openssl/ssl/record/rec_layer_s3.c
Matt Caswell e2d5742b14 Transfer the functionality from ssl3_read_n to the new record layer
This transfers the low level function ssl3_read_n to the new record layer.
We temporarily make the read_n function a top level record layer function.
Eventually, in later commits in this refactor, we will remove it as a top
level function and it will just be called from read_record.

Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18132)
2022-08-18 16:38:12 +01:00

1682 lines
58 KiB
C

/*
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <limits.h>
#include <errno.h>
#include "../ssl_local.h"
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <openssl/rand.h>
#include "record_local.h"
#include "internal/packet.h"
#if defined(OPENSSL_SMALL_FOOTPRINT) || \
!( defined(AES_ASM) && ( \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) ) \
)
# undef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
# define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
#endif
void RECORD_LAYER_init(RECORD_LAYER *rl, SSL_CONNECTION *s)
{
rl->s = s;
RECORD_LAYER_set_first_record(&s->rlayer);
SSL3_RECORD_clear(rl->rrec, SSL_MAX_PIPELINES);
}
void RECORD_LAYER_clear(RECORD_LAYER *rl)
{
rl->rstate = SSL_ST_READ_HEADER;
/*
* Do I need to clear read_ahead? As far as I can tell read_ahead did not
* previously get reset by SSL_clear...so I'll keep it that way..but is
* that right?
*/
rl->packet = NULL;
rl->packet_length = 0;
rl->wnum = 0;
memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment));
rl->handshake_fragment_len = 0;
rl->wpend_tot = 0;
rl->wpend_type = 0;
rl->wpend_ret = 0;
rl->wpend_buf = NULL;
SSL3_BUFFER_clear(&rl->rbuf);
ssl3_release_write_buffer(rl->s);
rl->numrpipes = 0;
SSL3_RECORD_clear(rl->rrec, SSL_MAX_PIPELINES);
RECORD_LAYER_reset_read_sequence(rl);
RECORD_LAYER_reset_write_sequence(rl);
if (rl->d)
DTLS_RECORD_LAYER_clear(rl);
}
void RECORD_LAYER_release(RECORD_LAYER *rl)
{
if (SSL3_BUFFER_is_initialised(&rl->rbuf))
ssl3_release_read_buffer(rl->s);
if (rl->numwpipes > 0)
ssl3_release_write_buffer(rl->s);
SSL3_RECORD_release(rl->rrec, SSL_MAX_PIPELINES);
}
/* Checks if we have unprocessed read ahead data pending */
int RECORD_LAYER_read_pending(const RECORD_LAYER *rl)
{
return SSL3_BUFFER_get_left(&rl->rbuf) != 0;
}
/* Checks if we have decrypted unread record data pending */
int RECORD_LAYER_processed_read_pending(const RECORD_LAYER *rl)
{
size_t curr_rec = 0, num_recs = RECORD_LAYER_get_numrpipes(rl);
const SSL3_RECORD *rr = rl->rrec;
while (curr_rec < num_recs && SSL3_RECORD_is_read(&rr[curr_rec]))
curr_rec++;
return curr_rec < num_recs;
}
int RECORD_LAYER_write_pending(const RECORD_LAYER *rl)
{
return (rl->numwpipes > 0)
&& SSL3_BUFFER_get_left(&rl->wbuf[rl->numwpipes - 1]) != 0;
}
void RECORD_LAYER_reset_read_sequence(RECORD_LAYER *rl)
{
memset(rl->read_sequence, 0, sizeof(rl->read_sequence));
}
void RECORD_LAYER_reset_write_sequence(RECORD_LAYER *rl)
{
memset(rl->write_sequence, 0, sizeof(rl->write_sequence));
}
size_t ssl3_pending(const SSL *s)
{
size_t i, num = 0;
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return 0;
if (sc->rlayer.rstate == SSL_ST_READ_BODY)
return 0;
/* Take into account DTLS buffered app data */
if (SSL_CONNECTION_IS_DTLS(sc)) {
DTLS1_RECORD_DATA *rdata;
pitem *item, *iter;
iter = pqueue_iterator(sc->rlayer.d->buffered_app_data.q);
while ((item = pqueue_next(&iter)) != NULL) {
rdata = item->data;
num += rdata->rrec.length;
}
}
for (i = 0; i < RECORD_LAYER_get_numrpipes(&sc->rlayer); i++) {
if (SSL3_RECORD_get_type(&sc->rlayer.rrec[i])
!= SSL3_RT_APPLICATION_DATA)
return num;
num += SSL3_RECORD_get_length(&sc->rlayer.rrec[i]);
}
return num;
}
void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len)
{
ctx->default_read_buf_len = len;
}
void SSL_set_default_read_buffer_len(SSL *s, size_t len)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return;
SSL3_BUFFER_set_default_len(sc->rrlmethod->get0_rbuf(sc->rrl), len);
}
const char *SSL_rstate_string_long(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return NULL;
switch (sc->rlayer.rstate) {
case SSL_ST_READ_HEADER:
return "read header";
case SSL_ST_READ_BODY:
return "read body";
case SSL_ST_READ_DONE:
return "read done";
default:
return "unknown";
}
}
const char *SSL_rstate_string(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return NULL;
switch (sc->rlayer.rstate) {
case SSL_ST_READ_HEADER:
return "RH";
case SSL_ST_READ_BODY:
return "RB";
case SSL_ST_READ_DONE:
return "RD";
default:
return "unknown";
}
}
/*
* Call this to write data in records of type 'type' It will return <= 0 if
* not all data has been sent or non-blocking IO.
*/
int ssl3_write_bytes(SSL *ssl, int type, const void *buf_, size_t len,
size_t *written)
{
const unsigned char *buf = buf_;
size_t tot;
size_t n, max_send_fragment, split_send_fragment, maxpipes;
#if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
size_t nw;
#endif
SSL3_BUFFER *wb;
int i;
size_t tmpwrit;
SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl);
if (s == NULL)
return -1;
wb = &s->rlayer.wbuf[0];
s->rwstate = SSL_NOTHING;
tot = s->rlayer.wnum;
/*
* ensure that if we end up with a smaller value of data to write out
* than the original len from a write which didn't complete for
* non-blocking I/O and also somehow ended up avoiding the check for
* this in ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be
* possible to end up with (len-tot) as a large number that will then
* promptly send beyond the end of the users buffer ... so we trap and
* report the error in a way the user will notice
*/
if ((len < s->rlayer.wnum)
|| ((wb->left != 0) && (len < (s->rlayer.wnum + s->rlayer.wpend_tot)))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_LENGTH);
return -1;
}
if (s->early_data_state == SSL_EARLY_DATA_WRITING
&& !ossl_early_data_count_ok(s, len, 0, 1)) {
/* SSLfatal() already called */
return -1;
}
s->rlayer.wnum = 0;
/*
* If we are supposed to be sending a KeyUpdate or NewSessionTicket then go
* into init unless we have writes pending - in which case we should finish
* doing that first.
