openssl/apps/speed.c
Dr. Stephen Henson fb29bb5926 remove ecdsa.h header
Reviewed-by: Richard Levitte <levitte@openssl.org>
2015-12-09 22:09:19 +00:00

2532 lines
79 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The ECDH and ECDSA speed test software is originally written by
* Sumit Gupta of Sun Microsystems Laboratories.
*
*/
#undef SECONDS
#define SECONDS 3
#define PRIME_SECONDS 10
#define RSA_SECONDS 10
#define DSA_SECONDS 10
#define ECDSA_SECONDS 10
#define ECDH_SECONDS 10
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#if !defined(OPENSSL_SYS_MSDOS)
# include OPENSSL_UNISTD
#endif
#ifndef OPENSSL_SYS_NETWARE
# include <signal.h>
#endif
#if defined(_WIN32) || defined(__CYGWIN__)
# include <windows.h>
# if defined(__CYGWIN__) && !defined(_WIN32)
/*
* <windows.h> should define _WIN32, which normally is mutually exclusive
* with __CYGWIN__, but if it didn't...
*/
# define _WIN32
/* this is done because Cygwin alarm() fails sometimes. */
# endif
#endif
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
# include <openssl/des.h>
#endif
#ifndef OPENSSL_NO_AES
# include <openssl/aes.h>
#endif
#ifndef OPENSSL_NO_CAMELLIA
# include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_MD2
# include <openssl/md2.h>
#endif
#ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h>
#endif
#ifndef OPENSSL_NO_MD4
# include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
# include <openssl/md5.h>
#endif
#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#ifndef OPENSSL_NO_RMD160
# include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
# include <openssl/whrlpool.h>
#endif
#ifndef OPENSSL_NO_RC4
# include <openssl/rc4.h>
#endif
#ifndef OPENSSL_NO_RC5
# include <openssl/rc5.h>
#endif
#ifndef OPENSSL_NO_RC2
# include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_IDEA
# include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_SEED
# include <openssl/seed.h>
#endif
#ifndef OPENSSL_NO_BF
# include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
# include <openssl/cast.h>
#endif
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
# include "./testrsa.h"
#endif
#include <openssl/x509.h>
#ifndef OPENSSL_NO_DSA
# include <openssl/dsa.h>
# include "./testdsa.h"
#endif
#ifndef OPENSSL_NO_EC
# include <openssl/ec.h>
#endif
#include <openssl/modes.h>
#include <openssl/bn.h>
#ifndef HAVE_FORK
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_OS2) || defined(OPENSSL_SYS_NETWARE)
# define HAVE_FORK 0
# else
# define HAVE_FORK 1
# endif
#endif
#if HAVE_FORK
# undef NO_FORK
#else
# define NO_FORK
#endif
#undef BUFSIZE
#define BUFSIZE (1024*8+1)
#define MAX_MISALIGNMENT 63
static volatile int run = 0;
static int mr = 0;
static int usertime = 1;
static double Time_F(int s);
static void print_message(const char *s, long num, int length);
static void pkey_print_message(const char *str, const char *str2,
long num, int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
#ifndef NO_FORK
static int do_multi(int multi);
#endif
#define ALGOR_NUM 30
#define SIZE_NUM 5
#define PRIME_NUM 3
#define RSA_NUM 7
#define DSA_NUM 3
#define EC_NUM 16
#define MAX_ECDH_SIZE 256
#define MISALIGN 64
static const char *names[ALGOR_NUM] = {
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
"des cbc", "des ede3", "idea cbc", "seed cbc",
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
"evp", "sha256", "sha512", "whirlpool",
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
};
static double results[ALGOR_NUM][SIZE_NUM];
static int lengths[SIZE_NUM] = {
16, 64, 256, 1024, 8 * 1024
};
#ifndef OPENSSL_NO_RSA
static double rsa_results[RSA_NUM][2];
#endif
#ifndef OPENSSL_NO_DSA
static double dsa_results[DSA_NUM][2];
#endif
#ifndef OPENSSL_NO_EC
static double ecdsa_results[EC_NUM][2];
static double ecdh_results[EC_NUM][1];
#endif
#if defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_EC)
static const char rnd_seed[] =
"string to make the random number generator think it has entropy";
static int rnd_fake = 0;
#endif
#ifdef SIGALRM
# if defined(__STDC__) || defined(sgi) || defined(_AIX)
# define SIGRETTYPE void
# else
# define SIGRETTYPE int
# endif
static SIGRETTYPE sig_done(int sig);
static SIGRETTYPE sig_done(int sig)
{
signal(SIGALRM, sig_done);
run = 0;
}
#endif
#define START 0
#define STOP 1
#if defined(_WIN32)
# if !defined(SIGALRM)
# define SIGALRM
# endif
static unsigned int lapse, schlock;
static void alarm_win32(unsigned int secs)
{
lapse = secs * 1000;
}
# define alarm alarm_win32
static DWORD WINAPI sleepy(VOID * arg)
{
schlock = 1;
Sleep(lapse);
run = 0;
return 0;
}
static double Time_F(int s)
{
double ret;
static HANDLE thr;
if (s == START) {
schlock = 0;
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
if (thr == NULL) {
DWORD err = GetLastError();
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
ExitProcess(err);
}
while (!schlock)
Sleep(0); /* scheduler spinlock */
ret = app_tminterval(s, usertime);
} else {
ret = app_tminterval(s, usertime);
if (run)
TerminateThread(thr, 0);
CloseHandle(thr);
}
return ret;
}
#else
static double Time_F(int s)
{
double ret = app_tminterval(s, usertime);
if (s == STOP)
alarm(0);
return ret;
}
#endif
#ifndef OPENSSL_NO_EC
static const int KDF1_SHA1_len = 20;
static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
size_t *outlen)
{
if (*outlen < SHA_DIGEST_LENGTH)
return NULL;
*outlen = SHA_DIGEST_LENGTH;
return SHA1(in, inlen, out);
}
#endif /* OPENSSL_NO_EC */
static void multiblock_speed(const EVP_CIPHER *evp_cipher);
static int found(const char *name, const OPT_PAIR * pairs, int *result)
{
for (; pairs->name; pairs++)
if (strcmp(name, pairs->name) == 0) {
*result = pairs->retval;
return 1;
}
return 0;
}
typedef enum OPTION_choice {
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
OPT_MR, OPT_MB, OPT_MISALIGN
} OPTION_CHOICE;
OPTIONS speed_options[] = {
{OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
{OPT_HELP_STR, 1, '-', "Valid options are:\n"},
