openssl/ssl/record/rec_layer_d1.c
Matt Caswell 6218a1f57e Remove struct ccs_header_st
struct ccs_header_st is not used so it should be removed.

Reviewed-by: Rich Salz <rsalz@openssl.org>
2015-05-29 16:24:42 +01:00

1311 lines
44 KiB
C

/* ssl/record/rec_layer_d1.c */
/*
* DTLS implementation written by Nagendra Modadugu
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
*/
/* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include <errno.h>
#define USE_SOCKETS
#include "../ssl_locl.h"
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <openssl/pqueue.h>
#include <openssl/rand.h>
#include "record_locl.h"
int DTLS_RECORD_LAYER_new(RECORD_LAYER *rl)
{
DTLS_RECORD_LAYER *d;
if ((d = OPENSSL_malloc(sizeof(*d))) == NULL)
return (0);
rl->d = d;
d->unprocessed_rcds.q = pqueue_new();
d->processed_rcds.q = pqueue_new();
d->buffered_app_data.q = pqueue_new();
if (!d->unprocessed_rcds.q || !d->processed_rcds.q
|| !d->buffered_app_data.q) {
pqueue_free(d->unprocessed_rcds.q);
pqueue_free(d->processed_rcds.q);
pqueue_free(d->buffered_app_data.q);
OPENSSL_free(d);
rl->d = NULL;
return (0);
}
return 1;
}
void DTLS_RECORD_LAYER_free(RECORD_LAYER *rl)
{
DTLS_RECORD_LAYER_clear(rl);
pqueue_free(rl->d->unprocessed_rcds.q);
pqueue_free(rl->d->processed_rcds.q);
pqueue_free(rl->d->buffered_app_data.q);
OPENSSL_free(rl->d);
rl->d = NULL;
}
void DTLS_RECORD_LAYER_clear(RECORD_LAYER *rl)
{
DTLS_RECORD_LAYER *d;
pitem *item = NULL;
DTLS1_RECORD_DATA *rdata;
pqueue unprocessed_rcds;
pqueue processed_rcds;
pqueue buffered_app_data;
d = rl->d;
while ((item = pqueue_pop(d->unprocessed_rcds.q)) != NULL) {
rdata = (DTLS1_RECORD_DATA *)item->data;
OPENSSL_free(rdata->rbuf.buf);
OPENSSL_free(item->data);
pitem_free(item);
}
while ((item = pqueue_pop(d->processed_rcds.q)) != NULL) {
rdata = (DTLS1_RECORD_DATA *)item->data;
OPENSSL_free(rdata->rbuf.buf);
OPENSSL_free(item->data);
pitem_free(item);
}
while ((item = pqueue_pop(d->buffered_app_data.q)) != NULL) {
rdata = (DTLS1_RECORD_DATA *)item->data;
OPENSSL_free(rdata->rbuf.buf);
OPENSSL_free(item->data);
pitem_free(item);
}
unprocessed_rcds = d->unprocessed_rcds.q;
processed_rcds = d->processed_rcds.q;
buffered_app_data = d->buffered_app_data.q;
memset(d, 0, sizeof(*d));
d->unprocessed_rcds.q = unprocessed_rcds;
d->processed_rcds.q = processed_rcds;
d->buffered_app_data.q = buffered_app_data;
}
void DTLS_RECORD_LAYER_set_saved_w_epoch(RECORD_LAYER *rl, unsigned short e)
{
if (e == rl->d->w_epoch - 1) {
memcpy(rl->d->curr_write_sequence,
rl->write_sequence,
sizeof(rl->write_sequence));
memcpy(rl->write_sequence,
rl->d->last_write_sequence,
sizeof(rl->write_sequence));
} else if (e == rl->d->w_epoch + 1) {
memcpy(rl->d->last_write_sequence,
rl->write_sequence,
sizeof(unsigned char[8]));
memcpy(rl->write_sequence,
rl->d->curr_write_sequence,
sizeof(rl->write_sequence));
}
rl->d->w_epoch = e;
}
void DTLS_RECORD_LAYER_resync_write(RECORD_LAYER *rl)
{
memcpy(rl->write_sequence, rl->read_sequence, sizeof(rl->write_sequence));
}
static int have_handshake_fragment(SSL *s, int type, unsigned char *buf,
int len, int peek);
/* copy buffered record into SSL structure */
static int dtls1_copy_record(SSL *s, pitem *item)
{
DTLS1_RECORD_DATA *rdata;
rdata = (DTLS1_RECORD_DATA *)item->data;
SSL3_BUFFER_release(&s->rlayer.rbuf);
s->rlayer.packet = rdata->packet;
s->rlayer.packet_length = rdata->packet_length;
memcpy(&s->rlayer.rbuf, &(rdata->rbuf), sizeof(SSL3_BUFFER));
memcpy(&s->rlayer.rrec, &(rdata->rrec), sizeof(SSL3_RECORD));
/* Set proper sequence number for mac calculation */
memcpy(&(s->rlayer.read_sequence[2]), &(rdata->packet[5]), 6);
return (1);
}
int dtls1_buffer_record(SSL *s, record_pqueue *queue, unsigned char *priority)
{
DTLS1_RECORD_DATA *rdata;
pitem *item;
/* Limit the size of the queue to prevent DOS attacks */
if (pqueue_size(queue->q) >= 100)
return 0;
rdata = OPENSSL_malloc(sizeof(*rdata));
item = pitem_new(priority, rdata);
if (rdata == NULL || item == NULL) {
