mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
d4dfb0baf9
Move #include's inside the #ifdef. Reviewed-by: Matt Caswell <matt@openssl.org>
514 lines
13 KiB
C
514 lines
13 KiB
C
/*
|
|
* Copyright 2004-2014, Akamai Technologies. All Rights Reserved.
|
|
* This file is distributed under the terms of the OpenSSL license.
|
|
*/
|
|
|
|
/*
|
|
* This file is in two halves. The first half implements the public API
|
|
* to be used by external consumers, and to be used by OpenSSL to store
|
|
* data in a "secure arena." The second half implements the secure arena.
|
|
* For details on that implementation, see below (look for uppercase
|
|
* "SECURE HEAP IMPLEMENTATION").
|
|
*/
|
|
#include <openssl/crypto.h>
|
|
#include <e_os.h>
|
|
|
|
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
|
|
# define IMPLEMENTED
|
|
# include <stdlib.h>
|
|
# include <string.h>
|
|
# include <assert.h>
|
|
# include <unistd.h>
|
|
# include <sys/mman.h>
|
|
# include <sys/param.h>
|
|
#endif
|
|
|
|
#define LOCK() CRYPTO_w_lock(CRYPTO_LOCK_MALLOC)
|
|
#define UNLOCK() CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC)
|
|
#define CLEAR(p, s) OPENSSL_cleanse(p, s)
|
|
#define PAGE_SIZE 4096
|
|
|
|
#ifdef IMPLEMENTED
|
|
size_t secure_mem_used;
|
|
|
|
static int secure_mem_initialized;
|
|
static int too_late;
|
|
|
|
/*
|
|
* These are the functions that must be implemented by a secure heap (sh).
|
|
*/
|
|
static int sh_init(size_t size, int minsize);
|
|
static char *sh_malloc(size_t size);
|
|
static void sh_free(char *ptr);
|
|
static void sh_done(void);
|
|
static int sh_actual_size(char *ptr);
|
|
static int sh_allocated(const char *ptr);
|
|
#endif
|
|
|
|
int CRYPTO_secure_malloc_init(size_t size, int minsize)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
int ret = 0;
|
|
|
|
if (too_late)
|
|
return ret;
|
|
LOCK();
|
|
OPENSSL_assert(!secure_mem_initialized);
|
|
if (!secure_mem_initialized) {
|
|
ret = sh_init(size, minsize);
|
|
secure_mem_initialized = 1;
|
|
}
|
|
UNLOCK();
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
void CRYPTO_secure_malloc_done()
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
LOCK();
|
|
sh_done();
|
|
secure_mem_initialized = 0;
|
|
UNLOCK();
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
int CRYPTO_secure_malloc_initialized()
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
return secure_mem_initialized;
|
|
#else
|
|
return 0;
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
void *CRYPTO_secure_malloc(int num, const char *file, int line)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
void *ret;
|
|
size_t actual_size;
|
|
|
|
if (!secure_mem_initialized) {
|
|
too_late = 1;
|
|
return CRYPTO_malloc(num, file, line);
|
|
}
|
|
LOCK();
|
|
ret = sh_malloc(num);
|
|
actual_size = ret ? sh_actual_size(ret) : 0;
|
|
secure_mem_used += actual_size;
|
|
UNLOCK();
|
|
return ret;
|
|
#else
|
|
return CRYPTO_malloc(num, file, line);
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
void CRYPTO_secure_free(void *ptr)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
size_t actual_size;
|
|
|
|
if (ptr == NULL)
|
|
return;
|
|
if (!secure_mem_initialized) {
|
|
CRYPTO_free(ptr);
|
|
return;
|
|
}
|
|
LOCK();
|
|
actual_size = sh_actual_size(ptr);
|
|
CLEAR(ptr, actual_size);
|
|
secure_mem_used -= actual_size;
|
|
sh_free(ptr);
|
|
UNLOCK();
|
|
#else
|
|
CRYPTO_free(ptr);
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
int CRYPTO_secure_allocated(const void *ptr)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
int ret;
|
|
|
|
if (!secure_mem_initialized)
|
|
return 0;
|
|
LOCK();
|
|
ret = sh_allocated(ptr);
|
|
UNLOCK();
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
/* END OF PAGE ...