{"help", OPT_HELP, '-', "Display this summary"},
{"evp", OPT_EVP, 's', "Use specified EVP cipher"},
{"decrypt", OPT_DECRYPT, '-',
"Time decryption instead of encryption (only EVP)"},
{"mr", OPT_MR, '-', "Produce machine readable output"},
{"mb", OPT_MB, '-'},
{"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
{"elapsed", OPT_ELAPSED, '-',
"Measure time in real time instead of CPU user time"},
#ifndef NO_FORK
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
#ifndef OPENSSL_NO_ENGINE
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
{NULL},
};
#define D_MD2 0
#define D_MDC2 1
#define D_MD4 2
#define D_MD5 3
#define D_HMAC 4
#define D_SHA1 5
#define D_RMD160 6
#define D_RC4 7
#define D_CBC_DES 8
#define D_EDE3_DES 9
#define D_CBC_IDEA 10
#define D_CBC_SEED 11
#define D_CBC_RC2 12
#define D_CBC_RC5 13
#define D_CBC_BF 14
#define D_CBC_CAST 15
#define D_CBC_128_AES 16
#define D_CBC_192_AES 17
#define D_CBC_256_AES 18
#define D_CBC_128_CML 19
#define D_CBC_192_CML 20
#define D_CBC_256_CML 21
#define D_EVP 22
#define D_SHA256 23
#define D_SHA512 24
#define D_WHIRLPOOL 25
#define D_IGE_128_AES 26
#define D_IGE_192_AES 27
#define D_IGE_256_AES 28
#define D_GHASH 29
static OPT_PAIR doit_choices[] = {
#ifndef OPENSSL_NO_MD2
{"md2", D_MD2},
#endif
#ifndef OPENSSL_NO_MDC2
{"mdc2", D_MDC2},
#endif
#ifndef OPENSSL_NO_MD4
{"md4", D_MD4},
#endif
#ifndef OPENSSL_NO_MD5
{"md5", D_MD5},
#endif
#ifndef OPENSSL_NO_MD5
{"hmac", D_HMAC},
#endif
{"sha1", D_SHA1},
{"sha256", D_SHA256},
{"sha512", D_SHA512},
#ifndef OPENSSL_NO_WHIRLPOOL
{"whirlpool", D_WHIRLPOOL},
#endif
#ifndef OPENSSL_NO_RMD160
{"ripemd", D_RMD160},
{"rmd160", D_RMD160},
{"ripemd160", D_RMD160},
#endif
#ifndef OPENSSL_NO_RC4
{"rc4", D_RC4},
#endif
#ifndef OPENSSL_NO_DES
{"des-cbc", D_CBC_DES},
{"des-ede3", D_EDE3_DES},
#endif
#ifndef OPENSSL_NO_AES
{"aes-128-cbc", D_CBC_128_AES},
{"aes-192-cbc", D_CBC_192_AES},
{"aes-256-cbc", D_CBC_256_AES},
{"aes-128-ige", D_IGE_128_AES},
{"aes-192-ige", D_IGE_192_AES},
{"aes-256-ige", D_IGE_256_AES},
#endif
#ifndef OPENSSL_NO_RC2
{"rc2-cbc", D_CBC_RC2},
{"rc2", D_CBC_RC2},
#endif
#ifndef OPENSSL_NO_RC5
{"rc5-cbc", D_CBC_RC5},
{"rc5", D_CBC_RC5},
#endif
#ifndef OPENSSL_NO_IDEA
{"idea-cbc", D_CBC_IDEA},
{"idea", D_CBC_IDEA},
#endif
#ifndef OPENSSL_NO_SEED
{"seed-cbc", D_CBC_SEED},
{"seed", D_CBC_SEED},
#endif
#ifndef OPENSSL_NO_BF
{"bf-cbc", D_CBC_BF},
{"blowfish", D_CBC_BF},
{"bf", D_CBC_BF},
#endif
#ifndef OPENSSL_NO_CAST
{"cast-cbc", D_CBC_CAST},
{"cast", D_CBC_CAST},
{"cast5", D_CBC_CAST},
#endif
{"ghash", D_GHASH},
{NULL}
};
#define R_DSA_512 0
#define R_DSA_1024 1
#define R_DSA_2048 2
static OPT_PAIR dsa_choices[] = {
{"dsa512", R_DSA_512},
{"dsa1024", R_DSA_1024},
{"dsa2048", R_DSA_2048},
{NULL},
};
#define R_RSA_512 0
#define R_RSA_1024 1
#define R_RSA_2048 2
#define R_RSA_3072 3
#define R_RSA_4096 4
#define R_RSA_7680 5
#define R_RSA_15360 6
static OPT_PAIR rsa_choices[] = {
{"rsa512", R_RSA_512},
{"rsa1024", R_RSA_1024},
{"rsa2048", R_RSA_2048},
{"rsa3072", R_RSA_3072},
{"rsa4096", R_RSA_4096},
{"rsa7680", R_RSA_7680},
{"rsa15360", R_RSA_15360},
{NULL}
};
#define R_EC_P160 0
#define R_EC_P192 1
#define R_EC_P224 2
#define R_EC_P256 3
#define R_EC_P384 4
#define R_EC_P521 5
#define R_EC_K163 6
#define R_EC_K233 7
#define R_EC_K283 8
#define R_EC_K409 9
#define R_EC_K571 10
#define R_EC_B163 11
#define R_EC_B233 12
#define R_EC_B283 13
#define R_EC_B409 14
#define R_EC_B571 15
#ifndef OPENSSL_NO_EC
static OPT_PAIR ecdsa_choices[] = {
{"ecdsap160", R_EC_P160},
{"ecdsap192", R_EC_P192},
{"ecdsap224", R_EC_P224},
{"ecdsap256", R_EC_P256},
{"ecdsap384", R_EC_P384},
{"ecdsap521", R_EC_P521},
{"ecdsak163", R_EC_K163},
{"ecdsak233", R_EC_K233},
{"ecdsak283", R_EC_K283},
{"ecdsak409", R_EC_K409},
{"ecdsak571", R_EC_K571},
{"ecdsab163", R_EC_B163},
{"ecdsab233", R_EC_B233},
{"ecdsab283", R_EC_B283},
{"ecdsab409", R_EC_B409},
{"ecdsab571", R_EC_B571},
{NULL}
};
static OPT_PAIR ecdh_choices[] = {
{"ecdhp160", R_EC_P160},
{"ecdhp192", R_EC_P192},
{"ecdhp224", R_EC_P224},
{"ecdhp256", R_EC_P256},
{"ecdhp384", R_EC_P384},
{"ecdhp521", R_EC_P521},
{"ecdhk163", R_EC_K163},
{"ecdhk233", R_EC_K233},
{"ecdhk283", R_EC_K283},
{"ecdhk409", R_EC_K409},
{"ecdhk571", R_EC_K571},
{"ecdhb163", R_EC_B163},
{"ecdhb233", R_EC_B233},
{"ecdhb283", R_EC_B283},
{"ecdhb409", R_EC_B409},
{"ecdhb571", R_EC_B571},
{NULL}
};
#endif
int speed_main(int argc, char **argv)
{
char *prog;
const EVP_CIPHER *evp_cipher = NULL;
const EVP_MD *evp_md = NULL;
double d = 0.0;
OPTION_CHOICE o;
int decrypt = 0, multiblock = 0, doit[ALGOR_NUM], pr_header = 0;
int dsa_doit[DSA_NUM], rsa_doit[RSA_NUM];
int ret = 1, i, j, k, misalign = MAX_MISALIGNMENT + 1;
long c[ALGOR_NUM][SIZE_NUM], count = 0, save_count = 0;
unsigned char *buf_malloc = NULL, *buf2_malloc = NULL;
unsigned char *buf = NULL, *buf2 = NULL;
unsigned char md[EVP_MAX_MD_SIZE];
#ifndef NO_FORK
int multi = 0;
#endif
/* What follows are the buffers and key material. */
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
long rsa_count;
#endif
#ifndef OPENSSL_NO_MD2
unsigned char md2[MD2_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MDC2
unsigned char mdc2[MDC2_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MD4
unsigned char md4[MD4_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MD5
unsigned char md5[MD5_DIGEST_LENGTH];
unsigned char hmac[MD5_DIGEST_LENGTH];
#endif
unsigned char sha[SHA_DIGEST_LENGTH];
unsigned char sha256[SHA256_DIGEST_LENGTH];
unsigned char sha512[SHA512_DIGEST_LENGTH];
#ifndef OPENSSL_NO_WHIRLPOOL
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_RMD160
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_RC4
RC4_KEY rc4_ks;
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_KEY rc5_ks;
#endif
#ifndef OPENSSL_NO_RC2
RC2_KEY rc2_ks;
#endif
#ifndef OPENSSL_NO_IDEA
IDEA_KEY_SCHEDULE idea_ks;
#endif
#ifndef OPENSSL_NO_SEED
SEED_KEY_SCHEDULE seed_ks;
#endif
#ifndef OPENSSL_NO_BF
BF_KEY bf_ks;
#endif
