openssl/ssl/quic/quic_record_tx.c
Hugo Landau 0550829f53 QUIC QTX: Handle network errors explicitly
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19703)
2023-01-13 13:20:37 +00:00

956 lines
26 KiB
C

/*
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/quic_record_tx.h"
#include "internal/bio_addr.h"
#include "internal/common.h"
#include "quic_record_shared.h"
#include "internal/list.h"
#include "../ssl_local.h"
/*
* TXE
* ===
* Encrypted packets awaiting transmission are kept in TX Entries (TXEs), which
* are queued in linked lists just like TXEs.
*/
typedef struct txe_st TXE;
struct txe_st {
OSSL_LIST_MEMBER(txe, TXE);
size_t data_len, alloc_len;
/*
* Destination and local addresses, as applicable. Both of these are only
* used if the family is not AF_UNSPEC.
*/
BIO_ADDR peer, local;
/*
* alloc_len allocated bytes (of which data_len bytes are valid) follow this
* structure.
*/
};
DEFINE_LIST_OF(txe, TXE);
typedef OSSL_LIST(txe) TXE_LIST;
static ossl_inline unsigned char *txe_data(const TXE *e)
{
return (unsigned char *)(e + 1);
}
/*
* QTX
* ===
*/
struct ossl_qtx_st {
OSSL_LIB_CTX *libctx;
const char *propq;
/* Per encryption-level state. */
OSSL_QRL_ENC_LEVEL_SET el_set;
/* TX BIO. */
BIO *bio;
/* TX maximum datagram payload length. */
size_t mdpl;
/*
* List of TXEs which are not currently in use. These are moved to the
* pending list (possibly via tx_cons first) as they are filled.
*/
TXE_LIST free;
/*
* List of TXEs which are filled with completed datagrams ready to be
* transmitted.
*/
TXE_LIST pending;
size_t pending_count; /* items in list */
size_t pending_bytes; /* sum(txe->data_len) in pending */
/*
* TXE which is under construction for coalescing purposes, if any.
* This TXE is neither on the free nor pending list. Once the datagram
* is completed, it is moved to the pending list.
*/
TXE *cons;
size_t cons_count; /* num packets */
/*
* Number of packets transmitted in this key epoch. Used to enforce AEAD
* confidentiality limit.
*/
uint64_t epoch_pkt_count;
};
/* Instantiates a new QTX. */
OSSL_QTX *ossl_qtx_new(const OSSL_QTX_ARGS *args)
{
OSSL_QTX *qtx;
if (args->mdpl < QUIC_MIN_INITIAL_DGRAM_LEN)
return 0;
qtx = OPENSSL_zalloc(sizeof(OSSL_QTX));
if (qtx == NULL)
return 0;
qtx->libctx = args->libctx;
qtx->propq = args->propq;
qtx->bio = args->bio;
qtx->mdpl = args->mdpl;
return qtx;
}
static void qtx_cleanup_txl(TXE_LIST *l)
{
TXE *e, *enext;
for (e = ossl_list_txe_head(l); e != NULL; e = enext) {
enext = ossl_list_txe_next(e);
OPENSSL_free(e);
}
}
/* Frees the QTX. */
void ossl_qtx_free(OSSL_QTX *qtx)
{
uint32_t i;
if (qtx == NULL)
return;
/* Free TXE queue data. */
qtx_cleanup_txl(&qtx->pending);
qtx_cleanup_txl(&qtx->free);
OPENSSL_free(qtx->cons);
/* Drop keying material and crypto resources. */