*/
if (wb->left == 0 && (s->key_update != SSL_KEY_UPDATE_NONE
|| s->ext.extra_tickets_expected > 0))
ossl_statem_set_in_init(s, 1);
/*
* When writing early data on the server side we could be "in_init" in
* between receiving the EoED and the CF - but we don't want to handle those
* messages yet.
*/
if (SSL_in_init(ssl) && !ossl_statem_get_in_handshake(s)
&& s->early_data_state != SSL_EARLY_DATA_UNAUTH_WRITING) {
i = s->handshake_func(ssl);
/* SSLfatal() already called */
if (i < 0)
return i;
if (i == 0) {
return -1;
}
}
/*
* first check if there is a SSL3_BUFFER still being written out. This
* will happen with non blocking IO
*/
if (wb->left != 0) {
/* SSLfatal() already called if appropriate */
i = ssl3_write_pending(s, type, &buf[tot], s->rlayer.wpend_tot,
&tmpwrit);
if (i <= 0) {
/* XXX should we ssl3_release_write_buffer if i<0? */
s->rlayer.wnum = tot;
return i;
}
tot += tmpwrit; /* this might be last fragment */
}
#if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
/*
* Depending on platform multi-block can deliver several *times*
* better performance. Downside is that it has to allocate
* jumbo buffer to accommodate up to 8 records, but the
* compromise is considered worthy.
*/
if (type == SSL3_RT_APPLICATION_DATA
&& len >= 4 * (max_send_fragment = ssl_get_max_send_fragment(s))
&& s->compress == NULL
&& s->msg_callback == NULL
&& !SSL_WRITE_ETM(s)
&& SSL_USE_EXPLICIT_IV(s)
&& !BIO_get_ktls_send(s->wbio)
&& (EVP_CIPHER_get_flags(EVP_CIPHER_CTX_get0_cipher(s->enc_write_ctx))
& EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK) != 0) {
unsigned char aad[13];
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
size_t packlen;
int packleni;
/* minimize address aliasing conflicts */
if ((max_send_fragment & 0xfff) == 0)
max_send_fragment -= 512;
if (tot == 0 || wb->buf == NULL) { /* allocate jumbo buffer */
ssl3_release_write_buffer(s);
packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE,
(int)max_send_fragment, NULL);
if (len >= 8 * max_send_fragment)
packlen *= 8;
else
packlen *= 4;
if (!ssl3_setup_write_buffer(s, 1, packlen)) {
/* SSLfatal() already called */
return -1;
}
} else if (tot == len) { /* done? */
/* free jumbo buffer */
ssl3_release_write_buffer(s);
*written = tot;
return 1;
}
n = (len - tot);
for (;;) {
if (n < 4 * max_send_fragment) {
/* free jumbo buffer */
ssl3_release_write_buffer(s);
break;
}
if (s->s3.alert_dispatch) {
i = ssl->method->ssl_dispatch_alert(ssl);
if (i <= 0) {
/* SSLfatal() already called if appropriate */
s->rlayer.wnum = tot;
return i;
}
}
if (n >= 8 * max_send_fragment)
nw = max_send_fragment * (mb_param.interleave = 8);
else
nw = max_send_fragment * (mb_param.interleave = 4);
memcpy(aad, s->rlayer.write_sequence, 8);
aad[8] = type;
aad[9] = (unsigned char)(s->version >> 8);
aad[10] = (unsigned char)(s->version);
aad[11] = 0;
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = nw;
packleni = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
packlen = (size_t)packleni;
if (packleni <= 0 || packlen > wb->len) { /* never happens */
/* free jumbo buffer */
ssl3_release_write_buffer(s);
break;
}
mb_param.out = wb->buf;
mb_param.inp = &buf[tot];
mb_param.len = nw;
if (EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param) <= 0)
return -1;
s->rlayer.write_sequence[7] += mb_param.interleave;
if (s->rlayer.write_sequence[7] < mb_param.interleave) {
int j = 6;
while (j >= 0 && (++s->rlayer.write_sequence[j--]) == 0) ;
}
wb->offset = 0;
wb->left = packlen;
s->rlayer.wpend_tot = nw;
s->rlayer.wpend_buf = &buf[tot];
s->rlayer.wpend_type = type;
s->rlayer.wpend_ret = nw;
i = ssl3_write_pending(s, type, &buf[tot], nw, &tmpwrit);
if (i <= 0) {
/* SSLfatal() already called if appropriate */
if (i < 0 && (!s->wbio || !BIO_should_retry(s->wbio))) {
/* free jumbo buffer */
ssl3_release_write_buffer(s);
}
s->rlayer.wnum = tot;
return i;
}
if (tmpwrit == n) {
/* free jumbo buffer */
ssl3_release_write_buffer(s);
*written = tot + tmpwrit;
return 1;
}
n -= tmpwrit;
tot += tmpwrit;
}
} else
#endif /* !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK */
if (tot == len) { /* done? */
if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_CONNECTION_IS_DTLS(s))
ssl3_release_write_buffer(s);
*written = tot;
return 1;
}
n = (len - tot);
max_send_fragment = ssl_get_max_send_fragment(s);
split_send_fragment = ssl_get_split_send_fragment(s);
/*
* If max_pipelines is 0 then this means "undefined" and we default to
* 1 pipeline. Similarly if the cipher does not support pipelined
* processing then we also only use 1 pipeline, or if we're not using
* explicit IVs
*/
maxpipes = s->max_pipelines;
if (maxpipes > SSL_MAX_PIPELINES) {
/*
* We should have prevented this when we set max_pipelines so we
* shouldn't get here
*/
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if (maxpipes == 0
|| s->enc_write_ctx == NULL
|| (EVP_CIPHER_get_flags(EVP_CIPHER_CTX_get0_cipher(s->enc_write_ctx))