#ifndef OPENSSL_NO_CAST
CAST_KEY cast_ks;
#endif
static const unsigned char key16[16] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
#ifndef OPENSSL_NO_AES
static const unsigned char key24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char key32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
#endif
#ifndef OPENSSL_NO_CAMELLIA
static const unsigned char ckey24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char ckey32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
#endif
#ifndef OPENSSL_NO_AES
# define MAX_BLOCK_SIZE 128
#else
# define MAX_BLOCK_SIZE 64
#endif
unsigned char DES_iv[8];
unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
#ifndef OPENSSL_NO_DES
static DES_cblock key = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
};
static DES_cblock key2 = {
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
static DES_cblock key3 = {
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
DES_key_schedule sch;
DES_key_schedule sch2;
DES_key_schedule sch3;
#endif
#ifndef OPENSSL_NO_AES
AES_KEY aes_ks1, aes_ks2, aes_ks3;
#endif
#ifndef OPENSSL_NO_RSA
unsigned rsa_num;
RSA *rsa_key[RSA_NUM];
long rsa_c[RSA_NUM][2];
static unsigned int rsa_bits[RSA_NUM] = {
512, 1024, 2048, 3072, 4096, 7680, 15360
};
static unsigned char *rsa_data[RSA_NUM] = {
test512, test1024, test2048, test3072, test4096, test7680, test15360
};
static int rsa_data_length[RSA_NUM] = {
sizeof(test512), sizeof(test1024),
sizeof(test2048), sizeof(test3072),
sizeof(test4096), sizeof(test7680),
sizeof(test15360)
};
#endif
#ifndef OPENSSL_NO_DSA
DSA *dsa_key[DSA_NUM];
long dsa_c[DSA_NUM][2];
static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
#endif
#ifndef OPENSSL_NO_EC
/*
* We only test over the following curves as they are representative, To
* add tests over more curves, simply add the curve NID and curve name to
* the following arrays and increase the EC_NUM value accordingly.
*/
static unsigned int test_curves[EC_NUM] = {
/* Prime Curves */
NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1,
NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
/* Binary Curves */
NID_sect163k1, NID_sect233k1, NID_sect283k1,
NID_sect409k1, NID_sect571k1, NID_sect163r2,
NID_sect233r1, NID_sect283r1, NID_sect409r1,
NID_sect571r1
};
static const char *test_curves_names[EC_NUM] = {
/* Prime Curves */
"secp160r1", "nistp192", "nistp224",
"nistp256", "nistp384", "nistp521",
/* Binary Curves */
"nistk163", "nistk233", "nistk283",
"nistk409", "nistk571", "nistb163",
"nistb233", "nistb283", "nistb409",
"nistb571"
};
static int test_curves_bits[EC_NUM] = {
160, 192, 224,
256, 384, 521,
163, 233, 283,
409, 571, 163,
233, 283, 409,
571
};
#endif
#ifndef OPENSSL_NO_EC
unsigned char ecdsasig[256];
unsigned int ecdsasiglen;
EC_KEY *ecdsa[EC_NUM];
long ecdsa_c[EC_NUM][2];
int ecdsa_doit[EC_NUM];
EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
int secret_size_a, secret_size_b;
int ecdh_checks = 0;
int secret_idx = 0;
long ecdh_c[EC_NUM][2];
int ecdh_doit[EC_NUM];
#endif
memset(results, 0, sizeof(results));
#ifndef OPENSSL_NO_DSA
memset(dsa_key, 0, sizeof(dsa_key));
#endif
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++)
ecdsa[i] = NULL;
for (i = 0; i < EC_NUM; i++)
ecdh_a[i] = ecdh_b[i] = NULL;
#endif
#ifndef OPENSSL_NO_RSA
memset(rsa_key, 0, sizeof(rsa_key));
for (i = 0; i < RSA_NUM; i++)
rsa_key[i] = NULL;
#endif
memset(c, 0, sizeof(c));
memset(DES_iv, 0, sizeof(DES_iv));
memset(iv, 0, sizeof(iv));
for (i = 0; i < ALGOR_NUM; i++)
doit[i] = 0;
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 0;
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 0;
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 0;
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 0;
#endif
buf = buf_malloc = app_malloc((int)BUFSIZE + misalign, "input buffer");
buf2 = buf2_malloc = app_malloc((int)BUFSIZE + misalign, "output buffer");
misalign = 0;
prog = opt_init(argc, argv, speed_options);
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_EOF:
case OPT_ERR:
opterr:
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
goto end;
case OPT_HELP:
opt_help(speed_options);
ret = 0;
goto end;
case OPT_ELAPSED:
usertime = 0;
break;
case OPT_EVP:
evp_cipher = EVP_get_cipherbyname(opt_arg());
if (evp_cipher == NULL)
evp_md = EVP_get_digestbyname(opt_arg());
if (evp_cipher == NULL && evp_md == NULL) {
BIO_printf(bio_err,
"%s: %s an unknown cipher or digest\n",
prog, opt_arg());
goto end;
}
doit[D_EVP] = 1;
break;
case OPT_DECRYPT:
decrypt = 1;
break;
case OPT_ENGINE:
(void)setup_engine(opt_arg(), 0);
break;
case OPT_MULTI:
#ifndef NO_FORK
multi = atoi(opt_arg());
#endif
break;
case OPT_MISALIGN:
if (!opt_int(opt_arg(), &misalign))
goto end;
if (misalign > MISALIGN) {
BIO_printf(bio_err,
"%s: Maximum offset is %d\n", prog, MISALIGN);
goto opterr;
}
buf = buf_malloc + misalign;
buf2 = buf2_malloc + misalign;
break;
case OPT_MR:
mr = 1;
break;
case OPT_MB:
multiblock = 1;
break;
}
}
argc = opt_num_rest();
argv = opt_rest();
/* Remaining arguments are algorithms. */
for ( ; *argv; argv++) {
if (found(*argv, doit_choices, &i)) {
doit[i] = 1;
continue;
}
#ifndef OPENSSL_NO_DES
if (strcmp(*argv, "des") == 0) {
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
continue;
}
#endif
if (strcmp(*argv, "sha") == 0) {
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
continue;
}
#ifndef OPENSSL_NO_RSA
# ifndef RSA_NULL
if (strcmp(*argv, "openssl") == 0) {
RSA_set_default_method(RSA_PKCS1_OpenSSL());
continue;
}
# endif
if (strcmp(*argv, "rsa") == 0) {
rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] =
rsa_doit[R_RSA_15360] = 1;
continue;
}
if (found(*argv, rsa_choices, &i)) {
rsa_doit[i] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_DSA
if (strcmp(*argv, "dsa") == 0) {
dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
dsa_doit[R_DSA_2048] = 1;
continue;
}
if (found(*argv, dsa_choices, &i)) {
dsa_doit[i] = 2;
continue;
}
#endif
#ifndef OPENSSL_NO_AES
