openssl/ssl/ssl_cert.c
Todd Short b67cb09f8d Add support for compressed certificates (RFC8879)
* Compressed Certificate extension (server/client)
* Server certificates (send/receive)
* Client certificate (send/receive)

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18186)
2022-10-18 09:30:22 -04:00

1183 lines
31 KiB
C

/*
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <sys/types.h>
#include "internal/nelem.h"
#include "internal/o_dir.h"
#include <openssl/bio.h>
#include <openssl/pem.h>
#include <openssl/store.h>
#include <openssl/x509v3.h>
#include <openssl/dh.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include "internal/refcount.h"
#include "ssl_local.h"
#include "ssl_cert_table.h"
#include "internal/thread_once.h"
static int ssl_security_default_callback(const SSL *s, const SSL_CTX *ctx,
int op, int bits, int nid, void *other,
void *ex);
static CRYPTO_ONCE ssl_x509_store_ctx_once = CRYPTO_ONCE_STATIC_INIT;
static volatile int ssl_x509_store_ctx_idx = -1;
DEFINE_RUN_ONCE_STATIC(ssl_x509_store_ctx_init)
{
ssl_x509_store_ctx_idx = X509_STORE_CTX_get_ex_new_index(0,
"SSL for verify callback",
NULL, NULL, NULL);
return ssl_x509_store_ctx_idx >= 0;
}
int SSL_get_ex_data_X509_STORE_CTX_idx(void)
{
if (!RUN_ONCE(&ssl_x509_store_ctx_once, ssl_x509_store_ctx_init))
return -1;
return ssl_x509_store_ctx_idx;
}
CERT *ssl_cert_new(void)
{
CERT *ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL)
return NULL;
ret->key = &(ret->pkeys[SSL_PKEY_RSA]);
ret->references = 1;
ret->sec_cb = ssl_security_default_callback;
ret->sec_level = OPENSSL_TLS_SECURITY_LEVEL;
ret->sec_ex = NULL;
ret->lock = CRYPTO_THREAD_lock_new();
if (ret->lock == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
OPENSSL_free(ret);
return NULL;
}
return ret;
}
CERT *ssl_cert_dup(CERT *cert)
{
CERT *ret = OPENSSL_zalloc(sizeof(*ret));
int i;
#ifndef OPENSSL_NO_COMP_ALG
int j;
#endif
if (ret == NULL)
return NULL;
ret->references = 1;
ret->key = &ret->pkeys[cert->key - cert->pkeys];
ret->lock = CRYPTO_THREAD_lock_new();
if (ret->lock == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
OPENSSL_free(ret);
return NULL;
}
if (cert->dh_tmp != NULL) {
ret->dh_tmp = cert->dh_tmp;
EVP_PKEY_up_ref(ret->dh_tmp);
}
ret->dh_tmp_cb = cert->dh_tmp_cb;
ret->dh_tmp_auto = cert->dh_tmp_auto;
for (i = 0; i < SSL_PKEY_NUM; i++) {
CERT_PKEY *cpk = cert->pkeys + i;
CERT_PKEY *rpk = ret->pkeys + i;
if (cpk->x509 != NULL) {
rpk->x509 = cpk->x509;
X509_up_ref(rpk->x509);
}
if (cpk->privatekey != NULL) {
rpk->privatekey = cpk->privatekey;
EVP_PKEY_up_ref(cpk->privatekey);
}
if (cpk->chain) {
rpk->chain = X509_chain_up_ref(cpk->chain);
if (!rpk->chain) {
ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB);
goto err;
}
}
if (cpk->serverinfo != NULL) {
/* Just copy everything. */
rpk->serverinfo = OPENSSL_memdup(cpk->serverinfo, cpk->serverinfo_length);
if (rpk->serverinfo == NULL)
goto err;
rpk->serverinfo_length = cpk->serverinfo_length;
}
#ifndef OPENSSL_NO_COMP_ALG
for (j = TLSEXT_comp_cert_none; j < TLSEXT_comp_cert_limit; j++) {