for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i)
ossl_qrl_enc_level_set_discard(&qtx->el_set, i);
OPENSSL_free(qtx);
}
int ossl_qtx_provide_secret(OSSL_QTX *qtx,
uint32_t enc_level,
uint32_t suite_id,
EVP_MD *md,
const unsigned char *secret,
size_t secret_len)
{
if (enc_level >= QUIC_ENC_LEVEL_NUM)
return 0;
return ossl_qrl_enc_level_set_provide_secret(&qtx->el_set,
qtx->libctx,
qtx->propq,
enc_level,
suite_id,
md,
secret,
secret_len,
0,
/*is_tx=*/1);
}
int ossl_qtx_discard_enc_level(OSSL_QTX *qtx, uint32_t enc_level)
{
if (enc_level >= QUIC_ENC_LEVEL_NUM)
return 0;
ossl_qrl_enc_level_set_discard(&qtx->el_set, enc_level);
return 1;
}
int ossl_qtx_is_enc_level_provisioned(OSSL_QTX *qtx, uint32_t enc_level)
{
return ossl_qrl_enc_level_set_get(&qtx->el_set, enc_level, 1) != NULL;
}
/* Allocate a new TXE. */
static TXE *qtx_alloc_txe(size_t alloc_len)
{
TXE *txe;
if (alloc_len >= SIZE_MAX - sizeof(TXE))
return NULL;
txe = OPENSSL_malloc(sizeof(TXE) + alloc_len);
if (txe == NULL)
return NULL;
ossl_list_txe_init_elem(txe);
txe->alloc_len = alloc_len;
txe->data_len = 0;
return txe;
}
/*
* Ensures there is at least one TXE in the free list, allocating a new entry
* if necessary. The returned TXE is in the free list; it is not popped.
*
* alloc_len is a hint which may be used to determine the TXE size if allocation
* is necessary. Returns NULL on allocation failure.
*/
static TXE *qtx_ensure_free_txe(OSSL_QTX *qtx, size_t alloc_len)
{
TXE *txe;
txe = ossl_list_txe_head(&qtx->free);
if (txe != NULL)
return txe;
txe = qtx_alloc_txe(alloc_len);
if (txe == NULL)
return NULL;
ossl_list_txe_insert_tail(&qtx->free, txe);
return txe;
}
/*
* Resize the data buffer attached to an TXE to be n bytes in size. The address
* of the TXE might change; the new address is returned, or NULL on failure, in
* which case the original TXE remains valid.
*/
static TXE *qtx_resize_txe(OSSL_QTX *qtx, TXE_LIST *txl, TXE *txe, size_t n)
{
TXE *txe2, *p;
/* Should never happen. */
if (txe == NULL)
return NULL;
if (n >= SIZE_MAX - sizeof(TXE))
return NULL;
/* Remove the item from the list to avoid accessing freed memory */
p = ossl_list_txe_prev(txe);
ossl_list_txe_remove(txl, txe);
/*
* NOTE: We do not clear old memory, although it does contain decrypted
* data.
*/
txe2 = OPENSSL_realloc(txe, sizeof(TXE) + n);
if (txe2 == NULL || txe == txe2) {
if (p == NULL)
ossl_list_txe_insert_head(txl, txe);
else
ossl_list_txe_insert_after(txl, p, txe);
return txe2;
}
if (p == NULL)
ossl_list_txe_insert_head(txl, txe2);
else
ossl_list_txe_insert_after(txl, p, txe2);
if (qtx->cons == txe)
qtx->cons = txe2;
txe2->alloc_len = n;
return txe2;
}
/*
* Ensure the data buffer attached to an TXE is at least n bytes in size.
* Returns NULL on failure.