if (strcmp(*argv, "aes") == 0) {
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] =
doit[D_CBC_256_AES] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv, "camellia") == 0) {
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] =
doit[D_CBC_256_CML] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_EC
if (strcmp(*argv, "ecdsa") == 0) {
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 1;
continue;
}
if (found(*argv, ecdsa_choices, &i)) {
ecdsa_doit[i] = 2;
continue;
}
if (strcmp(*argv, "ecdh") == 0) {
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 1;
continue;
}
if (found(*argv, ecdh_choices, &i)) {
ecdh_doit[i] = 2;
continue;
}
#endif
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
goto end;
}
#ifndef NO_FORK
if (multi && do_multi(multi))
goto show_res;
#endif
/* No parameters; turn on everything. */
if ((argc == 0) && !doit[D_EVP]) {
for (i = 0; i < ALGOR_NUM; i++)
if (i != D_EVP)
doit[i] = 1;
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 1;
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 1;
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 1;
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 1;
#endif
}
for (i = 0; i < ALGOR_NUM; i++)
if (doit[i])
pr_header++;
if (usertime == 0 && !mr)
BIO_printf(bio_err,
"You have chosen to measure elapsed time "
"instead of user CPU time.\n");
#ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++) {
const unsigned char *p;
p = rsa_data[i];
rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]);
if (rsa_key[i] == NULL) {
BIO_printf(bio_err, "internal error loading RSA key number %d\n",
i);
goto end;
}
}
#endif
#ifndef OPENSSL_NO_DSA
dsa_key[0] = get_dsa512();
dsa_key[1] = get_dsa1024();
dsa_key[2] = get_dsa2048();
#endif
#ifndef OPENSSL_NO_DES
DES_set_key_unchecked(&key, &sch);
DES_set_key_unchecked(&key2, &sch2);
DES_set_key_unchecked(&key3, &sch3);
#endif
#ifndef OPENSSL_NO_AES
AES_set_encrypt_key(key16, 128, &aes_ks1);
AES_set_encrypt_key(key24, 192, &aes_ks2);
AES_set_encrypt_key(key32, 256, &aes_ks3);
#endif
#ifndef OPENSSL_NO_CAMELLIA
Camellia_set_key(key16, 128, &camellia_ks1);
Camellia_set_key(ckey24, 192, &camellia_ks2);
Camellia_set_key(ckey32, 256, &camellia_ks3);
#endif
#ifndef OPENSSL_NO_IDEA
idea_set_encrypt_key(key16, &idea_ks);
#endif
#ifndef OPENSSL_NO_SEED
SEED_set_key(key16, &seed_ks);
#endif
#ifndef OPENSSL_NO_RC4
RC4_set_key(&rc4_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_RC2
RC2_set_key(&rc2_ks, 16, key16, 128);
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_set_key(&rc5_ks, 16, key16, 12);
#endif
#ifndef OPENSSL_NO_BF
BF_set_key(&bf_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_CAST
CAST_set_key(&cast_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_RSA
memset(rsa_c, 0, sizeof(rsa_c));
#endif
#ifndef SIGALRM
# ifndef OPENSSL_NO_DES
BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
count = 10;
do {
long it;
count *= 2;
Time_F(START);
for (it = count; it; it--)
DES_ecb_encrypt((DES_cblock *)buf,
(DES_cblock *)buf, &sch, DES_ENCRYPT);
d = Time_F(STOP);
} while (d < 3);
save_count = count;
c[D_MD2][0] = count / 10;
c[D_MDC2][0] = count / 10;
c[D_MD4][0] = count;
c[D_MD5][0] = count;
c[D_HMAC][0] = count;
c[D_SHA1][0] = count;
c[D_RMD160][0] = count;
c[D_RC4][0] = count * 5;
c[D_CBC_DES][0] = count;
c[D_EDE3_DES][0] = count / 3;
c[D_CBC_IDEA][0] = count;
c[D_CBC_SEED][0] = count;
c[D_CBC_RC2][0] = count;
c[D_CBC_RC5][0] = count;
c[D_CBC_BF][0] = count;
c[D_CBC_CAST][0] = count;
c[D_CBC_128_AES][0] = count;
c[D_CBC_192_AES][0] = count;
c[D_CBC_256_AES][0] = count;
c[D_CBC_128_CML][0] = count;
c[D_CBC_192_CML][0] = count;
c[D_CBC_256_CML][0] = count;
c[D_SHA256][0] = count;
c[D_SHA512][0] = count;
c[D_WHIRLPOOL][0] = count;
c[D_IGE_128_AES][0] = count;
c[D_IGE_192_AES][0] = count;
c[D_IGE_256_AES][0] = count;
c[D_GHASH][0] = count;
for (i = 1; i < SIZE_NUM; i++) {
long l0, l1;
l0 = (long)lengths[0];
l1 = (long)lengths[i];
c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
l0 = (long)lengths[i - 1];
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
}
# ifndef OPENSSL_NO_RSA
rsa_c[R_RSA_512][0] = count / 2000;
rsa_c[R_RSA_512][1] = count / 400;
for (i = 1; i < RSA_NUM; i++) {
rsa_c[i][0] = rsa_c[i - 1][0] / 8;
rsa_c[i][1] = rsa_c[i - 1][1] / 4;
if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0))
rsa_doit[i] = 0;
else {
if (rsa_c[i][0] == 0) {
rsa_c[i][0] = 1;
rsa_c[i][1] = 20;
}
}
}
# endif
# ifndef OPENSSL_NO_DSA
dsa_c[R_DSA_512][0] = count / 1000;
dsa_c[R_DSA_512][1] = count / 1000 / 2;
for (i = 1; i < DSA_NUM; i++) {
dsa_c[i][0] = dsa_c[i - 1][0] / 4;
dsa_c[i][1] = dsa_c[i - 1][1] / 4;
if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0))
dsa_doit[i] = 0;
else {
if (dsa_c[i] == 0) {
dsa_c[i][0] = 1;
dsa_c[i][1] = 1;
}
}
}
# endif
# ifndef OPENSSL_NO_EC
ecdsa_c[R_EC_P160][0] = count / 1000;
ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_K163][0] = count / 1000;
ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_B163][0] = count / 1000;
ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_P160][0] = count / 1000;
ecdh_c[R_EC_P160][1] = count / 1000;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_K163][0] = count / 1000;
ecdh_c[R_EC_K163][1] = count / 1000;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_B163][0] = count / 1000;
ecdh_c[R_EC_B163][1] = count / 1000;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
# endif
# define COND(d) (count < (d))
# define COUNT(d) (d)
# else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
# endif /* OPENSSL_NO_DES */
#else
# define COND(c) (run && count<0x7fffffff)
# define COUNT(d) (count)
# ifndef _WIN32
signal(SIGALRM, sig_done);
# endif
#endif /* SIGALRM */
#ifndef OPENSSL_NO_MD2
if (doit[D_MD2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD2], c[D_MD2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD2][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(md2[0]), NULL,
EVP_md2(), NULL);