& EVP_CIPH_FLAG_PIPELINE) == 0
|| !SSL_USE_EXPLICIT_IV(s))
maxpipes = 1;
if (max_send_fragment == 0
|| split_send_fragment == 0
|| split_send_fragment > max_send_fragment) {
/*
* We should have prevented this when we set/get the split and max send
* fragments so we shouldn't get here
*/
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
for (;;) {
size_t pipelens[SSL_MAX_PIPELINES], tmppipelen, remain;
size_t numpipes, j;
if (n == 0)
numpipes = 1;
else
numpipes = ((n - 1) / split_send_fragment) + 1;
if (numpipes > maxpipes)
numpipes = maxpipes;
if (n / numpipes >= max_send_fragment) {
/*
* We have enough data to completely fill all available
* pipelines
*/
for (j = 0; j < numpipes; j++) {
pipelens[j] = max_send_fragment;
}
} else {
/* We can partially fill all available pipelines */
tmppipelen = n / numpipes;
remain = n % numpipes;
for (j = 0; j < numpipes; j++) {
pipelens[j] = tmppipelen;
if (j < remain)
pipelens[j]++;
}
}
i = do_ssl3_write(s, type, &(buf[tot]), pipelens, numpipes, 0,
&tmpwrit);
if (i <= 0) {
/* SSLfatal() already called if appropriate */
/* XXX should we ssl3_release_write_buffer if i<0? */
s->rlayer.wnum = tot;
return i;
}
if (tmpwrit == n ||
(type == SSL3_RT_APPLICATION_DATA &&
(s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))) {
/*
* next chunk of data should get another prepended empty fragment
* in ciphersuites with known-IV weakness:
*/
s->s3.empty_fragment_done = 0;
if (tmpwrit == n
&& (s->mode & SSL_MODE_RELEASE_BUFFERS) != 0
&& !SSL_CONNECTION_IS_DTLS(s))
ssl3_release_write_buffer(s);
*written = tot + tmpwrit;
return 1;
}
n -= tmpwrit;
tot += tmpwrit;
}
}
int do_ssl3_write(SSL_CONNECTION *s, int type, const unsigned char *buf,
size_t *pipelens, size_t numpipes,
int create_empty_fragment, size_t *written)
{
WPACKET pkt[SSL_MAX_PIPELINES];
SSL3_RECORD wr[SSL_MAX_PIPELINES];
WPACKET *thispkt;
SSL3_RECORD *thiswr;
unsigned char *recordstart;
int i, mac_size, clear = 0;
size_t prefix_len = 0;
int eivlen = 0;
size_t align = 0;
SSL3_BUFFER *wb;
SSL_SESSION *sess;
size_t totlen = 0, len, wpinited = 0;
size_t j;
int using_ktls;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
for (j = 0; j < numpipes; j++)
totlen += pipelens[j];
/*
* first check if there is a SSL3_BUFFER still being written out. This
* will happen with non blocking IO
*/
if (RECORD_LAYER_write_pending(&s->rlayer)) {
/* Calls SSLfatal() as required */
return ssl3_write_pending(s, type, buf, totlen, written);
}
/* If we have an alert to send, lets send it */
if (s->s3.alert_dispatch) {
i = ssl->method->ssl_dispatch_alert(ssl);
if (i <= 0) {
/* SSLfatal() already called if appropriate */
return i;
}
/* if it went, fall through and send more stuff */
}
if (s->rlayer.numwpipes < numpipes) {
if (!ssl3_setup_write_buffer(s, numpipes, 0)) {
/* SSLfatal() already called */
return -1;
}
}
if (totlen == 0 && !create_empty_fragment)
return 0;
sess = s->session;
if ((sess == NULL)
|| (s->enc_write_ctx == NULL)
|| (EVP_MD_CTX_get0_md(s->write_hash) == NULL)) {
clear = s->enc_write_ctx ? 0 : 1; /* must be AEAD cipher */
mac_size = 0;
} else {
mac_size = EVP_MD_CTX_get_size(s->write_hash);
if (mac_size < 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
/*
* 'create_empty_fragment' is true only when this function calls itself
*/
if (!clear && !create_empty_fragment && !s->s3.empty_fragment_done) {
/*
* countermeasure against known-IV weakness in CBC ciphersuites (see
* http://www.openssl.org/~bodo/tls-cbc.txt)
*/
if (s->s3.need_empty_fragments && type == SSL3_RT_APPLICATION_DATA) {
/*
* recursive function call with 'create_empty_fragment' set; this
* prepares and buffers the data for an empty fragment (these
* 'prefix_len' bytes are sent out later together with the actual
* payload)
*/
size_t tmppipelen = 0;
int ret;
ret = do_ssl3_write(s, type, buf, &tmppipelen, 1, 1, &prefix_len);
if (ret <= 0) {
/* SSLfatal() already called if appropriate */
goto err;
}
if (prefix_len >
(SSL3_RT_HEADER_LENGTH + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD)) {
/* insufficient space */
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
s->s3.empty_fragment_done = 1;
}
using_ktls = BIO_get_ktls_send(s->wbio);
if (using_ktls) {
/*
* ktls doesn't modify the buffer, but to avoid a warning we need to
* discard the const qualifier.
* This doesn't leak memory because the buffers have been released when
* switching to ktls.
*/
SSL3_BUFFER_set_buf(&s->rlayer.wbuf[0], (unsigned char *)buf);
SSL3_BUFFER_set_offset(&s->rlayer.wbuf[0], 0);
SSL3_BUFFER_set_app_buffer(&s->rlayer.wbuf[0], 1);
goto wpacket_init_complete;
}
if (create_empty_fragment) {
wb = &s->rlayer.wbuf[0];
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
/*
* extra fragment would be couple of cipher blocks, which would be
* multiple of SSL3_ALIGN_PAYLOAD, so if we want to align the real
* payload, then we can just pretend we simply have two headers.