if (cpk->comp_cert[j] != NULL) {
if (!OSSL_COMP_CERT_up_ref(cpk->comp_cert[j]))
goto err;
rpk->comp_cert[j] = cpk->comp_cert[j];
}
}
#endif
}
/* Configured sigalgs copied across */
if (cert->conf_sigalgs) {
ret->conf_sigalgs = OPENSSL_malloc(cert->conf_sigalgslen
* sizeof(*cert->conf_sigalgs));
if (ret->conf_sigalgs == NULL)
goto err;
memcpy(ret->conf_sigalgs, cert->conf_sigalgs,
cert->conf_sigalgslen * sizeof(*cert->conf_sigalgs));
ret->conf_sigalgslen = cert->conf_sigalgslen;
} else
ret->conf_sigalgs = NULL;
if (cert->client_sigalgs) {
ret->client_sigalgs = OPENSSL_malloc(cert->client_sigalgslen
* sizeof(*cert->client_sigalgs));
if (ret->client_sigalgs == NULL)
goto err;
memcpy(ret->client_sigalgs, cert->client_sigalgs,
cert->client_sigalgslen * sizeof(*cert->client_sigalgs));
ret->client_sigalgslen = cert->client_sigalgslen;
} else
ret->client_sigalgs = NULL;
/* Copy any custom client certificate types */
if (cert->ctype) {
ret->ctype = OPENSSL_memdup(cert->ctype, cert->ctype_len);
if (ret->ctype == NULL)
goto err;
ret->ctype_len = cert->ctype_len;
}
ret->cert_flags = cert->cert_flags;
ret->cert_cb = cert->cert_cb;
ret->cert_cb_arg = cert->cert_cb_arg;
if (cert->verify_store) {
X509_STORE_up_ref(cert->verify_store);
ret->verify_store = cert->verify_store;
}
if (cert->chain_store) {
X509_STORE_up_ref(cert->chain_store);
ret->chain_store = cert->chain_store;
}
ret->sec_cb = cert->sec_cb;
ret->sec_level = cert->sec_level;
ret->sec_ex = cert->sec_ex;
if (!custom_exts_copy(&ret->custext, &cert->custext))
goto err;
#ifndef OPENSSL_NO_PSK
if (cert->psk_identity_hint) {
ret->psk_identity_hint = OPENSSL_strdup(cert->psk_identity_hint);
if (ret->psk_identity_hint == NULL)
goto err;
}
#endif
return ret;
err:
ssl_cert_free(ret);
return NULL;
}
/* Free up and clear all certificates and chains */
void ssl_cert_clear_certs(CERT *c)
{
int i;
#ifndef OPENSSL_NO_COMP_ALG
int j;
#endif
if (c == NULL)
return;
for (i = 0; i < SSL_PKEY_NUM; i++) {
CERT_PKEY *cpk = c->pkeys + i;
X509_free(cpk->x509);
cpk->x509 = NULL;
EVP_PKEY_free(cpk->privatekey);
cpk->privatekey = NULL;
OSSL_STACK_OF_X509_free(cpk->chain);
cpk->chain = NULL;
OPENSSL_free(cpk->serverinfo);
cpk->serverinfo = NULL;
cpk->serverinfo_length = 0;
#ifndef OPENSSL_NO_COMP_ALG
for (j = 0; j < TLSEXT_comp_cert_limit; j++) {
OSSL_COMP_CERT_free(cpk->comp_cert[j]);
cpk->comp_cert[j] = NULL;
cpk->cert_comp_used = 0;
}
#endif
}
}
void ssl_cert_free(CERT *c)
{
int i;
if (c == NULL)
return;
CRYPTO_DOWN_REF(&c->references, &i, c->lock);
REF_PRINT_COUNT("CERT", c);
if (i > 0)
return;
REF_ASSERT_ISNT(i < 0);
EVP_PKEY_free(c->dh_tmp);
ssl_cert_clear_certs(c);
OPENSSL_free(c->conf_sigalgs);
OPENSSL_free(c->client_sigalgs);
OPENSSL_free(c->ctype);
X509_STORE_free(c->verify_store);
X509_STORE_free(c->chain_store);
custom_exts_free(&c->custext);
#ifndef OPENSSL_NO_PSK
OPENSSL_free(c->psk_identity_hint);
#endif
CRYPTO_THREAD_lock_free(c->lock);
OPENSSL_free(c);
}
int ssl_cert_set0_chain(SSL_CONNECTION *s, SSL_CTX *ctx, STACK_OF(X509) *chain)
{
int i, r;