d = Time_F(STOP);
print_result(D_MD2, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MDC2
if (doit[D_MDC2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MDC2], c[D_MDC2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MDC2][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(mdc2[0]), NULL,
EVP_mdc2(), NULL);
d = Time_F(STOP);
print_result(D_MDC2, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD4
if (doit[D_MD4]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD4], c[D_MD4][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD4][j]); count++)
EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md4[0]),
NULL, EVP_md4(), NULL);
d = Time_F(STOP);
print_result(D_MD4, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD5
if (doit[D_MD5]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD5], c[D_MD5][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD5][j]); count++)
MD5(buf, lengths[j], md5);
d = Time_F(STOP);
print_result(D_MD5, j, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_MD5)
if (doit[D_HMAC]) {
HMAC_CTX *hctx = NULL;
hctx = HMAC_CTX_new();
if (hctx == NULL) {
BIO_printf(bio_err, "HMAC malloc failure, exiting...");
exit(1);
}
HMAC_Init_ex(hctx, (unsigned char *)"This is a key...",
16, EVP_md5(), NULL);
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) {
HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
HMAC_Update(hctx, buf, lengths[j]);
HMAC_Final(hctx, &(hmac[0]), NULL);
}
d = Time_F(STOP);
print_result(D_HMAC, j, count, d);
}
HMAC_CTX_free(hctx);
}
#endif
if (doit[D_SHA1]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA1][j]); count++)
SHA1(buf, lengths[j], sha);
d = Time_F(STOP);
print_result(D_SHA1, j, count, d);
}
}
if (doit[D_SHA256]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA256][j]); count++)
SHA256(buf, lengths[j], sha256);
d = Time_F(STOP);
print_result(D_SHA256, j, count, d);
}
}
if (doit[D_SHA512]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA512][j]); count++)
SHA512(buf, lengths[j], sha512);
d = Time_F(STOP);
print_result(D_SHA512, j, count, d);
}
}
#ifndef OPENSSL_NO_WHIRLPOOL
if (doit[D_WHIRLPOOL]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++)
WHIRLPOOL(buf, lengths[j], whirlpool);
d = Time_F(STOP);
print_result(D_WHIRLPOOL, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RMD160
if (doit[D_RMD160]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_RMD160][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(rmd160[0]), NULL,
EVP_ripemd160(), NULL);
d = Time_F(STOP);
print_result(D_RMD160, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC4
if (doit[D_RC4]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_RC4], c[D_RC4][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_RC4][j]); count++)
RC4(&rc4_ks, (unsigned int)lengths[j], buf, buf);
d = Time_F(STOP);
print_result(D_RC4, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_DES
if (doit[D_CBC_DES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++)
DES_ncbc_encrypt(buf, buf, lengths[j], &sch,
&DES_iv, DES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_DES, j, count, d);
}
}
if (doit[D_EDE3_DES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++)
DES_ede3_cbc_encrypt(buf, buf, lengths[j],
&sch, &sch2, &sch3,
&DES_iv, DES_ENCRYPT);
d = Time_F(STOP);
print_result(D_EDE3_DES, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_AES
if (doit[D_CBC_128_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks1,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_AES, j, count, d);
}
}
if (doit[D_CBC_192_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks2,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_AES, j, count, d);
}
}
if (doit[D_CBC_256_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks3,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_AES, j, count, d);
}
}
if (doit[D_IGE_128_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks1,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_128_AES, j, count, d);
}
}
if (doit[D_IGE_192_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks2,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_192_AES, j, count, d);
}
}
if (doit[D_IGE_256_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks3,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_256_AES, j, count, d);
}
}
if (doit[D_GHASH]) {
GCM128_CONTEXT *ctx =
CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
CRYPTO_gcm128_setiv(ctx, (unsigned char *)"0123456789ab", 12);
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_GHASH][j]); count++)
CRYPTO_gcm128_aad(ctx, buf, lengths[j]);
d = Time_F(STOP);
print_result(D_GHASH, j, count, d);
}
CRYPTO_gcm128_release(ctx);
}
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (doit[D_CBC_128_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks1,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_CML, j, count, d);
}
}
if (doit[D_CBC_192_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks2,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_CML, j, count, d);
}
}
if (doit[D_CBC_256_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks3,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_CML, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_IDEA
if (doit[D_CBC_IDEA]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++)
idea_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &idea_ks,
iv, IDEA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_IDEA, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_SEED
if (doit[D_CBC_SEED]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_SEED], c[D_CBC_SEED][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_SEED][j]); count++)
SEED_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &seed_ks, iv, 1);
d = Time_F(STOP);
print_result(D_CBC_SEED, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC2
if (doit[D_CBC_RC2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++)
RC2_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &rc2_ks,