*/
align = (size_t)SSL3_BUFFER_get_buf(wb) + 2 * SSL3_RT_HEADER_LENGTH;
align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD);
#endif
SSL3_BUFFER_set_offset(wb, align);
if (!WPACKET_init_static_len(&pkt[0], SSL3_BUFFER_get_buf(wb),
SSL3_BUFFER_get_len(wb), 0)
|| !WPACKET_allocate_bytes(&pkt[0], align, NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
wpinited = 1;
} else if (prefix_len) {
wb = &s->rlayer.wbuf[0];
if (!WPACKET_init_static_len(&pkt[0],
SSL3_BUFFER_get_buf(wb),
SSL3_BUFFER_get_len(wb), 0)
|| !WPACKET_allocate_bytes(&pkt[0], SSL3_BUFFER_get_offset(wb)
+ prefix_len, NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
wpinited = 1;
} else {
for (j = 0; j < numpipes; j++) {
thispkt = &pkt[j];
wb = &s->rlayer.wbuf[j];
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0
align = (size_t)SSL3_BUFFER_get_buf(wb) + SSL3_RT_HEADER_LENGTH;
align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD);
#endif
SSL3_BUFFER_set_offset(wb, align);
if (!WPACKET_init_static_len(thispkt, SSL3_BUFFER_get_buf(wb),
SSL3_BUFFER_get_len(wb), 0)
|| !WPACKET_allocate_bytes(thispkt, align, NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
wpinited++;
}
}
/* Explicit IV length, block ciphers appropriate version flag */
if (s->enc_write_ctx && SSL_USE_EXPLICIT_IV(s)
&& !SSL_CONNECTION_TREAT_AS_TLS13(s)) {
int mode = EVP_CIPHER_CTX_get_mode(s->enc_write_ctx);
if (mode == EVP_CIPH_CBC_MODE) {
eivlen = EVP_CIPHER_CTX_get_iv_length(s->enc_write_ctx);
if (eivlen < 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_LIBRARY_BUG);
goto err;
}
if (eivlen <= 1)
eivlen = 0;
} else if (mode == EVP_CIPH_GCM_MODE) {
/* Need explicit part of IV for GCM mode */
eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN;
} else if (mode == EVP_CIPH_CCM_MODE) {
eivlen = EVP_CCM_TLS_EXPLICIT_IV_LEN;
}
}
wpacket_init_complete:
totlen = 0;
/* Clear our SSL3_RECORD structures */
memset(wr, 0, sizeof(wr));
for (j = 0; j < numpipes; j++) {
unsigned int version = (s->version == TLS1_3_VERSION) ? TLS1_2_VERSION
: s->version;
unsigned char *compressdata = NULL;
size_t maxcomplen;
unsigned int rectype;
thispkt = &pkt[j];
thiswr = &wr[j];
/*
* In TLSv1.3, once encrypting, we always use application data for the
* record type
*/
if (SSL_CONNECTION_TREAT_AS_TLS13(s)
&& s->enc_write_ctx != NULL
&& (s->statem.enc_write_state != ENC_WRITE_STATE_WRITE_PLAIN_ALERTS
|| type != SSL3_RT_ALERT))
rectype = SSL3_RT_APPLICATION_DATA;
else
rectype = type;
SSL3_RECORD_set_type(thiswr, rectype);
/*
* Some servers hang if initial client hello is larger than 256 bytes
* and record version number > TLS 1.0
*/
if (SSL_get_state(ssl) == TLS_ST_CW_CLNT_HELLO
&& !s->renegotiate
&& TLS1_get_version(ssl) > TLS1_VERSION
&& s->hello_retry_request == SSL_HRR_NONE)
version = TLS1_VERSION;
SSL3_RECORD_set_rec_version(thiswr, version);
maxcomplen = pipelens[j];
if (s->compress != NULL)
maxcomplen += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
/*
* When using offload kernel will write the header.
* Otherwise write the header now
*/
if (!using_ktls
&& (!WPACKET_put_bytes_u8(thispkt, rectype)
|| !WPACKET_put_bytes_u16(thispkt, version)
|| !WPACKET_start_sub_packet_u16(thispkt)
|| (eivlen > 0
&& !WPACKET_allocate_bytes(thispkt, eivlen, NULL))
|| (maxcomplen > 0
&& !WPACKET_reserve_bytes(thispkt, maxcomplen,
&compressdata)))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
/* lets setup the record stuff. */
SSL3_RECORD_set_data(thiswr, compressdata);
SSL3_RECORD_set_length(thiswr, pipelens[j]);
SSL3_RECORD_set_input(thiswr, (unsigned char *)&buf[totlen]);
totlen += pipelens[j];
/*
* we now 'read' from thiswr->input, thiswr->length bytes into
* thiswr->data
*/
/* first we compress */
if (s->compress != NULL) {
if (!ssl3_do_compress(s, thiswr)
|| !WPACKET_allocate_bytes(thispkt, thiswr->length, NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_COMPRESSION_FAILURE);
goto err;
}
} else {
if (using_ktls) {
SSL3_RECORD_reset_data(&wr[j]);
} else {
if (!WPACKET_memcpy(thispkt, thiswr->input, thiswr->length)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
SSL3_RECORD_reset_input(&wr[j]);
}
}
if (SSL_CONNECTION_TREAT_AS_TLS13(s)
&& !using_ktls
&& s->enc_write_ctx != NULL
&& (s->statem.enc_write_state != ENC_WRITE_STATE_WRITE_PLAIN_ALERTS
|| type != SSL3_RT_ALERT)) {
size_t rlen, max_send_fragment;
if (!WPACKET_put_bytes_u8(thispkt, type)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
SSL3_RECORD_add_length(thiswr, 1);
/* Add TLS1.3 padding */
max_send_fragment = ssl_get_max_send_fragment(s);
rlen = SSL3_RECORD_get_length(thiswr);
if (rlen < max_send_fragment) {
size_t padding = 0;
size_t max_padding = max_send_fragment - rlen;
if (s->record_padding_cb != NULL) {
padding = s->record_padding_cb(ssl, type, rlen, s->record_padding_arg);
} else if (s->block_padding > 0) {
size_t mask = s->block_padding - 1;
size_t remainder;
/* optimize for power of 2 */
if ((s->block_padding & mask) == 0)
remainder = rlen & mask;
else
remainder = rlen % s->block_padding;
/* don't want to add a block of padding if we don't have to */
if (remainder == 0)
padding = 0;
else
padding = s->block_padding - remainder;
}
if (padding > 0) {
/* do not allow the record to exceed max plaintext length */
if (padding > max_padding)
padding = max_padding;
if (!WPACKET_memset(thispkt, 0, padding)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
ERR_R_INTERNAL_ERROR);
goto err;
}
SSL3_RECORD_add_length(thiswr, padding);
}
}
}
/*
* we should still have the output to thiswr->data and the input from
* wr->input. Length should be thiswr->length. thiswr->data still points
* in the wb->buf
*/
if (!using_ktls && !SSL_WRITE_ETM(s) && mac_size != 0) {
unsigned char *mac;
if (!WPACKET_allocate_bytes(thispkt, mac_size, &mac)
|| !ssl->method->ssl3_enc->mac(s, thiswr, mac, 1)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
/*
* Reserve some bytes for any growth that may occur during encryption.