CERT_PKEY *cpk = s != NULL ? s->cert->key : ctx->cert->key;
if (!cpk)
return 0;
for (i = 0; i < sk_X509_num(chain); i++) {
X509 *x = sk_X509_value(chain, i);
r = ssl_security_cert(s, ctx, x, 0, 0);
if (r != 1) {
ERR_raise(ERR_LIB_SSL, r);
return 0;
}
}
OSSL_STACK_OF_X509_free(cpk->chain);
cpk->chain = chain;
return 1;
}
int ssl_cert_set1_chain(SSL_CONNECTION *s, SSL_CTX *ctx, STACK_OF(X509) *chain)
{
STACK_OF(X509) *dchain;
if (!chain)
return ssl_cert_set0_chain(s, ctx, NULL);
dchain = X509_chain_up_ref(chain);
if (!dchain)
return 0;
if (!ssl_cert_set0_chain(s, ctx, dchain)) {
OSSL_STACK_OF_X509_free(dchain);
return 0;
}
return 1;
}
int ssl_cert_add0_chain_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x)
{
int r;
CERT_PKEY *cpk = s ? s->cert->key : ctx->cert->key;
if (!cpk)
return 0;
r = ssl_security_cert(s, ctx, x, 0, 0);
if (r != 1) {
ERR_raise(ERR_LIB_SSL, r);
return 0;
}
if (!cpk->chain)
cpk->chain = sk_X509_new_null();
if (!cpk->chain || !sk_X509_push(cpk->chain, x))
return 0;
return 1;
}
int ssl_cert_add1_chain_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x)
{
if (!ssl_cert_add0_chain_cert(s, ctx, x))
return 0;
X509_up_ref(x);
return 1;
}
int ssl_cert_select_current(CERT *c, X509 *x)
{
int i;
if (x == NULL)
return 0;
for (i = 0; i < SSL_PKEY_NUM; i++) {
CERT_PKEY *cpk = c->pkeys + i;
if (cpk->x509 == x && cpk->privatekey) {
c->key = cpk;
return 1;
}
}
for (i = 0; i < SSL_PKEY_NUM; i++) {
CERT_PKEY *cpk = c->pkeys + i;
if (cpk->privatekey && cpk->x509 && !X509_cmp(cpk->x509, x)) {
c->key = cpk;
return 1;
}
}
return 0;
}
int ssl_cert_set_current(CERT *c, long op)
{
int i, idx;
if (!c)
return 0;
if (op == SSL_CERT_SET_FIRST)
idx = 0;
else if (op == SSL_CERT_SET_NEXT) {
idx = (int)(c->key - c->pkeys + 1);
if (idx >= SSL_PKEY_NUM)
return 0;
} else
return 0;
for (i = idx; i < SSL_PKEY_NUM; i++) {
CERT_PKEY *cpk = c->pkeys + i;
if (cpk->x509 && cpk->privatekey) {
c->key = cpk;
return 1;
}
}
return 0;
}
void ssl_cert_set_cert_cb(CERT *c, int (*cb) (SSL *ssl, void *arg), void *arg)
{
c->cert_cb = cb;
c->cert_cb_arg = arg;
}
/*
* Verify a certificate chain
* Return codes:
* 1: Verify success
* 0: Verify failure or error
* -1: Retry required
*/
int ssl_verify_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk)
{
X509 *x;
int i = 0;
X509_STORE *verify_store;
X509_STORE_CTX *ctx = NULL;
X509_VERIFY_PARAM *param;
SSL_CTX *sctx;
if ((sk == NULL) || (sk_X509_num(sk) == 0))
return 0;
sctx = SSL_CONNECTION_GET_CTX(s);
if (s->cert->verify_store)
verify_store = s->cert->verify_store;
else
verify_store = sctx->cert_store;
ctx = X509_STORE_CTX_new_ex(sctx->libctx, sctx->propq);
if (ctx == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB);
return 0;
}
x = sk_X509_value(sk, 0);
if (!X509_STORE_CTX_init(ctx, verify_store, x, sk)) {
ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB);
goto end;
}
param = X509_STORE_CTX_get0_param(ctx);
/*
* XXX: Separate @AUTHSECLEVEL and @TLSSECLEVEL would be useful at some
* point, for now a single @SECLEVEL sets the same policy for TLS crypto
* and PKI authentication.