|
|
|
|
... START OF PAGE */
|
|
|
|
/*
|
|
* SECURE HEAP IMPLEMENTATION
|
|
*/
|
|
#ifdef IMPLEMENTED
|
|
|
|
|
|
/*
|
|
* The implementation provided here uses a fixed-sized mmap() heap,
|
|
* which is locked into memory, not written to core files, and protected
|
|
* on either side by an unmapped page, which will catch pointer overruns
|
|
* (or underruns) and an attempt to read data out of the secure heap.
|
|
* Free'd memory is zero'd or otherwise cleansed.
|
|
*
|
|
* This is a pretty standard buddy allocator. We keep areas in a multiple
|
|
* of "sh.minsize" units. The freelist and bitmaps are kept separately,
|
|
* so all (and only) data is kept in the mmap'd heap.
|
|
*
|
|
* This code assumes eight-bit bytes. The numbers 3 and 7 are all over the
|
|
* place.
|
|
*/
|
|
|
|
# define TESTBIT(t, b) (t[(b) >> 3] & (1 << ((b) & 7)))
|
|
# define SETBIT(t, b) (t[(b) >> 3] |= (1 << ((b) & 7)))
|
|
# define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(1 << ((b) & 7))))
|
|
|
|
#define WITHIN_ARENA(p) \
|
|
((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size])
|
|
#define WITHIN_FREELIST(p) \
|
|
((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size])
|
|
|
|
|
|
typedef struct sh_list_st
|
|
{
|
|
struct sh_list_st *next;
|
|
struct sh_list_st **p_next;
|
|
} SH_LIST;
|
|
|
|
typedef struct sh_st
|
|
{
|
|
char* map_result;
|
|
size_t map_size;
|
|
char *arena;
|
|
int arena_size;
|
|
char **freelist;
|
|
int freelist_size;
|
|
int minsize;
|
|
unsigned char *bittable;
|
|
unsigned char *bitmalloc;
|
|
int bittable_size; /* size in bits */
|
|
} SH;
|
|
|
|
static SH sh;
|
|
|
|
static int sh_getlist(char *ptr)
|
|
{
|
|
int list = sh.freelist_size - 1;
|
|
int bit = (sh.arena_size + ptr - sh.arena) / sh.minsize;
|
|
|
|
for (; bit; bit >>= 1, list--) {
|
|
if (TESTBIT(sh.bittable, bit))
|
|
break;
|
|
OPENSSL_assert((bit & 1) == 0);
|
|
}
|
|
|
|
return list;
|
|
}
|
|
|
|
|
|
static int sh_testbit(char *ptr, int list, unsigned char *table)
|
|
{
|
|
int bit;
|
|
|
|
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
|
|
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
|
|
bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
|
|
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
|
|
return TESTBIT(table, bit);
|
|
}
|
|
|
|
static void sh_clearbit(char *ptr, int list, unsigned char *table)
|
|
{
|
|
int bit;
|
|
|
|
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
|
|
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
|
|
bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
|
|
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
|
|
OPENSSL_assert(TESTBIT(table, bit));
|
|
CLEARBIT(table, bit);
|
|
}
|
|
|
|
static void sh_setbit(char *ptr, int list, unsigned char *table)
|
|
{
|
|
int bit;
|
|
|
|
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
|
|
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
|
|
bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
|
|
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
|
|
OPENSSL_assert(!TESTBIT(table, bit));
|
|
SETBIT(table, bit);
|
|
}
|
|
|
|
static void sh_add_to_list(char **list, char *ptr)
|
|
{
|
|
SH_LIST *temp;
|
|
|
|
OPENSSL_assert(WITHIN_FREELIST(list));
|
|
OPENSSL_assert(WITHIN_ARENA(ptr));
|
|
|
|
temp = (SH_LIST *)ptr;
|
|
temp->next = *(SH_LIST **)list;
|
|
OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next));
|
|
temp->p_next = (SH_LIST **)list;
|
|
|
|