*/
static TXE *qtx_reserve_txe(OSSL_QTX *qtx, TXE_LIST *txl,
TXE *txe, size_t n)
{
if (txe->alloc_len >= n)
return txe;
return qtx_resize_txe(qtx, txl, txe, n);
}
/* Move a TXE from pending to free. */
static void qtx_pending_to_free(OSSL_QTX *qtx)
{
TXE *txe = ossl_list_txe_head(&qtx->pending);
assert(txe != NULL);
ossl_list_txe_remove(&qtx->pending, txe);
--qtx->pending_count;
qtx->pending_bytes -= txe->data_len;
ossl_list_txe_insert_tail(&qtx->free, txe);
}
/* Add a TXE not currently in any list to the pending list. */
static void qtx_add_to_pending(OSSL_QTX *qtx, TXE *txe)
{
ossl_list_txe_insert_tail(&qtx->pending, txe);
++qtx->pending_count;
qtx->pending_bytes += txe->data_len;
}
struct iovec_cur {
const OSSL_QTX_IOVEC *iovec;
size_t num_iovec, idx, byte_off, bytes_remaining;
};
static size_t iovec_total_bytes(const OSSL_QTX_IOVEC *iovec,
size_t num_iovec)
{
size_t i, l = 0;
for (i = 0; i < num_iovec; ++i)
l += iovec[i].buf_len;
return l;
}
static void iovec_cur_init(struct iovec_cur *cur,
const OSSL_QTX_IOVEC *iovec,
size_t num_iovec)
{
cur->iovec = iovec;
cur->num_iovec = num_iovec;
cur->idx = 0;
cur->byte_off = 0;
cur->bytes_remaining = iovec_total_bytes(iovec, num_iovec);
}
/*
* Get an extent of bytes from the iovec cursor. *buf is set to point to the
* buffer and the number of bytes in length of the buffer is returned. This
* value may be less than the max_buf_len argument. If no more data is
* available, returns 0.
*/
static size_t iovec_cur_get_buffer(struct iovec_cur *cur,
const unsigned char **buf,
size_t max_buf_len)
{
size_t l;
if (max_buf_len == 0) {
*buf = NULL;
return 0;
}
for (;;) {
if (cur->idx >= cur->num_iovec)
return 0;
l = cur->iovec[cur->idx].buf_len - cur->byte_off;
if (l > max_buf_len)
l = max_buf_len;
if (l > 0) {
*buf = cur->iovec[cur->idx].buf + cur->byte_off;
cur->byte_off += l;
cur->bytes_remaining -= l;
return l;
}
/*
* Zero-length iovec entry or we already consumed all of it, try the
* next iovec.
*/
++cur->idx;
cur->byte_off = 0;
}
}
/* Determines the size of the AEAD output given the input size. */
static size_t qtx_inflate_payload_len(OSSL_QTX *qtx, uint32_t enc_level,
size_t plaintext_len)
{
OSSL_QRL_ENC_LEVEL *el
= ossl_qrl_enc_level_set_get(&qtx->el_set, enc_level, 1);
assert(el != NULL); /* Already checked by caller. */
/*
* We currently only support ciphers with a 1:1 mapping between plaintext
* and ciphertext size, save for authentication tag.
*/
return plaintext_len + ossl_qrl_get_suite_cipher_tag_len(el->suite_id);
}
/* Determines the size of the AEAD input given the output size. */
int ossl_qtx_calculate_plaintext_payload_len(OSSL_QTX *qtx, uint32_t enc_level,
size_t ciphertext_len,
size_t *plaintext_len)
{
OSSL_QRL_ENC_LEVEL *el
= ossl_qrl_enc_level_set_get(&qtx->el_set, enc_level, 1);
size_t tag_len;
if (el == NULL) {
*plaintext_len = 0;
return 0;
}
tag_len = ossl_qrl_get_suite_cipher_tag_len(el->suite_id);
if (ciphertext_len < tag_len) {
*plaintext_len = 0;
return 0;
}
*plaintext_len = ciphertext_len - tag_len;
return 1;
}
/* Any other error (including packet being too big for MDPL). */
#define QTX_FAIL_GENERIC (-1)
/*
* Returned where there is insufficient room in the datagram to write the
* packet.