*/
X509_VERIFY_PARAM_set_auth_level(param,
SSL_get_security_level(SSL_CONNECTION_GET_SSL(s)));
/* Set suite B flags if needed */
X509_STORE_CTX_set_flags(ctx, tls1_suiteb(s));
if (!X509_STORE_CTX_set_ex_data(ctx,
SSL_get_ex_data_X509_STORE_CTX_idx(), s)) {
goto end;
}
/* Verify via DANE if enabled */
if (DANETLS_ENABLED(&s->dane))
X509_STORE_CTX_set0_dane(ctx, &s->dane);
/*
* We need to inherit the verify parameters. These can be determined by
* the context: if its a server it will verify SSL client certificates or
* vice versa.
*/
X509_STORE_CTX_set_default(ctx, s->server ? "ssl_client" : "ssl_server");
/*
* Anything non-default in "s->param" should overwrite anything in the ctx.
*/
X509_VERIFY_PARAM_set1(param, s->param);
if (s->verify_callback)
X509_STORE_CTX_set_verify_cb(ctx, s->verify_callback);
if (sctx->app_verify_callback != NULL) {
i = sctx->app_verify_callback(ctx, sctx->app_verify_arg);
} else {
i = X509_verify_cert(ctx);
/* We treat an error in the same way as a failure to verify */
if (i < 0)
i = 0;
}
s->verify_result = X509_STORE_CTX_get_error(ctx);
OSSL_STACK_OF_X509_free(s->verified_chain);
s->verified_chain = NULL;
if (X509_STORE_CTX_get0_chain(ctx) != NULL) {
s->verified_chain = X509_STORE_CTX_get1_chain(ctx);
if (s->verified_chain == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB);
i = 0;
}
}
/* Move peername from the store context params to the SSL handle's */
X509_VERIFY_PARAM_move_peername(s->param, param);
end:
X509_STORE_CTX_free(ctx);
return i;
}
static void set0_CA_list(STACK_OF(X509_NAME) **ca_list,
STACK_OF(X509_NAME) *name_list)
{
sk_X509_NAME_pop_free(*ca_list, X509_NAME_free);
*ca_list = name_list;
}
STACK_OF(X509_NAME) *SSL_dup_CA_list(const STACK_OF(X509_NAME) *sk)
{
int i;
const int num = sk_X509_NAME_num(sk);
STACK_OF(X509_NAME) *ret;
X509_NAME *name;
ret = sk_X509_NAME_new_reserve(NULL, num);
if (ret == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
return NULL;
}
for (i = 0; i < num; i++) {
name = X509_NAME_dup(sk_X509_NAME_value(sk, i));
if (name == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB);
sk_X509_NAME_pop_free(ret, X509_NAME_free);
return NULL;
}
sk_X509_NAME_push(ret, name); /* Cannot fail after reserve call */
}
return ret;
}
void SSL_set0_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return;
set0_CA_list(&sc->ca_names, name_list);
}
void SSL_CTX_set0_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list)
{
set0_CA_list(&ctx->ca_names, name_list);
}
const STACK_OF(X509_NAME) *SSL_CTX_get0_CA_list(const SSL_CTX *ctx)
{
return ctx->ca_names;
}
const STACK_OF(X509_NAME) *SSL_get0_CA_list(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return NULL;
return sc->ca_names != NULL ? sc->ca_names : s->ctx->ca_names;
}
void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list)
{
set0_CA_list(&ctx->client_ca_names, name_list);
}
STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx)
{
return ctx->client_ca_names;
}
void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return;
set0_CA_list(&sc->client_ca_names, name_list);
}
const STACK_OF(X509_NAME) *SSL_get0_peer_CA_list(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return NULL;
return sc->s3.tmp.peer_ca_names;
}
STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return NULL;
if (!sc->server)
return sc->s3.tmp.peer_ca_names;
return sc->client_ca_names != NULL ? sc->client_ca_names
: s->ctx->client_ca_names;
}
static int add_ca_name(STACK_OF(X509_NAME) **sk, const X509 *x)
{
X509_NAME *name;
if (x == NULL)
return 0;