if (temp->next != NULL) {
|
|
OPENSSL_assert((char **)temp->next->p_next == list);
|
|
temp->next->p_next = &(temp->next);
|
|
}
|
|
|
|
*list = ptr;
|
|
}
|
|
|
|
static void sh_remove_from_list(char *ptr, char *list)
|
|
{
|
|
SH_LIST *temp, *temp2;
|
|
|
|
temp = (SH_LIST *)ptr;
|
|
if (temp->next != NULL)
|
|
temp->next->p_next = temp->p_next;
|
|
*temp->p_next = temp->next;
|
|
if (temp->next == NULL)
|
|
return;
|
|
|
|
temp2 = temp->next;
|
|
OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next));
|
|
}
|
|
|
|
|
|
static int sh_init(size_t size, int minsize)
|
|
{
|
|
int i, ret;
|
|
size_t pgsize;
|
|
size_t aligned;
|
|
|
|
memset(&sh, 0, sizeof sh);
|
|
|
|
/* make sure size and minsize are powers of 2 */
|
|
OPENSSL_assert(size > 0);
|
|
OPENSSL_assert((size & (size - 1)) == 0);
|
|
OPENSSL_assert(minsize > 0);
|
|
OPENSSL_assert((minsize & (minsize - 1)) == 0);
|
|
if (size <= 0 || (size & (size - 1)) != 0)
|
|
goto err;
|
|
if (minsize <= 0 || (minsize & (minsize - 1)) != 0)
|
|
goto err;
|
|
|
|
sh.arena_size = size;
|
|
sh.minsize = minsize;
|
|
sh.bittable_size = (sh.arena_size / sh.minsize) * 2;
|
|
|
|
sh.freelist_size = -1;
|
|
for (i = sh.bittable_size; i; i >>= 1)
|
|
sh.freelist_size++;
|
|
|
|
sh.freelist = OPENSSL_malloc(sh.freelist_size * sizeof (char *));
|
|
OPENSSL_assert(sh.freelist != NULL);
|
|
if (sh.freelist == NULL)
|
|
goto err;
|
|
memset(sh.freelist, 0, sh.freelist_size * sizeof (char *));
|
|
|
|
sh.bittable = OPENSSL_malloc(sh.bittable_size >> 3);
|
|
OPENSSL_assert(sh.bittable != NULL);
|
|
if (sh.bittable == NULL)
|
|
goto err;
|
|
memset(sh.bittable, 0, sh.bittable_size >> 3);
|
|
|
|
sh.bitmalloc = OPENSSL_malloc(sh.bittable_size >> 3);
|
|
OPENSSL_assert(sh.bitmalloc != NULL);
|
|
if (sh.bitmalloc == NULL)
|
|
goto err;
|
|
memset(sh.bitmalloc, 0, sh.bittable_size >> 3);
|
|
|
|
/* Allocate space for heap, and two extra pages as guards */
|
|
#ifdef _SC_PAGE_SIZE
|
|
pgsize = (size_t)sysconf(_SC_PAGE_SIZE);
|
|
#else
|
|
pgsize = PAGE_SIZE;
|
|
#endif
|
|
sh.map_size = pgsize + sh.arena_size + pgsize;
|
|
sh.map_result = mmap(NULL, sh.map_size,
|
|
PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
|
|
OPENSSL_assert(sh.map_result != MAP_FAILED);
|
|
if (sh.map_result == MAP_FAILED)
|
|
goto err;
|
|
sh.arena = (char *)(sh.map_result + pgsize);
|
|
sh_setbit(sh.arena, 0, sh.bittable);
|
|
sh_add_to_list(&sh.freelist[0], sh.arena);
|
|
|
|
/* Now try to add guard pages and lock into memory. */
|
|
ret = 1;
|
|
|
|
/* Starting guard is already aligned from mmap. */
|
|
if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0)
|
|
ret = 2;
|
|
|
|
/* Ending guard page - need to round up to page boundary */
|
|
aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1);
|
|
if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0)
|
|
ret = 2;
|
|
|
|
if (mlock(sh.arena, sh.arena_size) < 0)
|
|
ret = 2;
|
|
#ifdef MADV_DONTDUMP
|
|
if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0)
|
|
ret = 2;
|
|
#endif
|
|
|
|
return ret;
|
|
|
|
err:
|
|
sh_done();
|
|
return 0;
|
|
}
|
|
|
|
static void sh_done()
|
|
{
|
|
OPENSSL_free(sh.freelist);
|
|
OPENSSL_free(sh.bittable);
|
|
OPENSSL_free(sh.bitmalloc);
|
|
if (sh.map_result != NULL && sh.map_size)
|
|
munmap(sh.map_result, sh.map_size);
|
|
memset(&sh, 0, sizeof sh);
|
|
}
|
|
|
|
static int sh_allocated(const char *ptr)
|
|
{
|
|
return WITHIN_ARENA(ptr) ? 1 : 0;
|
|
}
|
|
|
|