*/
#define QTX_FAIL_INSUFFICIENT_LEN (-2)
static int qtx_write_hdr(OSSL_QTX *qtx, const OSSL_QTX_PKT *pkt, TXE *txe,
QUIC_PKT_HDR_PTRS *ptrs)
{
WPACKET wpkt;
size_t l = 0;
if (!WPACKET_init_static_len(&wpkt, txe_data(txe) + txe->data_len,
txe->alloc_len - txe->data_len, 0))
return 0;
if (!ossl_quic_wire_encode_pkt_hdr(&wpkt, pkt->hdr->dst_conn_id.id_len,
pkt->hdr, ptrs)
|| !WPACKET_get_total_written(&wpkt, &l)) {
WPACKET_finish(&wpkt);
return 0;
}
txe->data_len += l;
WPACKET_finish(&wpkt);
return 1;
}
static int qtx_encrypt_into_txe(OSSL_QTX *qtx, struct iovec_cur *cur, TXE *txe,
uint32_t enc_level, QUIC_PN pn,
const unsigned char *hdr, size_t hdr_len,
QUIC_PKT_HDR_PTRS *ptrs)
{
int l = 0, l2 = 0;
OSSL_QRL_ENC_LEVEL *el
= ossl_qrl_enc_level_set_get(&qtx->el_set, enc_level, 1);
unsigned char nonce[EVP_MAX_IV_LENGTH];
size_t nonce_len, i;
EVP_CIPHER_CTX *cctx = NULL;
/* We should not have been called if we do not have key material. */
if (!ossl_assert(el != NULL))
return 0;
/*
* Have we already encrypted the maximum number of packets using the current
* key?
*/
if (el->op_count >= ossl_qrl_get_suite_max_pkt(el->suite_id))
return 0;
/*
* TX key update is simpler than for RX; once we initiate a key update, we
* never need the old keys, as we never deliberately send a packet with old
* keys. Thus the EL always uses keyslot 0 for the TX side.
*/
cctx = el->cctx[0];
if (!ossl_assert(cctx != NULL))
return 0;
/* Construct nonce (nonce=IV ^ PN). */
nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx);
if (!ossl_assert(nonce_len >= sizeof(QUIC_PN)))
return 0;
memcpy(nonce, el->iv[0], nonce_len);
for (i = 0; i < sizeof(QUIC_PN); ++i)
nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8));
/* type and key will already have been setup; feed the IV. */
if (EVP_CipherInit_ex(cctx, NULL, NULL, NULL, nonce, /*enc=*/1) != 1)
return 0;
/* Feed AAD data. */
if (EVP_CipherUpdate(cctx, NULL, &l, hdr, hdr_len) != 1)
return 0;
/* Encrypt plaintext directly into TXE. */
for (;;) {
const unsigned char *src;
size_t src_len;
src_len = iovec_cur_get_buffer(cur, &src, SIZE_MAX);
if (src_len == 0)
break;
if (EVP_CipherUpdate(cctx, txe_data(txe) + txe->data_len,
&l, src, src_len) != 1)
return 0;
assert(l > 0 && src_len == (size_t)l);
txe->data_len += src_len;
}
/* Finalise and get tag. */
if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1)
return 0;
if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_GET_TAG,
el->tag_len, txe_data(txe) + txe->data_len) != 1)
return 0;
txe->data_len += el->tag_len;
/* Apply header protection. */
if (!ossl_quic_hdr_protector_encrypt(&el->hpr, ptrs))
return 0;
++el->op_count;
return 1;
}
/*
* Append a packet to the TXE buffer, serializing and encrypting it in the
* process.
*/
static int qtx_write(OSSL_QTX *qtx, const OSSL_QTX_PKT *pkt, TXE *txe,
uint32_t enc_level)
{
int ret, needs_encrypt;
size_t hdr_len, pred_hdr_len, payload_len, pkt_len, space_left;
size_t min_len, orig_data_len;
struct iovec_cur cur;
QUIC_PKT_HDR_PTRS ptrs;
unsigned char *hdr_start;
OSSL_QRL_ENC_LEVEL *el = NULL;
/*
* Determine if the packet needs encryption and the minimum conceivable
* serialization length.