if (*sk == NULL && ((*sk = sk_X509_NAME_new_null()) == NULL))
return 0;
if ((name = X509_NAME_dup(X509_get_subject_name(x))) == NULL)
return 0;
if (!sk_X509_NAME_push(*sk, name)) {
X509_NAME_free(name);
return 0;
}
return 1;
}
int SSL_add1_to_CA_list(SSL *ssl, const X509 *x)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
if (sc == NULL)
return 0;
return add_ca_name(&sc->ca_names, x);
}
int SSL_CTX_add1_to_CA_list(SSL_CTX *ctx, const X509 *x)
{
return add_ca_name(&ctx->ca_names, x);
}
/*
* The following two are older names are to be replaced with
* SSL(_CTX)_add1_to_CA_list
*/
int SSL_add_client_CA(SSL *ssl, X509 *x)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
if (sc == NULL)
return 0;
return add_ca_name(&sc->client_ca_names, x);
}
int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x)
{
return add_ca_name(&ctx->client_ca_names, x);
}
static int xname_cmp(const X509_NAME *a, const X509_NAME *b)
{
unsigned char *abuf = NULL, *bbuf = NULL;
int alen, blen, ret;
/* X509_NAME_cmp() itself casts away constness in this way, so
* assume it's safe:
*/
alen = i2d_X509_NAME((X509_NAME *)a, &abuf);
blen = i2d_X509_NAME((X509_NAME *)b, &bbuf);
if (alen < 0 || blen < 0)
ret = -2;
else if (alen != blen)
ret = alen - blen;
else /* alen == blen */
ret = memcmp(abuf, bbuf, alen);
OPENSSL_free(abuf);
OPENSSL_free(bbuf);
return ret;
}
static int xname_sk_cmp(const X509_NAME *const *a, const X509_NAME *const *b)
{
return xname_cmp(*a, *b);
}
static unsigned long xname_hash(const X509_NAME *a)
{
/* This returns 0 also if SHA1 is not available */
return X509_NAME_hash_ex((X509_NAME *)a, NULL, NULL, NULL);
}
STACK_OF(X509_NAME) *SSL_load_client_CA_file_ex(const char *file,
OSSL_LIB_CTX *libctx,
const char *propq)
{
BIO *in = BIO_new(BIO_s_file());
X509 *x = NULL;
X509_NAME *xn = NULL;
STACK_OF(X509_NAME) *ret = NULL;
LHASH_OF(X509_NAME) *name_hash = lh_X509_NAME_new(xname_hash, xname_cmp);
OSSL_LIB_CTX *prev_libctx = NULL;
if (name_hash == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
goto err;
}
if (in == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_BIO_LIB);
goto err;
}
x = X509_new_ex(libctx, propq);
if (x == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB);
goto err;
}
if (BIO_read_filename(in, file) <= 0)
goto err;
/* Internally lh_X509_NAME_retrieve() needs the libctx to retrieve SHA1 */
prev_libctx = OSSL_LIB_CTX_set0_default(libctx);
for (;;) {
if (PEM_read_bio_X509(in, &x, NULL, NULL) == NULL)
break;
if (ret == NULL) {
ret = sk_X509_NAME_new_null();
if (ret == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
goto err;
}
}
if ((xn = X509_get_subject_name(x)) == NULL)
goto err;
/* check for duplicates */
xn = X509_NAME_dup(xn);
if (xn == NULL)
goto err;
if (lh_X509_NAME_retrieve(name_hash, xn) != NULL) {
/* Duplicate. */
X509_NAME_free(xn);
xn = NULL;
} else {
lh_X509_NAME_insert(name_hash, xn);
if (!sk_X509_NAME_push(ret, xn))
goto err;
}
}
goto done;
err:
X509_NAME_free(xn);
sk_X509_NAME_pop_free(ret, X509_NAME_free);
ret = NULL;
done:
/* restore the old libctx */
OSSL_LIB_CTX_set0_default(prev_libctx);
BIO_free(in);
X509_free(x);
lh_X509_NAME_free(name_hash);
if (ret != NULL)
ERR_clear_error();
return ret;
}
STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file)
{
return SSL_load_client_CA_file_ex(file, NULL, NULL);
}
int SSL_add_file_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack,
const char *file)
{
BIO *in;
X509 *x = NULL;
X509_NAME *xn = NULL;
int ret = 1;
int (*oldcmp) (const X509_NAME *const *a, const X509_NAME *const *b);
