openssl/providers/implementations/ciphers/cipher_aes_gcm_hw_s390x.inc
Matt Caswell 38fc02a708 Update copyright year
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15801)
2021-06-17 13:24:59 +01:00

313 lines
9.6 KiB
C++

/*
* Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*-
* IBM S390X support for AES GCM.
* This file is included by cipher_aes_gcm_hw.c
*/
/* iv + padding length for iv lengths != 12 */
#define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
/* Additional flag or'ed to fc for decryption */
#define S390X_gcm_decrypt_flag(ctx) (((ctx)->enc) ? 0 : S390X_DECRYPT)
#define S390X_gcm_fc(A,C) ((A)->plat.s390x.fc | (A)->plat.s390x.hsflag |\
S390X_gcm_decrypt_flag((C)))
static int s390x_aes_gcm_initkey(PROV_GCM_CTX *ctx,
const unsigned char *key, size_t keylen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
ctx->key_set = 1;
memcpy(&actx->plat.s390x.param.kma.k, key, keylen);
actx->plat.s390x.fc = S390X_AES_FC(keylen);
return 1;
}
static int s390x_aes_gcm_setiv(PROV_GCM_CTX *ctx, const unsigned char *iv,
size_t ivlen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
kma->t.g[0] = 0;
kma->t.g[1] = 0;
kma->tpcl = 0;
kma->taadl = 0;
actx->plat.s390x.mreslen = 0;
actx->plat.s390x.areslen = 0;
actx->plat.s390x.kreslen = 0;
if (ivlen == GCM_IV_DEFAULT_SIZE) {
memcpy(&kma->j0, iv, ivlen);
kma->j0.w[3] = 1;
kma->cv.w = 1;
actx->plat.s390x.hsflag = 0;
} else {
unsigned long long ivbits = ivlen << 3;
size_t len = S390X_gcm_ivpadlen(ivlen);
unsigned char iv_zero_pad[S390X_gcm_ivpadlen(GCM_IV_MAX_SIZE)];
/*
* The IV length needs to be zero padded to be a multiple of 16 bytes
* followed by 8 bytes of zeros and 8 bytes for the IV length.
* The GHASH of this value can then be calculated.
*/
memcpy(iv_zero_pad, iv, ivlen);
memset(iv_zero_pad + ivlen, 0, len - ivlen);
memcpy(iv_zero_pad + len - sizeof(ivbits), &ivbits, sizeof(ivbits));
/*
* Calculate the ghash of the iv - the result is stored into the tag
* param.
*/
s390x_kma(iv_zero_pad, len, NULL, 0, NULL, actx->plat.s390x.fc, kma);
actx->plat.s390x.hsflag = S390X_KMA_HS; /* The hash subkey is set */
/* Copy the 128 bit GHASH result into J0 and clear the tag */
kma->j0.g[0] = kma->t.g[0];
kma->j0.g[1] = kma->t.g[1];
kma->t.g[0] = 0;
kma->t.g[1] = 0;
/* Set the 32 bit counter */
kma->cv.w = kma->j0.w[3];
}
return 1;
}
static int s390x_aes_gcm_cipher_final(PROV_GCM_CTX *ctx, unsigned char *tag)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
unsigned char out[AES_BLOCK_SIZE];
unsigned int fc;
int rc;
kma->taadl <<= 3;
kma->tpcl <<= 3;
fc = S390X_gcm_fc(actx, ctx) | S390X_KMA_LAAD | S390X_KMA_LPC;
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen,
actx->plat.s390x.mres, actx->plat.s390x.mreslen, out,
fc, kma);
/* gctx->mres already returned to the caller */
OPENSSL_cleanse(out, actx->plat.s390x.mreslen);
if (ctx->enc) {
ctx->taglen = GCM_TAG_MAX_SIZE;
memcpy(tag, kma->t.b, ctx->taglen);
rc = 1;
} else {
rc = (CRYPTO_memcmp(tag, kma->t.b, ctx->taglen) == 0);
}
return rc;
}
static int s390x_aes_gcm_one_shot(PROV_GCM_CTX *ctx,
unsigned char *aad, size_t aad_len,
const unsigned char *in, size_t in_len,
unsigned char *out,
unsigned char *tag, size_t taglen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
unsigned int fc;
int rc;
kma->taadl = aad_len << 3;
kma->tpcl = in_len << 3;
fc = S390X_gcm_fc(actx, ctx) | S390X_KMA_LAAD | S390X_KMA_LPC;
s390x_kma(aad, aad_len, in, in_len, out, fc, kma);
if (ctx->enc) {
memcpy(tag, kma->t.b, taglen);
rc = 1;
} else {
rc = (CRYPTO_memcmp(tag, kma->t.b, taglen) == 0);
}
return rc;
}
/*
* Process additional authenticated data. Returns 1 on success. Code is
* big-endian.