*/
if (!ossl_quic_pkt_type_is_encrypted(pkt->hdr->type)) {
needs_encrypt = 0;
min_len = QUIC_MIN_VALID_PKT_LEN;
} else {
needs_encrypt = 1;
min_len = QUIC_MIN_VALID_PKT_LEN_CRYPTO;
el = ossl_qrl_enc_level_set_get(&qtx->el_set, enc_level, 1);
if (!ossl_assert(el != NULL)) /* should already have been checked */
return 0;
}
orig_data_len = txe->data_len;
space_left = txe->alloc_len - txe->data_len;
if (space_left < min_len) {
/* Not even a possibility of it fitting. */
ret = QTX_FAIL_INSUFFICIENT_LEN;
goto err;
}
/* Walk the iovecs to determine actual input payload length. */
iovec_cur_init(&cur, pkt->iovec, pkt->num_iovec);
if (cur.bytes_remaining == 0) {
/* No zero-length payloads allowed. */
ret = QTX_FAIL_GENERIC;
goto err;
}
/* Determine encrypted payload length. */
payload_len = needs_encrypt ? qtx_inflate_payload_len(qtx, enc_level,
cur.bytes_remaining)
: cur.bytes_remaining;
/* Determine header length. */
pkt->hdr->data = NULL;
pkt->hdr->len = payload_len;
pred_hdr_len = ossl_quic_wire_get_encoded_pkt_hdr_len(pkt->hdr->dst_conn_id.id_len,
pkt->hdr);
if (pred_hdr_len == 0) {
ret = QTX_FAIL_GENERIC;
goto err;
}
/* We now definitively know our packet length. */
pkt_len = pred_hdr_len + payload_len;
if (pkt_len > space_left) {
ret = QTX_FAIL_INSUFFICIENT_LEN;
goto err;
}
/* Set some fields in the header we are responsible for. */
if (pkt->hdr->type == QUIC_PKT_TYPE_1RTT)
pkt->hdr->key_phase = (unsigned char)(el->key_epoch & 1);
if (ossl_quic_pkt_type_has_pn(pkt->hdr->type)) {
if (!ossl_quic_wire_encode_pkt_hdr_pn(pkt->pn,
pkt->hdr->pn,
pkt->hdr->pn_len)) {
ret = QTX_FAIL_GENERIC;
goto err;
}
}
/* Append the header to the TXE. */
hdr_start = txe_data(txe) + txe->data_len;
if (!qtx_write_hdr(qtx, pkt, txe, &ptrs)) {
ret = QTX_FAIL_GENERIC;
goto err;
}
hdr_len = (txe_data(txe) + txe->data_len) - hdr_start;
assert(hdr_len == pred_hdr_len);
if (!needs_encrypt) {
/* Just copy the payload across. */
const unsigned char *src;
size_t src_len;
for (;;) {
/* Buffer length has already been checked above. */
src_len = iovec_cur_get_buffer(&cur, &src, SIZE_MAX);
if (src_len == 0)
break;
memcpy(txe_data(txe) + txe->data_len, src, src_len);
txe->data_len += src_len;
}
} else {
/* Encrypt into TXE. */
if (!qtx_encrypt_into_txe(qtx, &cur, txe, enc_level, pkt->pn,
hdr_start, hdr_len, &ptrs)) {
ret = QTX_FAIL_GENERIC;
goto err;
}
assert(txe->data_len - orig_data_len == pkt_len);
}
return 1;
err:
/*
* Restore original length so we don't leave a half-written packet in the
* TXE.