oldcmp = sk_X509_NAME_set_cmp_func(stack, xname_sk_cmp);
in = BIO_new(BIO_s_file());
if (in == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_BIO_LIB);
goto err;
}
if (BIO_read_filename(in, file) <= 0)
goto err;
for (;;) {
if (PEM_read_bio_X509(in, &x, NULL, NULL) == NULL)
break;
if ((xn = X509_get_subject_name(x)) == NULL)
goto err;
xn = X509_NAME_dup(xn);
if (xn == NULL)
goto err;
if (sk_X509_NAME_find(stack, xn) >= 0) {
/* Duplicate. */
X509_NAME_free(xn);
} else if (!sk_X509_NAME_push(stack, xn)) {
X509_NAME_free(xn);
goto err;
}
}
ERR_clear_error();
goto done;
err:
ret = 0;
done:
BIO_free(in);
X509_free(x);
(void)sk_X509_NAME_set_cmp_func(stack, oldcmp);
return ret;
}
int SSL_add_dir_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack,
const char *dir)
{
OPENSSL_DIR_CTX *d = NULL;
const char *filename;
int ret = 0;
/* Note that a side effect is that the CAs will be sorted by name */
while ((filename = OPENSSL_DIR_read(&d, dir))) {
char buf[1024];
int r;
if (strlen(dir) + strlen(filename) + 2 > sizeof(buf)) {
ERR_raise(ERR_LIB_SSL, SSL_R_PATH_TOO_LONG);
goto err;
}
#ifdef OPENSSL_SYS_VMS
r = BIO_snprintf(buf, sizeof(buf), "%s%s", dir, filename);
#else
r = BIO_snprintf(buf, sizeof(buf), "%s/%s", dir, filename);
#endif
if (r <= 0 || r >= (int)sizeof(buf))
goto err;
if (!SSL_add_file_cert_subjects_to_stack(stack, buf))
goto err;
}
if (errno) {
ERR_raise_data(ERR_LIB_SYS, get_last_sys_error(),
"calling OPENSSL_dir_read(%s)", dir);
ERR_raise(ERR_LIB_SSL, ERR_R_SYS_LIB);
goto err;
}
ret = 1;
err:
if (d)
OPENSSL_DIR_end(&d);
return ret;
}
static int add_uris_recursive(STACK_OF(X509_NAME) *stack,
const char *uri, int depth)
{
int ok = 1;
OSSL_STORE_CTX *ctx = NULL;
X509 *x = NULL;
X509_NAME *xn = NULL;
if ((ctx = OSSL_STORE_open(uri, NULL, NULL, NULL, NULL)) == NULL)
goto err;
while (!OSSL_STORE_eof(ctx) && !OSSL_STORE_error(ctx)) {
OSSL_STORE_INFO *info = OSSL_STORE_load(ctx);
int infotype = info == 0 ? 0 : OSSL_STORE_INFO_get_type(info);
if (info == NULL)
continue;
if (infotype == OSSL_STORE_INFO_NAME) {
/*
* This is an entry in the "directory" represented by the current
* uri. if |depth| allows, dive into it.
*/
if (depth > 0)
ok = add_uris_recursive(stack, OSSL_STORE_INFO_get0_NAME(info),
depth - 1);
} else if (infotype == OSSL_STORE_INFO_CERT) {
if ((x = OSSL_STORE_INFO_get0_CERT(info)) == NULL
|| (xn = X509_get_subject_name(x)) == NULL
|| (xn = X509_NAME_dup(xn)) == NULL)
goto err;
if (sk_X509_NAME_find(stack, xn) >= 0) {
/* Duplicate. */
X509_NAME_free(xn);
} else if (!sk_X509_NAME_push(stack, xn)) {
X509_NAME_free(xn);
goto err;
}
}
OSSL_STORE_INFO_free(info);
}
ERR_clear_error();
goto done;
err:
ok = 0;
done:
OSSL_STORE_close(ctx);
return ok;
}
int SSL_add_store_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack,
const char *store)
{
int (*oldcmp) (const X509_NAME *const *a, const X509_NAME *const *b)
= sk_X509_NAME_set_cmp_func(stack, xname_sk_cmp);
int ret = add_uris_recursive(stack, store, 1);
(void)sk_X509_NAME_set_cmp_func(stack, oldcmp);
return ret;
}
/* Build a certificate chain for current certificate */
int ssl_build_cert_chain(SSL_CONNECTION *s, SSL_CTX *ctx, int flags)
{
CERT *c = s != NULL ? s->cert : ctx->cert;
CERT_PKEY *cpk = c->key;
X509_STORE *chain_store = NULL;
X509_STORE_CTX *xs_ctx = NULL;
STACK_OF(X509) *chain = NULL, *untrusted = NULL;
X509 *x;
SSL_CTX *real_ctx = (s == NULL) ? ctx : SSL_CONNECTION_GET_CTX(s);
int i, rv = 0;
if (cpk->x509 == NULL) {
ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_SET);
goto err;
}