* This will be at most one cipher block or the tag length if using
* AEAD. SSL_RT_MAX_CIPHER_BLOCK_SIZE covers either case.
*/
if (!using_ktls) {
if (!WPACKET_reserve_bytes(thispkt,
SSL_RT_MAX_CIPHER_BLOCK_SIZE,
NULL)
/*
* We also need next the amount of bytes written to this
* sub-packet
*/
|| !WPACKET_get_length(thispkt, &len)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Get a pointer to the start of this record excluding header */
recordstart = WPACKET_get_curr(thispkt) - len;
SSL3_RECORD_set_data(thiswr, recordstart);
SSL3_RECORD_reset_input(thiswr);
SSL3_RECORD_set_length(thiswr, len);
}
}
if (s->statem.enc_write_state == ENC_WRITE_STATE_WRITE_PLAIN_ALERTS) {
/*
* We haven't actually negotiated the version yet, but we're trying to
* send early data - so we need to use the tls13enc function.
*/
if (tls13_enc(s, wr, numpipes, 1, NULL, mac_size) < 1) {
if (!ossl_statem_in_error(s)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
}
goto err;
}
} else {
if (!using_ktls) {
if (ssl->method->ssl3_enc->enc(s, wr, numpipes, 1, NULL,
mac_size) < 1) {
if (!ossl_statem_in_error(s)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
}
goto err;
}
}
}
for (j = 0; j < numpipes; j++) {
size_t origlen;
thispkt = &pkt[j];
thiswr = &wr[j];
if (using_ktls)
goto mac_done;
/* Allocate bytes for the encryption overhead */
if (!WPACKET_get_length(thispkt, &origlen)
/* Encryption should never shrink the data! */
|| origlen > thiswr->length
|| (thiswr->length > origlen
&& !WPACKET_allocate_bytes(thispkt,
thiswr->length - origlen,
NULL))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (SSL_WRITE_ETM(s) && mac_size != 0) {
unsigned char *mac;
if (!WPACKET_allocate_bytes(thispkt, mac_size, &mac)
|| !ssl->method->ssl3_enc->mac(s, thiswr, mac, 1)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
SSL3_RECORD_add_length(thiswr, mac_size);
}
if (!WPACKET_get_length(thispkt, &len)
|| !WPACKET_close(thispkt)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (s->msg_callback) {
recordstart = WPACKET_get_curr(thispkt) - len
- SSL3_RT_HEADER_LENGTH;
s->msg_callback(1, thiswr->rec_version, SSL3_RT_HEADER, recordstart,
SSL3_RT_HEADER_LENGTH, ssl,
s->msg_callback_arg);
if (SSL_CONNECTION_TREAT_AS_TLS13(s) && s->enc_write_ctx != NULL) {
unsigned char ctype = type;
s->msg_callback(1, thiswr->rec_version, SSL3_RT_INNER_CONTENT_TYPE,
&ctype, 1, ssl, s->msg_callback_arg);
}
}
if (!WPACKET_finish(thispkt)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
/* header is added by the kernel when using offload */
SSL3_RECORD_add_length(thiswr, SSL3_RT_HEADER_LENGTH);
if (create_empty_fragment) {
/*
* we are in a recursive call; just return the length, don't write
* out anything here
*/
if (j > 0) {
/* We should never be pipelining an empty fragment!! */
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
*written = SSL3_RECORD_get_length(thiswr);
return 1;
}
mac_done:
/*
* we should now have thiswr->data pointing to the encrypted data, which
* is thiswr->length long
*/
SSL3_RECORD_set_type(thiswr, type); /* not needed but helps for
* debugging */
/* now let's set up wb */
SSL3_BUFFER_set_left(&s->rlayer.wbuf[j],
prefix_len + SSL3_RECORD_get_length(thiswr));
}
/*
* memorize arguments so that ssl3_write_pending can detect bad write
* retries later
*/
s->rlayer.wpend_tot = totlen;
s->rlayer.wpend_buf = buf;
s->rlayer.wpend_type = type;
s->rlayer.wpend_ret = totlen;
/* we now just need to write the buffer */
return ssl3_write_pending(s, type, buf, totlen, written);
err:
for (j = 0; j < wpinited; j++)
WPACKET_cleanup(&pkt[j]);
return -1;
}
/* if SSL3_BUFFER_get_left() != 0, we need to call this
*
* Return values are as per SSL_write()
*/
int ssl3_write_pending(SSL_CONNECTION *s, int type, const unsigned char *buf,
size_t len, size_t *written)
{
int i;
SSL3_BUFFER *wb = s->rlayer.wbuf;
size_t currbuf = 0;
size_t tmpwrit = 0;
if ((s->rlayer.wpend_tot > len)
|| (!(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER)
&& (s->rlayer.wpend_buf != buf))
|| (s->rlayer.wpend_type != type)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_WRITE_RETRY);
return -1;
}
for (;;) {
/* Loop until we find a buffer we haven't written out yet */
if (SSL3_BUFFER_get_left(&wb[currbuf]) == 0
&& currbuf < s->rlayer.numwpipes - 1) {
currbuf++;
continue;
}
clear_sys_error();
if (s->wbio != NULL) {
s->rwstate = SSL_WRITING;
/*
* To prevent coalescing of control and data messages,
* such as in buffer_write, we flush the BIO
*/
if (BIO_get_ktls_send(s->wbio) && type != SSL3_RT_APPLICATION_DATA) {
i = BIO_flush(s->wbio);
if (i <= 0)
return i;
BIO_set_ktls_ctrl_msg(s->wbio, type);
}
i = BIO_write(s->wbio, (char *)
&(SSL3_BUFFER_get_buf(&wb[currbuf])
[SSL3_BUFFER_get_offset(&wb[currbuf])]),
(unsigned int)SSL3_BUFFER_get_left(&wb[currbuf]));
if (i >= 0)
tmpwrit = i;
} else {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BIO_NOT_SET);
i = -1;
}
/*
* When an empty fragment is sent on a connection using KTLS,
* it is sent as a write of zero bytes. If this zero byte
* write succeeds, i will be 0 rather than a non-zero value.