*/
txe->data_len = orig_data_len;
return ret;
}
static TXE *qtx_ensure_cons(OSSL_QTX *qtx)
{
TXE *txe = qtx->cons;
if (txe != NULL)
return txe;
txe = qtx_ensure_free_txe(qtx, qtx->mdpl);
if (txe == NULL)
return NULL;
ossl_list_txe_remove(&qtx->free, txe);
qtx->cons = txe;
qtx->cons_count = 0;
txe->data_len = 0;
return txe;
}
static int addr_eq(const BIO_ADDR *a, const BIO_ADDR *b)
{
return ((a == NULL || BIO_ADDR_family(a) == AF_UNSPEC)
&& (b == NULL || BIO_ADDR_family(b) == AF_UNSPEC))
|| (a != NULL && b != NULL && memcmp(a, b, sizeof(*a)) == 0);
}
int ossl_qtx_write_pkt(OSSL_QTX *qtx, const OSSL_QTX_PKT *pkt)
{
int ret;
int coalescing = (pkt->flags & OSSL_QTX_PKT_FLAG_COALESCE) != 0;
int was_coalescing;
TXE *txe;
uint32_t enc_level;
/* Must have EL configured, must have header. */
if (pkt->hdr == NULL)
return 0;
enc_level = ossl_quic_pkt_type_to_enc_level(pkt->hdr->type);
/* Some packet types must be in a packet all by themselves. */
if (!ossl_quic_pkt_type_can_share_dgram(pkt->hdr->type))
ossl_qtx_finish_dgram(qtx);
else if (enc_level >= QUIC_ENC_LEVEL_NUM
|| ossl_qrl_enc_level_set_have_el(&qtx->el_set, enc_level) != 1) {
/* All other packet types are encrypted. */
return 0;
}
was_coalescing = (qtx->cons != NULL && qtx->cons->data_len > 0);
if (was_coalescing)
if (!addr_eq(&qtx->cons->peer, pkt->peer)
|| !addr_eq(&qtx->cons->local, pkt->local)) {
/* Must stop coalescing if addresses have changed */
ossl_qtx_finish_dgram(qtx);
was_coalescing = 0;
}
for (;;) {
/*
* Start a new coalescing session or continue using the existing one and
* serialize/encrypt the packet. We always encrypt packets as soon as
* our caller gives them to us, which relieves the caller of any need to
* keep the plaintext around.
*/
txe = qtx_ensure_cons(qtx);
if (txe == NULL)
return 0; /* allocation failure */
/*
* Ensure TXE has at least MDPL bytes allocated. This should only be
* possible if the MDPL has increased.
*/
if (!qtx_reserve_txe(qtx, NULL, txe, qtx->mdpl))
return 0;
if (!was_coalescing) {
/* Set addresses in TXE. */
if (pkt->peer != NULL)
txe->peer = *pkt->peer;
else
BIO_ADDR_clear(&txe->peer);
if (pkt->local != NULL)
txe->local = *pkt->local;
else
BIO_ADDR_clear(&txe->local);
}
ret = qtx_write(qtx, pkt, txe, enc_level);
if (ret == 1) {
break;
} else if (ret == QTX_FAIL_INSUFFICIENT_LEN) {
if (was_coalescing) {
/*
* We failed due to insufficient length, so end the current
* datagram and try again.
*/
ossl_qtx_finish_dgram(qtx);
was_coalescing = 0;
} else {
/*
* We failed due to insufficient length, but we were not
* coalescing/started with an empty datagram, so any future
* attempt to write this packet must also fail.
*/
return 0;
}
} else {
return 0; /* other error */
}
}
++qtx->cons_count;
/*
* Some packet types cannot have another packet come after them.
*/
if (ossl_quic_pkt_type_must_be_last(pkt->hdr->type))
coalescing = 0;
if (!coalescing)
ossl_qtx_finish_dgram(qtx);
return 1;
}
/*
* Finish any incomplete datagrams for transmission which were flagged for
* coalescing. If there is no current coalescing datagram, this is a no-op.
*/
void ossl_qtx_finish_dgram(OSSL_QTX *qtx)
{
TXE *txe = qtx->cons;
if (txe == NULL)
return;
if (txe->data_len == 0)
/*
* If we did not put anything in the datagram, just move it back to the
* free list.
*/
ossl_list_txe_insert_tail(&qtx->free, txe);
else
qtx_add_to_pending(qtx, txe);
qtx->cons = NULL;
qtx->cons_count = 0;
}
static void txe_to_msg(TXE *txe, BIO_MSG *msg)
{
msg->data = txe_data(txe);
msg->data_len = txe->data_len;
msg->flags = 0;
msg->peer
= BIO_ADDR_family(&txe->peer) != AF_UNSPEC ? &txe->peer : NULL;
msg->local
= BIO_ADDR_family(&txe->local) != AF_UNSPEC ? &txe->local : NULL;
}
#define MAX_MSGS_PER_SEND 32
int ossl_qtx_flush_net(OSSL_QTX *qtx)
{
BIO_MSG msg[MAX_MSGS_PER_SEND];
size_t wr, i, total_written = 0;
TXE *txe;
int res;
if (ossl_list_txe_head(&qtx->pending) == NULL)
return QTX_FLUSH_NET_RES_OK; /* Nothing to send. */
if (qtx->bio == NULL)
return QTX_FLUSH_NET_RES_PERMANENT_FAIL;
for (;;) {
for (txe = ossl_list_txe_head(&qtx->pending), i = 0;
txe != NULL && i < OSSL_NELEM(msg);
txe = ossl_list_txe_next(txe), ++i)
txe_to_msg(txe, &msg[i]);
if (!i)
/* Nothing to send. */
break;
ERR_set_mark();
res = BIO_sendmmsg(qtx->bio, msg, sizeof(BIO_MSG), i, 0, &wr);
if (res && wr == 0) {
/*
* Treat 0 messages sent as a transient error and just stop for now.