/* Rearranging and check the chain: add everything to a store */
if (flags & SSL_BUILD_CHAIN_FLAG_CHECK) {
chain_store = X509_STORE_new();
if (chain_store == NULL)
goto err;
for (i = 0; i < sk_X509_num(cpk->chain); i++) {
x = sk_X509_value(cpk->chain, i);
if (!X509_STORE_add_cert(chain_store, x))
goto err;
}
/* Add EE cert too: it might be self signed */
if (!X509_STORE_add_cert(chain_store, cpk->x509))
goto err;
} else {
if (c->chain_store != NULL)
chain_store = c->chain_store;
else
chain_store = real_ctx->cert_store;
if (flags & SSL_BUILD_CHAIN_FLAG_UNTRUSTED)
untrusted = cpk->chain;
}
xs_ctx = X509_STORE_CTX_new_ex(real_ctx->libctx, real_ctx->propq);
if (xs_ctx == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB);
goto err;
}
if (!X509_STORE_CTX_init(xs_ctx, chain_store, cpk->x509, untrusted)) {
ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB);
goto err;
}
/* Set suite B flags if needed */
X509_STORE_CTX_set_flags(xs_ctx,
c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS);
i = X509_verify_cert(xs_ctx);
if (i <= 0 && flags & SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR) {
if (flags & SSL_BUILD_CHAIN_FLAG_CLEAR_ERROR)
ERR_clear_error();
i = 1;
rv = 2;
}
if (i > 0)
chain = X509_STORE_CTX_get1_chain(xs_ctx);
if (i <= 0) {
i = X509_STORE_CTX_get_error(xs_ctx);
ERR_raise_data(ERR_LIB_SSL, SSL_R_CERTIFICATE_VERIFY_FAILED,
"Verify error:%s", X509_verify_cert_error_string(i));
goto err;
}
/* Remove EE certificate from chain */
x = sk_X509_shift(chain);
X509_free(x);
if (flags & SSL_BUILD_CHAIN_FLAG_NO_ROOT) {
if (sk_X509_num(chain) > 0) {
/* See if last cert is self signed */
x = sk_X509_value(chain, sk_X509_num(chain) - 1);
if (X509_get_extension_flags(x) & EXFLAG_SS) {
x = sk_X509_pop(chain);
X509_free(x);
}
}
}
/*
* Check security level of all CA certificates: EE will have been checked
* already.
*/
for (i = 0; i < sk_X509_num(chain); i++) {
x = sk_X509_value(chain, i);
rv = ssl_security_cert(s, ctx, x, 0, 0);
if (rv != 1) {
ERR_raise(ERR_LIB_SSL, rv);
OSSL_STACK_OF_X509_free(chain);
rv = 0;
goto err;
}
}
OSSL_STACK_OF_X509_free(cpk->chain);
cpk->chain = chain;
if (rv == 0)
rv = 1;
err:
if (flags & SSL_BUILD_CHAIN_FLAG_CHECK)
X509_STORE_free(chain_store);
X509_STORE_CTX_free(xs_ctx);
return rv;
}
int ssl_cert_set_cert_store(CERT *c, X509_STORE *store, int chain, int ref)
{
X509_STORE **pstore;
if (chain)
pstore = &c->chain_store;
else
pstore = &c->verify_store;
X509_STORE_free(*pstore);
*pstore = store;
if (ref && store)
X509_STORE_up_ref(store);
return 1;
}
int ssl_cert_get_cert_store(CERT *c, X509_STORE **pstore, int chain)
{
*pstore = (chain ? c->chain_store : c->verify_store);
return 1;
}
int ssl_get_security_level_bits(const SSL *s, const SSL_CTX *ctx, int *levelp)
{
int level;
/*
* note that there's a corresponding minbits_table
* in crypto/x509/x509_vfy.c that's used for checking the security level
* of RSA and DSA keys
*/
static const int minbits_table[5 + 1] = { 0, 80, 112, 128, 192, 256 };
if (ctx != NULL)
level = SSL_CTX_get_security_level(ctx);
else
level = SSL_get_security_level(s);
if (level > 5)
level = 5;
else if (level < 0)
level = 0;
if (levelp != NULL)
*levelp = level;
return minbits_table[level];
}
static int ssl_security_default_callback(const SSL *s, const SSL_CTX *ctx,
int op, int bits, int nid, void *other,
void *ex)
{
int level, minbits, pfs_mask;
const SSL_CONNECTION *sc;
minbits = ssl_get_security_level_bits(s, ctx, &level);
if (level == 0) {
/*
* No EDH keys weaker than 1024-bits even at level 0, otherwise,
* anything goes.