* Treat i == 0 as success rather than an error for zero byte
* writes to permit this case.
*/
if (i >= 0 && tmpwrit == SSL3_BUFFER_get_left(&wb[currbuf])) {
SSL3_BUFFER_set_left(&wb[currbuf], 0);
SSL3_BUFFER_add_offset(&wb[currbuf], tmpwrit);
if (currbuf + 1 < s->rlayer.numwpipes)
continue;
s->rwstate = SSL_NOTHING;
*written = s->rlayer.wpend_ret;
return 1;
} else if (i <= 0) {
if (SSL_CONNECTION_IS_DTLS(s)) {
/*
* For DTLS, just drop it. That's kind of the whole point in
* using a datagram service
*/
SSL3_BUFFER_set_left(&wb[currbuf], 0);
}
return i;
}
SSL3_BUFFER_add_offset(&wb[currbuf], tmpwrit);
SSL3_BUFFER_sub_left(&wb[currbuf], tmpwrit);
}
}
/*-
* Return up to 'len' payload bytes received in 'type' records.
* 'type' is one of the following:
*
* - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
* - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
* - 0 (during a shutdown, no data has to be returned)
*
* If we don't have stored data to work from, read a SSL/TLS record first
* (possibly multiple records if we still don't have anything to return).
*
* This function must handle any surprises the peer may have for us, such as
* Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec
* messages are treated as if they were handshake messages *if* the |recvd_type|
* argument is non NULL.
* Also if record payloads contain fragments too small to process, we store
* them until there is enough for the respective protocol (the record protocol
* may use arbitrary fragmentation and even interleaving):
* Change cipher spec protocol
* just 1 byte needed, no need for keeping anything stored
* Alert protocol
* 2 bytes needed (AlertLevel, AlertDescription)
* Handshake protocol
* 4 bytes needed (HandshakeType, uint24 length) -- we just have
* to detect unexpected Client Hello and Hello Request messages
* here, anything else is handled by higher layers
* Application data protocol
* none of our business
*/
int ssl3_read_bytes(SSL *ssl, int type, int *recvd_type, unsigned char *buf,
size_t len, int peek, size_t *readbytes)
{
int i, j, ret;
size_t n, curr_rec, num_recs, totalbytes;
SSL3_RECORD *rr;
SSL3_BUFFER *rbuf;
void (*cb) (const SSL *ssl, int type2, int val) = NULL;
int is_tls13;
SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl);
is_tls13 = SSL_CONNECTION_IS_TLS13(s);
rbuf = s->rrlmethod->get0_rbuf(s->rrl);
if (!SSL3_BUFFER_is_initialised(rbuf)) {
/* Not initialized yet */
if (!ssl3_setup_read_buffer(s)) {
/* SSLfatal() already called */
return -1;
}
}
if ((type && (type != SSL3_RT_APPLICATION_DATA)
&& (type != SSL3_RT_HANDSHAKE)) || (peek
&& (type !=
SSL3_RT_APPLICATION_DATA))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0))
/* (partially) satisfy request from storage */
{
unsigned char *src = s->rlayer.handshake_fragment;
unsigned char *dst = buf;
unsigned int k;
/* peek == 0 */
n = 0;
while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) {
*dst++ = *src++;
len--;
s->rlayer.handshake_fragment_len--;
n++;
}
/* move any remaining fragment bytes: */
for (k = 0; k < s->rlayer.handshake_fragment_len; k++)
s->rlayer.handshake_fragment[k] = *src++;
if (recvd_type != NULL)
*recvd_type = SSL3_RT_HANDSHAKE;
*readbytes = n;
return 1;
}
/*
* Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.
*/
if (!ossl_statem_get_in_handshake(s) && SSL_in_init(ssl)) {
/* type == SSL3_RT_APPLICATION_DATA */
i = s->handshake_func(ssl);
/* SSLfatal() already called */
if (i < 0)
return i;
if (i == 0)
return -1;
}
start:
s->rwstate = SSL_NOTHING;
/*-
* For each record 'i' up to |num_recs]
* rr[i].type - is the type of record
* rr[i].data, - data
* rr[i].off, - offset into 'data' for next read
* rr[i].length, - number of bytes.
*/
rr = s->rlayer.rrec;
num_recs = RECORD_LAYER_get_numrpipes(&s->rlayer);
do {
/* get new records if necessary */
if (num_recs == 0) {
ret = ssl3_get_record(s);
if (ret <= 0) {
/* SSLfatal() already called if appropriate */
return ret;
}
num_recs = RECORD_LAYER_get_numrpipes(&s->rlayer);
if (num_recs == 0) {
/* Shouldn't happen */
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
}
/* Skip over any records we have already read */
for (curr_rec = 0;
curr_rec < num_recs && SSL3_RECORD_is_read(&rr[curr_rec]);
curr_rec++) ;
if (curr_rec == num_recs) {
RECORD_LAYER_set_numrpipes(&s->rlayer, 0);
num_recs = 0;
curr_rec = 0;
}
} while (num_recs == 0);
rr = &rr[curr_rec];
if (s->rlayer.handshake_fragment_len > 0
&& SSL3_RECORD_get_type(rr) != SSL3_RT_HANDSHAKE
&& SSL_CONNECTION_IS_TLS13(s)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_MIXED_HANDSHAKE_AND_NON_HANDSHAKE_DATA);
return -1;
}
/*
* Reset the count of consecutive warning alerts if we've got a non-empty
* record that isn't an alert.