*/
ERR_clear_last_mark();
break;
} else if (!res) {
/*
* We did not get anything, so further calls will probably not
* succeed either.
*/
if (BIO_err_is_non_fatal(ERR_peek_last_error())) {
/* Transient error, just stop for now, clearing the error. */
ERR_pop_to_mark();
break;
} else {
/* Non-transient error, fail and do not clear the error. */
ERR_clear_last_mark();
return QTX_FLUSH_NET_RES_PERMANENT_FAIL;
}
}
ERR_clear_last_mark();
/*
* Remove everything which was successfully sent from the pending queue.
*/
for (i = 0; i < wr; ++i)
qtx_pending_to_free(qtx);
total_written += wr;
}
return total_written > 0
? QTX_FLUSH_NET_RES_OK
: QTX_FLUSH_NET_RES_TRANSIENT_FAIL;
}
int ossl_qtx_pop_net(OSSL_QTX *qtx, BIO_MSG *msg)
{
TXE *txe = ossl_list_txe_head(&qtx->pending);
if (txe == NULL)
return 0;
txe_to_msg(txe, msg);
qtx_pending_to_free(qtx);
return 1;
}
void ossl_qtx_set_bio(OSSL_QTX *qtx, BIO *bio)
{
qtx->bio = bio;
}
int ossl_qtx_set_mdpl(OSSL_QTX *qtx, size_t mdpl)
{
if (mdpl < QUIC_MIN_INITIAL_DGRAM_LEN)
return 0;
qtx->mdpl = mdpl;
return 1;
}
size_t ossl_qtx_get_mdpl(OSSL_QTX *qtx)
{
return qtx->mdpl;
}
size_t ossl_qtx_get_queue_len_datagrams(OSSL_QTX *qtx)
{
return qtx->pending_count;
}
size_t ossl_qtx_get_queue_len_bytes(OSSL_QTX *qtx)
{
return qtx->pending_bytes;
}
size_t ossl_qtx_get_cur_dgram_len_bytes(OSSL_QTX *qtx)
{
return qtx->cons != NULL ? qtx->cons->data_len : 0;
}
size_t ossl_qtx_get_unflushed_pkt_count(OSSL_QTX *qtx)
{
return qtx->cons_count;
}
int ossl_qtx_trigger_key_update(OSSL_QTX *qtx)
{
return ossl_qrl_enc_level_set_key_update(&qtx->el_set,
QUIC_ENC_LEVEL_1RTT);
}
uint64_t ossl_qtx_get_cur_epoch_pkt_count(OSSL_QTX *qtx, uint32_t enc_level)
{
OSSL_QRL_ENC_LEVEL *el;
el = ossl_qrl_enc_level_set_get(&qtx->el_set, enc_level, 1);
if (el == NULL)
return UINT64_MAX;
return el->op_count;
}
uint64_t ossl_qtx_get_max_epoch_pkt_count(OSSL_QTX *qtx, uint32_t enc_level)
{
OSSL_QRL_ENC_LEVEL *el;
el = ossl_qrl_enc_level_set_get(&qtx->el_set, enc_level, 1);
if (el == NULL)
return UINT64_MAX;
return ossl_qrl_get_suite_max_pkt(el->suite_id);
}