL;
}
if (propquery != NULL)
decoder_params[0] = OSSL_PARAM_construct_utf8_string(OSSL_DECODER_PARAM_PROPERTIES,
(char *)propquery, 0);
/* It is safe to cast away the const here */
cacheent.input_type = (char *)input_type;
cacheent.input_structure = (char *)input_structure;
cacheent.keytype = (char *)keytype;
cacheent.selection = selection;
cacheent.propquery = (char *)propquery;
if (!CRYPTO_THREAD_read_lock(cache->lock)) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_CRYPTO_LIB);
return NULL;
}
/* First see if we have a template OSSL_DECODER_CTX */
res = lh_DECODER_CACHE_ENTRY_retrieve(cache->hashtable, &cacheent);
if (res == NULL) {
/*
* There is no template so we will have to construct one. This will be
* time consuming so release the lock and we will later upgrade it to a
* write lock.
*/
CRYPTO_THREAD_unlock(cache->lock);
if ((ctx = OSSL_DECODER_CTX_new()) == NULL) {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
return NULL;
}
OSSL_TRACE_BEGIN(DECODER) {
BIO_printf(trc_out,
"(ctx %p) Looking for %s decoders with selection %d\n",
(void *)ctx, keytype, selection);
BIO_printf(trc_out, " input type: %s, input structure: %s\n",
input_type, input_structure);
} OSSL_TRACE_END(DECODER);
if (OSSL_DECODER_CTX_set_input_type(ctx, input_type)
&& OSSL_DECODER_CTX_set_input_structure(ctx, input_structure)
&& OSSL_DECODER_CTX_set_selection(ctx, selection)
&& ossl_decoder_ctx_setup_for_pkey(ctx, keytype, libctx, propquery)
&& OSSL_DECODER_CTX_add_extra(ctx, libctx, propquery)
&& (propquery == NULL
|| OSSL_DECODER_CTX_set_params(ctx, decoder_params))) {
OSSL_TRACE_BEGIN(DECODER) {
BIO_printf(trc_out, "(ctx %p) Got %d decoders\n",
(void *)ctx, OSSL_DECODER_CTX_get_num_decoders(ctx));
} OSSL_TRACE_END(DECODER);
} else {
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB);
OSSL_DECODER_CTX_free(ctx);
return NULL;
}
newcache = OPENSSL_zalloc(sizeof(*newcache));
if (newcache == NULL) {
OSSL_DECODER_CTX_free(ctx);
return NULL;
}
if (input_type != NULL) {
newcache->input_type = OPENSSL_strdup(input_type);
if (newcache->input_type == NULL)
goto err;
}
if (input_structure != NULL) {
newcache->input_structure = OPENSSL_strdup(input_structure);
if (newcache->input_structure == NULL)
goto err;
}
if (keytype != NULL) {
newcache->keytype = OPENSSL_strdup(keytype);
if (newcache->keytype == NULL)
goto err;
}
if (propquery != NULL) {
newcache->propquery = OPENSSL_strdup(propquery);
if (newcache->propquery == NULL)
goto err;
}
newcache->selection = selection;
newcache->template = ctx;
if (!CRYPTO_THREAD_write_lock(cache->lock)) {
ctx = NULL;
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_CRYPTO_LIB);
goto err;
}
res = lh_DECODER_CACHE_ENTRY_retrieve(cache->hashtable, &cacheent);
if (res == NULL) {
(void)lh_DECODER_CACHE_ENTRY_insert(cache->hashtable, newcache);
if (lh_DECODER_CACHE_ENTRY_error(cache->hashtable)) {
ctx = NULL;
ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_CRYPTO_LIB);
goto err;
}
} else {
/*
* We raced with another thread to construct this and lost. Free
* what we just created and use the entry from the hashtable instead
*/
decoder_cache_entry_free(newcache);
ctx = res->template;
}
} else {
ctx = res->template;
}
ctx = ossl_decoder_ctx_for_pkey_dup(ctx, pkey, input_type, input_structure);
CRYPTO_THREAD_unlock(cache->lock);
return ctx;
err:
decoder_cache_entry_free(newcache);
OSSL_DECODER_CTX_free(ctx);
return NULL;
}