openssl/doc/man3/BN_add.pod
JulieDzeze1 e77eb1dc0b Update BN_add.pod documentation so it is consistent with header declarations
CLA: trivial

Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24215)
2024-08-07 19:55:57 +02:00

146 lines
5.0 KiB
Plaintext

=pod
=head1 NAME
BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_mod_sqrt, BN_exp, BN_mod_exp, BN_gcd -
arithmetic operations on BIGNUMs
=head1 SYNOPSIS
#include <openssl/bn.h>
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
=head1 DESCRIPTION
BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
I<r> may be the same B<BIGNUM> as I<a> or I<b>.
BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
I<r> may be the same B<BIGNUM> as I<a> or I<b>.
BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
I<r> may be the same B<BIGNUM> as I<a> or I<b>.
For multiplication by powers of 2, use L<BN_lshift(3)>.
BN_sqr() takes the square of I<a> and places the result in I<r>
(C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
This function is faster than BN_mul(r,a,a).
BN_div() divides I<a> by I<d> and places the result in I<dv> and the
remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
be B<NULL>, in which case the respective value is not returned.
The result is rounded towards zero; thus if I<a> is negative, the
remainder will be zero or negative.
For division by powers of 2, use BN_rshift(3).
BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
BN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
remainder in I<r>.
BN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
result in I<r>.
BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
nonnegative result in I<r>.
BN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
repeated computations using the same modulus, see
L<BN_mod_mul_montgomery(3)> and
L<BN_mod_mul_reciprocal(3)>.
BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
result in I<r>.
BN_mod_sqrt() returns the modular square root of I<a> such that
C<in^2 = a (mod p)>. The modulus I<p> must be a
prime, otherwise an error or an incorrect "result" will be returned.
The result is stored into I<in> which can be NULL. The result will be
newly allocated in that case.
BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
(C<r=a^p>). This function is faster than repeated applications of
BN_mul().
BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
m>). This function uses less time and space than BN_exp(). Do not call this
function when B<m> is even and any of the parameters have the
B<BN_FLG_CONSTTIME> flag set.
BN_gcd() computes the greatest common divisor of I<a> and I<b> and
places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
I<b>.
For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
temporary variables; see L<BN_CTX_new(3)>.
Unless noted otherwise, the result B<BIGNUM> must be different from
the arguments.
=head1 NOTES
For modular operations such as BN_nnmod() or BN_mod_exp() it is an error
to use the same B<BIGNUM> object for the modulus as for the output.
=head1 RETURN VALUES
The BN_mod_sqrt() returns the result (possibly incorrect if I<p> is
not a prime), or NULL.
For all remaining functions, 1 is returned for success, 0 on error. The return
value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
The error codes can be obtained by L<ERR_get_error(3)>.
=head1 SEE ALSO
L<ERR_get_error(3)>, L<BN_CTX_new(3)>,
L<BN_add_word(3)>, L<BN_set_bit(3)>
=head1 COPYRIGHT
Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.
=cut