static char *sh_find_my_buddy(char *ptr, int list)
|
|
{
|
|
int bit;
|
|
char *chunk = NULL;
|
|
|
|
bit = (1 << list) + (ptr - sh.arena) / (sh.arena_size >> list);
|
|
bit ^= 1;
|
|
|
|
if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit))
|
|
chunk = sh.arena + ((bit & ((1 << list) - 1)) * (sh.arena_size >> list));
|
|
|
|
return chunk;
|
|
}
|
|
|
|
static char *sh_malloc(size_t size)
|
|
{
|
|
int list, slist;
|
|
size_t i;
|
|
char *chunk;
|
|
|
|
list = sh.freelist_size - 1;
|
|
for (i = sh.minsize; i < size; i <<= 1)
|
|
list--;
|
|
if (list < 0)
|
|
return NULL;
|
|
|
|
/* try to find a larger entry to split */
|
|
for (slist = list; slist >= 0; slist--)
|
|
if (sh.freelist[slist] != NULL)
|
|
break;
|
|
if (slist < 0)
|
|
return NULL;
|
|
|
|
/* split larger entry */
|
|
while (slist != list) {
|
|
char *temp = sh.freelist[slist];
|
|
|
|
/* remove from bigger list */
|
|
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
|
|
sh_clearbit(temp, slist, sh.bittable);
|
|
sh_remove_from_list(temp, sh.freelist[slist]);
|
|
OPENSSL_assert(temp != sh.freelist[slist]);
|
|
|
|
/* done with bigger list */
|
|
slist++;
|
|
|
|
/* add to smaller list */
|
|
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
|
|
sh_setbit(temp, slist, sh.bittable);
|
|
sh_add_to_list(&sh.freelist[slist], temp);
|
|
OPENSSL_assert(sh.freelist[slist] == temp);
|
|
|
|
/* split in 2 */
|
|
temp += sh.arena_size >> slist;
|
|
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
|
|
sh_setbit(temp, slist, sh.bittable);
|
|
sh_add_to_list(&sh.freelist[slist], temp);
|
|
OPENSSL_assert(sh.freelist[slist] == temp);
|
|
|
|
OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist));
|
|
}
|
|
|
|
/* peel off memory to hand back */
|
|
chunk = sh.freelist[list];
|
|
OPENSSL_assert(sh_testbit(chunk, list, sh.bittable));
|
|
sh_setbit(chunk, list, sh.bitmalloc);
|
|
sh_remove_from_list(chunk, sh.freelist[list]);
|
|
|
|
OPENSSL_assert(WITHIN_ARENA(chunk));
|
|
|
|
return chunk;
|
|
}
|
|
|
|
static void sh_free(char *ptr)
|
|
{
|
|
int list;
|
|
char *buddy;
|
|
|
|
if (ptr == NULL)
|
|
return;
|
|
OPENSSL_assert(WITHIN_ARENA(ptr));
|
|
if (!WITHIN_ARENA(ptr))
|
|
return;
|
|
|
|
list = sh_getlist(ptr);
|
|
OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
|
|
sh_clearbit(ptr, list, sh.bitmalloc);
|
|
sh_add_to_list(&sh.freelist[list], ptr);
|
|
|
|
/* Try to coalesce two adjacent free areas. */
|
|
while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) {
|
|
OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list));
|
|
OPENSSL_assert(ptr != NULL);
|
|
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
|
|
sh_clearbit(ptr, list, sh.bittable);
|
|
sh_remove_from_list(ptr, sh.freelist[list]);
|
|
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
|
|
sh_clearbit(buddy, list, sh.bittable);
|
|
sh_remove_from_list(buddy, sh.freelist[list]);
|
|
|
|
list--;
|
|
|
|
if (ptr > buddy)
|
|
ptr = buddy;
|
|
|
|
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
|
|
sh_setbit(ptr, list, sh.bittable);
|
|
sh_add_to_list(&sh.freelist[list], ptr);
|
|
OPENSSL_assert(sh.freelist[list] == ptr);
|
|
}
|
|
}
|
|
|
|
static int sh_actual_size(char *ptr)
|
|
{
|
|
int list;
|
|
|
|
OPENSSL_assert(WITHIN_ARENA(ptr));
|
|
if (!WITHIN_ARENA(ptr))
|
|
return 0;
|
|
list = sh_getlist(ptr);
|
|
OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
|
|
return sh.arena_size / (1 << list);
|
|
}
|
|
#endif /* IMPLEMENTED */
|