iv, RC2_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC2, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC5
if (doit[D_CBC_RC5]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_RC5], c[D_CBC_RC5][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC5][j]); count++)
RC5_32_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &rc5_ks,
iv, RC5_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC5, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_BF
if (doit[D_CBC_BF]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++)
BF_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &bf_ks,
iv, BF_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_BF, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_CAST
if (doit[D_CBC_CAST]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++)
CAST_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &cast_ks,
iv, CAST_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_CAST, j, count, d);
}
}
#endif
if (doit[D_EVP]) {
#ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
if (multiblock && evp_cipher) {
if (!
(EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
BIO_printf(bio_err, "%s is not multi-block capable\n",
OBJ_nid2ln(evp_cipher->nid));
goto end;
}
multiblock_speed(evp_cipher);
ret = 0;
goto end;
}
#endif
for (j = 0; j < SIZE_NUM; j++) {
if (evp_cipher) {
EVP_CIPHER_CTX ctx;
int outl;
names[D_EVP] = OBJ_nid2ln(evp_cipher->nid);
/*
* -O3 -fschedule-insns messes up an optimization here!
* names[D_EVP] somehow becomes NULL
*/
print_message(names[D_EVP], save_count, lengths[j]);
EVP_CIPHER_CTX_init(&ctx);
if (decrypt)
EVP_DecryptInit_ex(&ctx, evp_cipher, NULL, key16, iv);
else
EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, key16, iv);
EVP_CIPHER_CTX_set_padding(&ctx, 0);
Time_F(START);
if (decrypt)
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]);
count++)
EVP_DecryptUpdate(&ctx, buf, &outl, buf, lengths[j]);
else
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]);
count++)
EVP_EncryptUpdate(&ctx, buf, &outl, buf, lengths[j]);
if (decrypt)
EVP_DecryptFinal_ex(&ctx, buf, &outl);
else
EVP_EncryptFinal_ex(&ctx, buf, &outl);
d = Time_F(STOP);
EVP_CIPHER_CTX_cleanup(&ctx);
}
if (evp_md) {
names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
print_message(names[D_EVP], save_count, lengths[j]);
Time_F(START);
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]); count++)
EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL);
d = Time_F(STOP);
}
print_result(D_EVP, j, count, d);
}
}
RAND_bytes(buf, 36);
#ifndef OPENSSL_NO_RSA
for (j = 0; j < RSA_NUM; j++) {
int st;
if (!rsa_doit[j])
continue;
st = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]);
if (st == 0) {
BIO_printf(bio_err,
"RSA sign failure. No RSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
rsa_c[j][0], rsa_bits[j], RSA_SECONDS);
/* RSA_blinding_on(rsa_key[j],NULL); */
Time_F(START);
for (count = 0, run = 1; COND(rsa_c[j][0]); count++) {
st = RSA_sign(NID_md5_sha1, buf, 36, buf2,
&rsa_num, rsa_key[j]);
if (st == 0) {
BIO_printf(bio_err, "RSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %d bit private RSA's in %.2fs\n",
count, rsa_bits[j], d);
rsa_results[j][0] = d / (double)count;
rsa_count = count;
}
st = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]);
if (st <= 0) {
BIO_printf(bio_err,
"RSA verify failure. No RSA verify will be done.\n");
ERR_print_errors(bio_err);
rsa_doit[j] = 0;
} else {
pkey_print_message("public", "rsa",
rsa_c[j][1], rsa_bits[j], RSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(rsa_c[j][1]); count++) {
st = RSA_verify(NID_md5_sha1, buf, 36, buf2,
rsa_num, rsa_key[j]);
if (st <= 0) {
BIO_printf(bio_err, "RSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %d bit public RSA's in %.2fs\n",
count, rsa_bits[j], d);
rsa_results[j][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < RSA_NUM; j++)
rsa_doit[j] = 0;
}
}
#endif
RAND_bytes(buf, 20);
#ifndef OPENSSL_NO_DSA
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < DSA_NUM; j++) {
unsigned int kk;
int st;
if (!dsa_doit[j])
continue;
/* DSA_generate_key(dsa_key[j]); */
/* DSA_sign_setup(dsa_key[j],NULL); */
st = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]);
if (st == 0) {
BIO_printf(bio_err,
"DSA sign failure. No DSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "dsa",
dsa_c[j][0], dsa_bits[j], DSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(dsa_c[j][0]); count++) {
st = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]);
if (st == 0) {
BIO_printf(bio_err, "DSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R3:%ld:%d:%.2f\n"
: "%ld %d bit DSA signs in %.2fs\n",
count, dsa_bits[j], d);
dsa_results[j][0] = d / (double)count;
rsa_count = count;
}
st = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]);
if (st <= 0) {
BIO_printf(bio_err,
"DSA verify failure. No DSA verify will be done.\n");
ERR_print_errors(bio_err);
dsa_doit[j] = 0;
} else {
pkey_print_message("verify", "dsa",
dsa_c[j][1], dsa_bits[j], DSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(dsa_c[j][1]); count++) {
st = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]);
if (st <= 0) {
BIO_printf(bio_err, "DSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R4:%ld:%d:%.2f\n"
: "%ld %d bit DSA verify in %.2fs\n",
count, dsa_bits[j], d);
dsa_results[j][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < DSA_NUM; j++)
dsa_doit[j] = 0;
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef OPENSSL_NO_EC
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < EC_NUM; j++) {
int st;
if (!ecdsa_doit[j])
continue; /* Ignore Curve */
ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]);
if (ecdsa[j] == NULL) {
BIO_printf(bio_err, "ECDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
EC_KEY_precompute_mult(ecdsa[j], NULL);
/* Perform ECDSA signature test */
EC_KEY_generate_key(ecdsa[j]);
st = ECDSA_sign(0, buf, 20, ecdsasig, &ecdsasiglen, ecdsa[j]);