*/
if (SSL3_RECORD_get_type(rr) != SSL3_RT_ALERT
&& SSL3_RECORD_get_length(rr) != 0)
s->rlayer.alert_count = 0;
/* we now have a packet which can be read and processed */
if (s->s3.change_cipher_spec /* set when we receive ChangeCipherSpec,
* reset by ssl3_get_finished */
&& (SSL3_RECORD_get_type(rr) != SSL3_RT_HANDSHAKE)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_DATA_BETWEEN_CCS_AND_FINISHED);
return -1;
}
/*
* If the other end has shut down, throw anything we read away (even in
* 'peek' mode)
*/
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
SSL3_RECORD_set_length(rr, 0);
s->rwstate = SSL_NOTHING;
return 0;
}
if (type == SSL3_RECORD_get_type(rr)
|| (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC
&& type == SSL3_RT_HANDSHAKE && recvd_type != NULL
&& !is_tls13)) {
/*
* SSL3_RT_APPLICATION_DATA or
* SSL3_RT_HANDSHAKE or
* SSL3_RT_CHANGE_CIPHER_SPEC
*/
/*
* make sure that we are not getting application data when we are
* doing a handshake for the first time
*/
if (SSL_in_init(ssl) && type == SSL3_RT_APPLICATION_DATA
&& s->enc_read_ctx == NULL) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_APP_DATA_IN_HANDSHAKE);
return -1;
}
if (type == SSL3_RT_HANDSHAKE
&& SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC
&& s->rlayer.handshake_fragment_len > 0) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
return -1;
}
if (recvd_type != NULL)
*recvd_type = SSL3_RECORD_get_type(rr);
if (len == 0) {
/*
* Mark a zero length record as read. This ensures multiple calls to
* SSL_read() with a zero length buffer will eventually cause
* SSL_pending() to report data as being available.
*/
if (SSL3_RECORD_get_length(rr) == 0)
SSL3_RECORD_set_read(rr);
return 0;
}
totalbytes = 0;
do {
if (len - totalbytes > SSL3_RECORD_get_length(rr))
n = SSL3_RECORD_get_length(rr);
else
n = len - totalbytes;
memcpy(buf, &(rr->data[rr->off]), n);
buf += n;
if (peek) {
/* Mark any zero length record as consumed CVE-2016-6305 */
if (SSL3_RECORD_get_length(rr) == 0)
SSL3_RECORD_set_read(rr);
} else {
if (s->options & SSL_OP_CLEANSE_PLAINTEXT)
OPENSSL_cleanse(&(rr->data[rr->off]), n);
SSL3_RECORD_sub_length(rr, n);
SSL3_RECORD_add_off(rr, n);
if (SSL3_RECORD_get_length(rr) == 0) {
s->rlayer.rstate = SSL_ST_READ_HEADER;
SSL3_RECORD_set_off(rr, 0);
SSL3_RECORD_set_read(rr);
}
}
if (SSL3_RECORD_get_length(rr) == 0
|| (peek && n == SSL3_RECORD_get_length(rr))) {
curr_rec++;
rr++;
}
totalbytes += n;
} while (type == SSL3_RT_APPLICATION_DATA && curr_rec < num_recs
&& totalbytes < len);
if (totalbytes == 0) {
/* We must have read empty records. Get more data */
goto start;
}
if (!peek && curr_rec == num_recs
&& (s->mode & SSL_MODE_RELEASE_BUFFERS)
&& SSL3_BUFFER_get_left(rbuf) == 0)
ssl3_release_read_buffer(s);
*readbytes = totalbytes;
return 1;
}
/*
* If we get here, then type != rr->type; if we have a handshake message,
* then it was unexpected (Hello Request or Client Hello) or invalid (we
* were actually expecting a CCS).
*/
/*
* Lets just double check that we've not got an SSLv2 record
*/
if (rr->rec_version == SSL2_VERSION) {
/*
* Should never happen. ssl3_get_record() should only give us an SSLv2
* record back if this is the first packet and we are looking for an
* initial ClientHello. Therefore |type| should always be equal to
* |rr->type|. If not then something has gone horribly wrong
*/
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if (ssl->method->version == TLS_ANY_VERSION
&& (s->server || rr->type != SSL3_RT_ALERT)) {
/*
* If we've got this far and still haven't decided on what version
* we're using then this must be a client side alert we're dealing
* with. We shouldn't be receiving anything other than a ClientHello
* if we are a server.
*/
s->version = rr->rec_version;
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_MESSAGE);
return -1;
}
/*-
* s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE;
* (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
*/
if (SSL3_RECORD_get_type(rr) == SSL3_RT_ALERT) {
unsigned int alert_level, alert_descr;
unsigned char *alert_bytes = SSL3_RECORD_get_data(rr)
+ SSL3_RECORD_get_off(rr);
PACKET alert;
if (!PACKET_buf_init(&alert, alert_bytes, SSL3_RECORD_get_length(rr))
|| !PACKET_get_1(&alert, &alert_level)
|| !PACKET_get_1(&alert, &alert_descr)
|| PACKET_remaining(&alert) != 0) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_INVALID_ALERT);
return -1;
}
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_ALERT, alert_bytes, 2, ssl,
s->msg_callback_arg);
if (s->info_callback != NULL)
cb = s->info_callback;
else if (ssl->ctx->info_callback != NULL)
cb = ssl->ctx->info_callback;
if (cb != NULL) {
j = (alert_level << 8) | alert_descr;
cb(ssl, SSL_CB_READ_ALERT, j);
}
if (alert_level == SSL3_AL_WARNING
|| (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED)) {
s->s3.warn_alert = alert_descr;
SSL3_RECORD_set_read(rr);
s->rlayer.alert_count++;
if (s->rlayer.alert_count == MAX_WARN_ALERT_COUNT) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MANY_WARN_ALERTS);
return -1;
}
}
/*
* Apart from close_notify the only other warning alert in TLSv1.3
* is user_cancelled - which we just ignore.
*/
if (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED) {
goto start;
} else if (alert_descr == SSL_AD_CLOSE_NOTIFY
&& (is_tls13 || alert_level == SSL3_AL_WARNING)) {
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
return 0;
} else if (alert_level == SSL3_AL_FATAL || is_tls13) {
s->rwstate = SSL_NOTHING;
s->s3.fatal_alert = alert_descr;
SSLfatal_data(s, SSL_AD_NO_ALERT,
SSL_AD_REASON_OFFSET + alert_descr,
"SSL alert number %d", alert_descr);
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
SSL3_RECORD_set_read(rr);
SSL_CTX_remove_session(s->session_ctx, s->session);
return 0;
} else if (alert_descr == SSL_AD_NO_RENEGOTIATION) {
/*
* This is a warning but we receive it if we requested
* renegotiation and the peer denied it. Terminate with a fatal
* alert because if application tried to renegotiate it
* presumably had a good reason and expects it to succeed. In
* future we might have a renegotiation where we don't care if
* the peer refused it where we carry on.