*/
static int s390x_aes_gcm_aad_update(PROV_GCM_CTX *ctx,
const unsigned char *aad, size_t len)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
unsigned long long alen;
unsigned int fc;
int n, rem;
/* If already processed pt/ct then error */
if (kma->tpcl != 0)
return 0;
/* update the total aad length */
alen = kma->taadl + len;
if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
return 0;
kma->taadl = alen;
/* check if there is any existing aad data from a previous add */
n = actx->plat.s390x.areslen;
if (n) {
/* add additional data to a buffer until it has 16 bytes */
while (n && len) {
actx->plat.s390x.ares[n] = *aad;
++aad;
--len;
n = (n + 1) & 0xf;
}
/* ctx->ares contains a complete block if offset has wrapped around */
if (!n) {
fc = S390X_gcm_fc(actx, ctx);
s390x_kma(actx->plat.s390x.ares, 16, NULL, 0, NULL, fc, kma);
actx->plat.s390x.hsflag = S390X_KMA_HS;
}
actx->plat.s390x.areslen = n;
}
/* If there are leftover bytes (< 128 bits) save them for next time */
rem = len & 0xf;
/* Add any remaining 16 byte blocks (128 bit each) */
len &= ~(size_t)0xf;
if (len) {
fc = S390X_gcm_fc(actx, ctx);
s390x_kma(aad, len, NULL, 0, NULL, fc, kma);
actx->plat.s390x.hsflag = S390X_KMA_HS;
aad += len;
}
if (rem) {
actx->plat.s390x.areslen = rem;
do {
--rem;
actx->plat.s390x.ares[rem] = aad[rem];
} while (rem);
}
return 1;
}
/*-
* En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 1 for
* success. Code is big-endian.
*/
static int s390x_aes_gcm_cipher_update(PROV_GCM_CTX *ctx,
const unsigned char *in, size_t len,
unsigned char *out)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma;
const unsigned char *inptr;
unsigned long long mlen;
unsigned int fc;
union {
unsigned int w[4];
unsigned char b[16];
} buf;
size_t inlen;
int n, rem, i;
mlen = kma->tpcl + len;
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
return 0;
kma->tpcl = mlen;
fc = S390X_gcm_fc(actx, ctx) | S390X_KMA_LAAD;
n = actx->plat.s390x.mreslen;
if (n) {
inptr = in;
inlen = len;
while (n && inlen) {
actx->plat.s390x.mres[n] = *inptr;
n = (n + 1) & 0xf;
++inptr;
--inlen;
}
/* ctx->mres contains a complete block if offset has wrapped around */
if (!n) {
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen,
actx->plat.s390x.mres, 16, buf.b, fc, kma);
actx->plat.s390x.hsflag = S390X_KMA_HS;
fc |= S390X_KMA_HS;
actx->plat.s390x.areslen = 0;
/* previous call already encrypted/decrypted its remainder,
* see comment below */
n = actx->plat.s390x.mreslen;
while (n) {
*out = buf.b[n];
n = (n + 1) & 0xf;
++out;
++in;
--len;
}
actx->plat.s390x.mreslen = 0;
}
}
rem = len & 0xf;
len &= ~(size_t)0xf;
if (len) {
s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen, in, len, out,
fc, kma);
in += len;
out += len;
actx->plat.s390x.hsflag = S390X_KMA_HS;
actx->plat.s390x.areslen = 0;
}
/*-
* If there is a remainder, it has to be saved such that it can be
* processed by kma later. However, we also have to do the for-now
* unauthenticated encryption/decryption part here and now...
*/
if (rem) {
if (!actx->plat.s390x.mreslen) {
buf.w[0] = kma->j0.w[0];
buf.w[1] = kma->j0.w[1];
buf.w[2] = kma->j0.w[2];
buf.w[3] = kma->cv.w + 1;
s390x_km(buf.b, 16, actx->plat.s390x.kres,
fc & 0x1f, &kma->k);
}
n = actx->plat.s390x.mreslen;
for (i = 0; i < rem; i++) {
actx->plat.s390x.mres[n + i] = in[i];
out[i] = in[i] ^ actx->plat.s390x.kres[n + i];
}
actx->plat.s390x.mreslen += rem;
}
return 1;
}
static const PROV_GCM_HW s390x_aes_gcm = {
s390x_aes_gcm_initkey,
s390x_aes_gcm_setiv,
s390x_aes_gcm_aad_update,
s390x_aes_gcm_cipher_update,
s390x_aes_gcm_cipher_final,
s390x_aes_gcm_one_shot
};
const PROV_GCM_HW *ossl_prov_aes_hw_gcm(size_t keybits)
{
if ((keybits == 128 && S390X_aes_128_gcm_CAPABLE)
|| (keybits == 192 && S390X_aes_192_gcm_CAPABLE)
|| (keybits == 256 && S390X_aes_256_gcm_CAPABLE))
return &s390x_aes_gcm;
return &aes_gcm;
}