if (st == 0) {
BIO_printf(bio_err,
"ECDSA sign failure. No ECDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "ecdsa",
ecdsa_c[j][0],
test_curves_bits[j], ECDSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdsa_c[j][0]); count++) {
st = ECDSA_sign(0, buf, 20,
ecdsasig, &ecdsasiglen, ecdsa[j]);
if (st == 0) {
BIO_printf(bio_err, "ECDSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%d:%.2f\n" :
"%ld %d bit ECDSA signs in %.2fs \n",
count, test_curves_bits[j], d);
ecdsa_results[j][0] = d / (double)count;
rsa_count = count;
}
/* Perform ECDSA verification test */
st = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]);
if (st != 1) {
BIO_printf(bio_err,
"ECDSA verify failure. No ECDSA verify will be done.\n");
ERR_print_errors(bio_err);
ecdsa_doit[j] = 0;
} else {
pkey_print_message("verify", "ecdsa",
ecdsa_c[j][1],
test_curves_bits[j], ECDSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) {
st = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
ecdsa[j]);
if (st != 1) {
BIO_printf(bio_err, "ECDSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%d:%.2f\n"
: "%ld %d bit ECDSA verify in %.2fs\n",
count, test_curves_bits[j], d);
ecdsa_results[j][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < EC_NUM; j++)
ecdsa_doit[j] = 0;
}
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef OPENSSL_NO_EC
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < EC_NUM; j++) {
if (!ecdh_doit[j])
continue;
ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]);
ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]);
if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) {
BIO_printf(bio_err, "ECDH failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
/* generate two ECDH key pairs */
if (!EC_KEY_generate_key(ecdh_a[j]) ||
!EC_KEY_generate_key(ecdh_b[j])) {
BIO_printf(bio_err, "ECDH key generation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
/*
* If field size is not more than 24 octets, then use SHA-1
* hash of result; otherwise, use result (see section 4.8 of
* draft-ietf-tls-ecc-03.txt).
*/
int field_size, outlen;
void *(*kdf) (const void *in, size_t inlen, void *out,
size_t *xoutlen);
field_size =
EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j]));
if (field_size <= 24 * 8) {
outlen = KDF1_SHA1_len;
kdf = KDF1_SHA1;
} else {
outlen = (field_size + 7) / 8;
kdf = NULL;
}
secret_size_a =
ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[j]),
ecdh_a[j], kdf);
secret_size_b =
ECDH_compute_key(secret_b, outlen,
EC_KEY_get0_public_key(ecdh_a[j]),
ecdh_b[j], kdf);
if (secret_size_a != secret_size_b)
ecdh_checks = 0;
else
ecdh_checks = 1;
for (secret_idx = 0; (secret_idx < secret_size_a)
&& (ecdh_checks == 1); secret_idx++) {
if (secret_a[secret_idx] != secret_b[secret_idx])
ecdh_checks = 0;
}
if (ecdh_checks == 0) {
BIO_printf(bio_err, "ECDH computations don't match.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
}
pkey_print_message("", "ecdh",
ecdh_c[j][0],
test_curves_bits[j], ECDH_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdh_c[j][0]); count++) {
ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[j]),
ecdh_a[j], kdf);
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R7:%ld:%d:%.2f\n" :
"%ld %d-bit ECDH ops in %.2fs\n", count,
test_curves_bits[j], d);
ecdh_results[j][0] = d / (double)count;
rsa_count = count;
}
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < EC_NUM; j++)
ecdh_doit[j] = 0;
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef NO_FORK
show_res:
#endif
if (!mr) {
printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
printf("options:");
printf("%s ", BN_options());
#ifndef OPENSSL_NO_MD2
printf("%s ", MD2_options());
#endif
#ifndef OPENSSL_NO_RC4
printf("%s ", RC4_options());
#endif
#ifndef OPENSSL_NO_DES
printf("%s ", DES_options());
#endif
#ifndef OPENSSL_NO_AES
printf("%s ", AES_options());
#endif
#ifndef OPENSSL_NO_IDEA
printf("%s ", idea_options());
#endif
#ifndef OPENSSL_NO_BF
printf("%s ", BF_options());
#endif
printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
}
if (pr_header) {
if (mr)
printf("+H");
else {
printf
("The 'numbers' are in 1000s of bytes per second processed.\n");
printf("type ");
}
for (j = 0; j < SIZE_NUM; j++)
printf(mr ? ":%d" : "%7d bytes", lengths[j]);
printf("\n");
}
for (k = 0; k < ALGOR_NUM; k++) {
if (!doit[k])
continue;
if (mr)
printf("+F:%d:%s", k, names[k]);
else
printf("%-13s", names[k]);
for (j = 0; j < SIZE_NUM; j++) {
if (results[k][j] > 10000 && !mr)
printf(" %11.2fk", results[k][j] / 1e3);
else
printf(mr ? ":%.2f" : " %11.2f ", results[k][j]);
}
printf("\n");
}
#ifndef OPENSSL_NO_RSA
j = 1;
for (k = 0; k < RSA_NUM; k++) {
if (!rsa_doit[k])
continue;
if (j && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
printf("+F2:%u:%u:%f:%f\n",
k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
else
printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_DSA
j = 1;
for (k = 0; k < DSA_NUM; k++) {
if (!dsa_doit[k])
continue;
if (j && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
printf("+F3:%u:%u:%f:%f\n",
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
else
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_EC
j = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdsa_doit[k])
continue;
if (j && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
printf("+F4:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdsa_results[k][0], ecdsa_results[k][1]);
else
printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdsa_results[k][0], ecdsa_results[k][1],
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_EC
j = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdh_doit[k])
continue;
if (j && !mr) {
printf("%30sop op/s\n", " ");
j = 0;
}
if (mr)
printf("+F5:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
else
printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
}
#endif
ret = 0;
end:
ERR_print_errors(bio_err);
OPENSSL_free(buf_malloc);
OPENSSL_free(buf2_malloc);
#ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++)
RSA_free(rsa_key[i]);
#endif
#ifndef OPENSSL_NO_DSA
for (i = 0; i < DSA_NUM; i++)
DSA_free(dsa_key[i]);
#endif
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++) {
EC_KEY_free(ecdsa[i]);
EC_KEY_free(ecdh_a[i]);
EC_KEY_free(ecdh_b[i]);
}
#endif
return (ret);
}
static void print_message(const char *s, long num, int length)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DT:%s:%d:%d\n"
: "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
(void)BIO_flush(bio_err);
alarm(SECONDS);
#else
BIO_printf(bio_err,
mr ? "+DN:%s:%ld:%d\n"
: "Doing %s %ld times on %d size blocks: ", s, num, length);
(void)BIO_flush(bio_err);
#endif
}
static void pkey_print_message(const char *str, const char *str2, long num,
int bits, int tm)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DTP:%d:%s:%s:%d\n"
: "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
(void)BIO_flush(bio_err);
alarm(tm);
#else
BIO_printf(bio_err,
mr ? "+DNP:%ld:%d:%s:%s\n"
: "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
(void)BIO_flush(bio_err);
#endif
}
static void print_result(int alg, int run_no, int count, double time_used)
{
BIO_printf(bio_err,
mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, names[alg], time_used);
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
#ifndef NO_FORK
static char *sstrsep(char **string, const char *delim)
{
char isdelim[256];
char *token = *string;
if (**string == 0)
return NULL;
memset(isdelim, 0, sizeof isdelim);
isdelim[0] = 1;
while (*delim) {
isdelim[(unsigned char)(*delim)] = 1;
delim++;
}
while (!isdelim[(unsigned char)(**string)]) {
(*string)++;
}
if (**string) {
**string = 0;
(*string)++;
}
return token;
}
static int do_multi(int multi)
{
int n;
int fd[2];
int *fds;
static char sep[] = ":";
fds = malloc(sizeof(*fds) * multi);
for (n = 0; n < multi; ++n) {
if (pipe(fd) == -1) {
BIO_printf(bio_err, "pipe failure\n");
exit(1);
}
fflush(stdout);
(void)BIO_flush(bio_err);
if (fork()) {
close(fd[1]);
fds[n] = fd[0];
} else {
close(fd[0]);
close(1);
if (dup(fd[1]) == -1) {
BIO_printf(bio_err, "dup failed\n");
exit(1);
}
close(fd[1]);
mr = 1;
usertime = 0;
free(fds);
return 0;
}
printf("Forked child %d\n", n);
}
/* for now, assume the pipe is long enough to take all the output */
for (n = 0; n < multi; ++n) {
FILE *f;
char buf[1024];
char *p;
f = fdopen(fds[n], "r");
while (fgets(buf, sizeof buf, f)) {
p = strchr(buf, '\n');
if (p)
*p = '\0';
if (buf[0] != '+') {
BIO_printf(bio_err, "Don't understand line '%s' from child %d\n",
buf, n);
continue;
}
printf("Got: %s from %d\n", buf, n);
if (strncmp(buf, "+F:", 3) == 0) {
int alg;
int j;
p = buf + 3;
alg = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
for (j = 0; j < SIZE_NUM; ++j)
results[alg][j] += atof(sstrsep(&p, sep));
} else if (strncmp(buf, "+F2:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
else
rsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
else
rsa_results[k][1] = d;
}
# ifndef OPENSSL_NO_DSA
else if (strncmp(buf, "+F3:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
else
dsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
else
dsa_results[k][1] = d;
}
# endif
# ifndef OPENSSL_NO_EC
else if (strncmp(buf, "+F4:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
ecdsa_results[k][0] =
1 / (1 / ecdsa_results[k][0] + 1 / d);
else
ecdsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
ecdsa_results[k][1] =
1 / (1 / ecdsa_results[k][1] + 1 / d);
else
ecdsa_results[k][1] = d;
}
# endif
# ifndef OPENSSL_NO_EC
else if (strncmp(buf, "+F5:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
else
ecdh_results[k][0] = d;
}
# endif
else if (strncmp(buf, "+H:", 3) == 0) {
;
} else
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n);
}
fclose(f);
}
free(fds);
return 1;
}
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher)
{
static int mblengths[] =
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
int j, count, num = OSSL_NELEM(lengths);
const char *alg_name;
unsigned char *inp, *out, no_key[32], no_iv[16];
EVP_CIPHER_CTX ctx;
double d = 0.0;
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, no_key, no_iv);
EVP_CIPHER_CTX_ctrl(&ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
no_key);
alg_name = OBJ_nid2ln(evp_cipher->nid);
for (j = 0; j < num; j++) {
print_message(alg_name, 0, mblengths[j]);
Time_F(START);
for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
size_t len = mblengths[j];
int packlen;
memset(aad, 0, 8); /* avoid uninitialized values */
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
aad[9] = 3; /* version */
aad[10] = 2;
aad[11] = 0; /* length */
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = len;
mb_param.interleave = 8;
packlen = EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
if (packlen > 0) {
mb_param.out = out;
mb_param.inp = inp;
mb_param.len = len;
EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param);
} else {
int pad;
RAND_bytes(out, 16);
len += 16;
aad[11] = len >> 8;
aad[12] = len;
pad = EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN, aad);
EVP_Cipher(&ctx, out, inp, len + pad);
}
}
d = Time_F(STOP);
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, "evp", d);
results[D_EVP][j] = ((double)count) / d * mblengths[j];
}
if (mr) {
fprintf(stdout, "+H");
for (j = 0; j < num; j++)
fprintf(stdout, ":%d", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
for (j = 0; j < num; j++)
fprintf(stdout, ":%.2f", results[D_EVP][j]);
fprintf(stdout, "\n");
} else {
fprintf(stdout,
"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout, "type ");
for (j = 0; j < num; j++)
fprintf(stdout, "%7d bytes", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "%-24s", alg_name);
for (j = 0; j < num; j++) {
if (results[D_EVP][j] > 10000)
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
else
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
}
fprintf(stdout, "\n");
}
OPENSSL_free(inp);
OPENSSL_free(out);
}