*/
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_RENEGOTIATION);
return -1;
} else if (alert_level == SSL3_AL_WARNING) {
/* We ignore any other warning alert in TLSv1.2 and below */
goto start;
}
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_UNKNOWN_ALERT_TYPE);
return -1;
}
if ((s->shutdown & SSL_SENT_SHUTDOWN) != 0) {
if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) {
BIO *rbio;
/*
* We ignore any handshake messages sent to us unless they are
* TLSv1.3 in which case we want to process them. For all other
* handshake messages we can't do anything reasonable with them
* because we are unable to write any response due to having already
* sent close_notify.
*/
if (!SSL_CONNECTION_IS_TLS13(s)) {
SSL3_RECORD_set_length(rr, 0);
SSL3_RECORD_set_read(rr);
if ((s->mode & SSL_MODE_AUTO_RETRY) != 0)
goto start;
s->rwstate = SSL_READING;
rbio = SSL_get_rbio(ssl);
BIO_clear_retry_flags(rbio);
BIO_set_retry_read(rbio);
return -1;
}
} else {
/*
* The peer is continuing to send application data, but we have
* already sent close_notify. If this was expected we should have
* been called via SSL_read() and this would have been handled
* above.
* No alert sent because we already sent close_notify
*/
SSL3_RECORD_set_length(rr, 0);
SSL3_RECORD_set_read(rr);
SSLfatal(s, SSL_AD_NO_ALERT,
SSL_R_APPLICATION_DATA_AFTER_CLOSE_NOTIFY);
return -1;
}
}
/*
* For handshake data we have 'fragment' storage, so fill that so that we
* can process the header at a fixed place. This is done after the
* "SHUTDOWN" code above to avoid filling the fragment storage with data
* that we're just going to discard.
*/
if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) {
size_t dest_maxlen = sizeof(s->rlayer.handshake_fragment);
unsigned char *dest = s->rlayer.handshake_fragment;
size_t *dest_len = &s->rlayer.handshake_fragment_len;
n = dest_maxlen - *dest_len; /* available space in 'dest' */
if (SSL3_RECORD_get_length(rr) < n)
n = SSL3_RECORD_get_length(rr); /* available bytes */
/* now move 'n' bytes: */
memcpy(dest + *dest_len,
SSL3_RECORD_get_data(rr) + SSL3_RECORD_get_off(rr), n);
SSL3_RECORD_add_off(rr, n);
SSL3_RECORD_sub_length(rr, n);
*dest_len += n;
if (SSL3_RECORD_get_length(rr) == 0)
SSL3_RECORD_set_read(rr);
if (*dest_len < dest_maxlen)
goto start; /* fragment was too small */
}
if (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
return -1;
}
/*
* Unexpected handshake message (ClientHello, NewSessionTicket (TLS1.3) or
* protocol violation)
*/
if ((s->rlayer.handshake_fragment_len >= 4)
&& !ossl_statem_get_in_handshake(s)) {
int ined = (s->early_data_state == SSL_EARLY_DATA_READING);
/* We found handshake data, so we're going back into init */
ossl_statem_set_in_init(s, 1);
i = s->handshake_func(ssl);
/* SSLfatal() already called if appropriate */
if (i < 0)
return i;
if (i == 0) {
return -1;
}
/*
* If we were actually trying to read early data and we found a
* handshake message, then we don't want to continue to try and read
* the application data any more. It won't be "early" now.
*/
if (ined)
return -1;
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (SSL3_BUFFER_get_left(rbuf) == 0) {
/* no read-ahead left? */
BIO *bio;
/*
* In the case where we try to read application data, but we
* trigger an SSL handshake, we return -1 with the retry
* option set. Otherwise renegotiation may cause nasty
* problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(ssl);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return -1;
}
}
goto start;
}
switch (SSL3_RECORD_get_type(rr)) {
default:
/*
* TLS 1.0 and 1.1 say you SHOULD ignore unrecognised record types, but
* TLS 1.2 says you MUST send an unexpected message alert. We use the
* TLS 1.2 behaviour for all protocol versions to prevent issues where
* no progress is being made and the peer continually sends unrecognised
* record types, using up resources processing them.
*/
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
return -1;
case SSL3_RT_CHANGE_CIPHER_SPEC:
case SSL3_RT_ALERT:
case SSL3_RT_HANDSHAKE:
/*
* we already handled all of these, with the possible exception of
* SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but
* that should not happen when type != rr->type
*/
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, ERR_R_INTERNAL_ERROR);
return -1;
case SSL3_RT_APPLICATION_DATA:
/*
* At this point, we were expecting handshake data, but have
* application data. If the library was running inside ssl3_read()
* (i.e. in_read_app_data is set) and it makes sense to read
* application data at this point (session renegotiation not yet
* started), we will indulge it.
*/
if (ossl_statem_app_data_allowed(s)) {
s->s3.in_read_app_data = 2;
return -1;
} else if (ossl_statem_skip_early_data(s)) {
/*
* This can happen after a client sends a CH followed by early_data,
* but the server responds with a HelloRetryRequest. The server
* reads the next record from the client expecting to find a
* plaintext ClientHello but gets a record which appears to be
* application data. The trial decrypt "works" because null
* decryption was applied. We just skip it and move on to the next
* record.
*/
if (!ossl_early_data_count_ok(s, rr->length,
EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
/* SSLfatal() already called */
return -1;
}
SSL3_RECORD_set_read(rr);
goto start;
} else {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
return -1;
}
}
}
void ssl3_record_sequence_update(unsigned char *seq)
{
int i;
for (i = 7; i >= 0; i--) {
++seq[i];
if (seq[i] != 0)
break;
}
}
/*
* Returns true if the current rrec was sent in SSLv2 backwards compatible
* format and false otherwise.
*/
int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl)
{
return SSL3_RECORD_is_sslv2_record(&rl->rrec[0]);
}
/*
* Returns the length in bytes of the current rrec
*/
size_t RECORD_LAYER_get_rrec_length(RECORD_LAYER *rl)
{
return SSL3_RECORD_get_length(&rl->rrec[0]);
}