*/
if (op == SSL_SECOP_TMP_DH && bits < 80)
return 0;
return 1;
}
switch (op) {
case SSL_SECOP_CIPHER_SUPPORTED:
case SSL_SECOP_CIPHER_SHARED:
case SSL_SECOP_CIPHER_CHECK:
{
const SSL_CIPHER *c = other;
/* No ciphers below security level */
if (bits < minbits)
return 0;
/* No unauthenticated ciphersuites */
if (c->algorithm_auth & SSL_aNULL)
return 0;
/* No MD5 mac ciphersuites */
if (c->algorithm_mac & SSL_MD5)
return 0;
/* SHA1 HMAC is 160 bits of security */
if (minbits > 160 && c->algorithm_mac & SSL_SHA1)
return 0;
/* Level 3: forward secure ciphersuites only */
pfs_mask = SSL_kDHE | SSL_kECDHE | SSL_kDHEPSK | SSL_kECDHEPSK;
if (level >= 3 && c->min_tls != TLS1_3_VERSION &&
!(c->algorithm_mkey & pfs_mask))
return 0;
break;
}
case SSL_SECOP_VERSION:
if ((sc = SSL_CONNECTION_FROM_CONST_SSL(s)) == NULL)
return 0;
if (!SSL_CONNECTION_IS_DTLS(sc)) {
/* SSLv3, TLS v1.0 and TLS v1.1 only allowed at level 0 */
if (nid <= TLS1_1_VERSION && level > 0)
return 0;
} else {
/* DTLS v1.0 only allowed at level 0 */
if (DTLS_VERSION_LT(nid, DTLS1_2_VERSION) && level > 0)
return 0;
}
break;
case SSL_SECOP_COMPRESSION:
if (level >= 2)
return 0;
break;
case SSL_SECOP_TICKET:
if (level >= 3)
return 0;
break;
default:
if (bits < minbits)
return 0;
}
return 1;
}
int ssl_security(const SSL_CONNECTION *s, int op, int bits, int nid, void *other)
{
return s->cert->sec_cb(SSL_CONNECTION_GET_SSL(s), NULL, op, bits, nid,
other, s->cert->sec_ex);
}
int ssl_ctx_security(const SSL_CTX *ctx, int op, int bits, int nid, void *other)
{
return ctx->cert->sec_cb(NULL, ctx, op, bits, nid, other,
ctx->cert->sec_ex);
}
int ssl_cert_lookup_by_nid(int nid, size_t *pidx)
{
size_t i;
for (i = 0; i < OSSL_NELEM(ssl_cert_info); i++) {
if (ssl_cert_info[i].nid == nid) {
*pidx = i;
return 1;
}
}
return 0;
}
const SSL_CERT_LOOKUP *ssl_cert_lookup_by_pkey(const EVP_PKEY *pk, size_t *pidx)
{
size_t i;
for (i = 0; i < OSSL_NELEM(ssl_cert_info); i++) {
const SSL_CERT_LOOKUP *tmp_lu = &ssl_cert_info[i];
if (EVP_PKEY_is_a(pk, OBJ_nid2sn(tmp_lu->nid))
|| EVP_PKEY_is_a(pk, OBJ_nid2ln(tmp_lu->nid))) {
if (pidx != NULL)
*pidx = i;
return tmp_lu;
}
}
return NULL;
}
const SSL_CERT_LOOKUP *ssl_cert_lookup_by_idx(size_t idx)
{
if (idx >= OSSL_NELEM(ssl_cert_info))
return NULL;
return &ssl_cert_info[idx];
}