openssl/ssl/record/ssl3_buffer.c
Matt Caswell d30ef63964 Correct alignment calculation in ssl3_setup_write
The alignment calculation in ssl3_setup_write incorrectly results in an
alignment allowance of
(-SSL3_RT_HEADER_LENGTH) & (SSL3_ALIGN_PAYLOAD - 1) bytes. This equals 3
in almost all cases. The maximum alignment actually used in do_ssl3_write
is (SSL3_ALIGN_PAYLOAD - 1). This equals 7 bytes in almost all cases. So
there is a potential to overrun the buffer by up to 4 bytes.

Fortunately, the encryption overhead allowed for is 80 bytes which
consists of 16 bytes for the cipher block size and 64 bytes for the MAC
output. However the biggest MAC that we ever produce is HMAC-384 which is
48 bytes - so we have a headroom of 16 bytes (i.e. more than the 4 bytes
of potential overrun).

Thanks to Nagesh Hegde for reporting this.

Fixes #11766

Reviewed-by: Ben Kaduk <kaduk@mit.edu>
(Merged from https://github.com/openssl/openssl/pull/11768)
2020-05-15 11:26:43 +01:00

187 lines
4.9 KiB
C

/*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "../ssl_local.h"
#include "record_local.h"
void SSL3_BUFFER_set_data(SSL3_BUFFER *b, const unsigned char *d, size_t n)
{
if (d != NULL)
memcpy(b->buf, d, n);
b->left = n;
b->offset = 0;
}
/*
* Clear the contents of an SSL3_BUFFER but retain any memory allocated. Also
* retains the default_len setting
*/
void SSL3_BUFFER_clear(SSL3_BUFFER *b)
{
b->offset = 0;
b->left = 0;
}
void SSL3_BUFFER_release(SSL3_BUFFER *b)
{
OPENSSL_free(b->buf);
b->buf = NULL;
}
int ssl3_setup_read_buffer(SSL *s)
{
unsigned char *p;
size_t len, align = 0, headerlen;
SSL3_BUFFER *b;
b = RECORD_LAYER_get_rbuf(&s->rlayer);
if (SSL_IS_DTLS(s))
headerlen = DTLS1_RT_HEADER_LENGTH;
else
headerlen = SSL3_RT_HEADER_LENGTH;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
align = (-SSL3_RT_HEADER_LENGTH) & (SSL3_ALIGN_PAYLOAD - 1);
#endif
if (b->buf == NULL) {
len = SSL3_RT_MAX_PLAIN_LENGTH
+ SSL3_RT_MAX_ENCRYPTED_OVERHEAD + headerlen + align;
#ifndef OPENSSL_NO_COMP
if (ssl_allow_compression(s))
len += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
#endif
if (b->default_len > len)
len = b->default_len;
if ((p = OPENSSL_malloc(len)) == NULL) {
/*
* We've got a malloc failure, and we're still initialising buffers.
* We assume we're so doomed that we won't even be able to send an
* alert.
*/
SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_SETUP_READ_BUFFER,
ERR_R_MALLOC_FAILURE);
return 0;
}
b->buf = p;
b->len = len;
}
RECORD_LAYER_set_packet(&s->rlayer, &(b->buf[0]));
return 1;
}
int ssl3_setup_write_buffer(SSL *s, size_t numwpipes, size_t len)
{
unsigned char *p;
size_t align = 0, headerlen;
SSL3_BUFFER *wb;
size_t currpipe;
s->rlayer.numwpipes = numwpipes;
if (len == 0) {
if (SSL_IS_DTLS(s))
headerlen = DTLS1_RT_HEADER_LENGTH + 1;
else
headerlen = SSL3_RT_HEADER_LENGTH;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
align = SSL3_ALIGN_PAYLOAD - 1;
#endif
len = ssl_get_max_send_fragment(s)
+ SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD + headerlen + align;
#ifndef OPENSSL_NO_COMP
if (ssl_allow_compression(s))
len += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
#endif
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS))
len += headerlen + align + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD;
}
wb = RECORD_LAYER_get_wbuf(&s->rlayer);
for (currpipe = 0; currpipe < numwpipes; currpipe++) {
SSL3_BUFFER *thiswb = &wb[currpipe];
if (thiswb->len != len) {
OPENSSL_free(thiswb->buf);
thiswb->buf = NULL; /* force reallocation */
}
if (thiswb->buf == NULL) {
if (s->wbio == NULL || !BIO_get_ktls_send(s->wbio)) {
p = OPENSSL_malloc(len);
if (p == NULL) {
s->rlayer.numwpipes = currpipe;
/*
* We've got a malloc failure, and we're still initialising
* buffers. We assume we're so doomed that we won't even be able
* to send an alert.
*/
SSLfatal(s, SSL_AD_NO_ALERT,
SSL_F_SSL3_SETUP_WRITE_BUFFER, ERR_R_MALLOC_FAILURE);
return 0;
}
} else {
p = NULL;
}
memset(thiswb, 0, sizeof(SSL3_BUFFER));
thiswb->buf = p;
thiswb->len = len;
}
}
return 1;
}
int ssl3_setup_buffers(SSL *s)
{
if (!ssl3_setup_read_buffer(s)) {
/* SSLfatal() already called */
return 0;
}
if (!ssl3_setup_write_buffer(s, 1, 0)) {
/* SSLfatal() already called */
return 0;
}
return 1;
}
int ssl3_release_write_buffer(SSL *s)
{
SSL3_BUFFER *wb;
size_t pipes;
pipes = s->rlayer.numwpipes;
while (pipes > 0) {
wb = &RECORD_LAYER_get_wbuf(&s->rlayer)[pipes - 1];
if (SSL3_BUFFER_is_app_buffer(wb))
SSL3_BUFFER_set_app_buffer(wb, 0);
else
OPENSSL_free(wb->buf);
wb->buf = NULL;
pipes--;
}
s->rlayer.numwpipes = 0;
return 1;
}
int ssl3_release_read_buffer(SSL *s)
{
SSL3_BUFFER *b;
b = RECORD_LAYER_get_rbuf(&s->rlayer);
OPENSSL_free(b->buf);
b->buf = NULL;
return 1;
}