OPENSSL_free(rdata);
pitem_free(item);
SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
return -1;
}
rdata->packet = s->rlayer.packet;
rdata->packet_length = s->rlayer.packet_length;
memcpy(&(rdata->rbuf), &s->rlayer.rbuf, sizeof(SSL3_BUFFER));
memcpy(&(rdata->rrec), &s->rlayer.rrec, sizeof(SSL3_RECORD));
item->data = rdata;
#ifndef OPENSSL_NO_SCTP
/* Store bio_dgram_sctp_rcvinfo struct */
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
(s->state == SSL3_ST_SR_FINISHED_A
|| s->state == SSL3_ST_CR_FINISHED_A)) {
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SCTP_GET_RCVINFO,
sizeof(rdata->recordinfo), &rdata->recordinfo);
}
#endif
s->rlayer.packet = NULL;
s->rlayer.packet_length = 0;
memset(&s->rlayer.rbuf, 0, sizeof(s->rlayer.rbuf));
memset(&s->rlayer.rrec, 0, sizeof(s->rlayer.rrec));
if (!ssl3_setup_buffers(s)) {
SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
OPENSSL_free(rdata->rbuf.buf);
OPENSSL_free(rdata);
pitem_free(item);
return (-1);
}
/* insert should not fail, since duplicates are dropped */
if (pqueue_insert(queue->q, item) == NULL) {
SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
OPENSSL_free(rdata->rbuf.buf);
OPENSSL_free(rdata);
pitem_free(item);
return (-1);
}
return (1);
}
int dtls1_retrieve_buffered_record(SSL *s, record_pqueue *queue)
{
pitem *item;
item = pqueue_pop(queue->q);
if (item) {
dtls1_copy_record(s, item);
OPENSSL_free(item->data);
pitem_free(item);
return (1);
}
return (0);
}
/*
* retrieve a buffered record that belongs to the new epoch, i.e., not
* processed yet
*/
#define dtls1_get_unprocessed_record(s) \
dtls1_retrieve_buffered_record((s), \
&((s)->rlayer.d->unprocessed_rcds))
int dtls1_process_buffered_records(SSL *s)
{
pitem *item;
item = pqueue_peek(s->rlayer.d->unprocessed_rcds.q);
if (item) {
/* Check if epoch is current. */
if (s->rlayer.d->unprocessed_rcds.epoch != s->rlayer.d->r_epoch)
return (1); /* Nothing to do. */
/* Process all the records. */
while (pqueue_peek(s->rlayer.d->unprocessed_rcds.q)) {
dtls1_get_unprocessed_record(s);
if (!dtls1_process_record(s))
return (0);
if (dtls1_buffer_record(s, &(s->rlayer.d->processed_rcds),
SSL3_RECORD_get_seq_num(&s->rlayer.rrec)) < 0)
return -1;
}
}
/*
* sync epoch numbers once all the unprocessed records have been
* processed
*/
s->rlayer.d->processed_rcds.epoch = s->rlayer.d->r_epoch;
s->rlayer.d->unprocessed_rcds.epoch = s->rlayer.d->r_epoch + 1;
return (1);
}
/*-
* Return up to 'len' payload bytes received in 'type' records.
* 'type' is one of the following:
*
* - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
* - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
* - 0 (during a shutdown, no data has to be returned)
*
* If we don't have stored data to work from, read a SSL/TLS record first
* (possibly multiple records if we still don't have anything to return).
*
* This function must handle any surprises the peer may have for us, such as
* Alert records (e.g. close_notify), ChangeCipherSpec records (not really
* a surprise, but handled as if it were), or renegotiation requests.
* Also if record payloads contain fragments too small to process, we store
* them until there is enough for the respective protocol (the record protocol
* may use arbitrary fragmentation and even interleaving):
* Change cipher spec protocol
* just 1 byte needed, no need for keeping anything stored
* Alert protocol
* 2 bytes needed (AlertLevel, AlertDescription)
* Handshake protocol
* 4 bytes needed (HandshakeType, uint24 length) -- we just have
* to detect unexpected Client Hello and Hello Request messages
* here, anything else is handled by higher layers
* Application data protocol
* none of our business
*/
int dtls1_read_bytes(SSL *s, int type, unsigned char *buf, int len, int peek)
{
int al, i, j, ret;
unsigned int n;
SSL3_RECORD *rr;
void (*cb) (const SSL *ssl, int type2, int val) = NULL;
if (!SSL3_BUFFER_is_initialised(&s->rlayer.rbuf)) {
/* Not initialized yet */
if (!ssl3_setup_buffers(s))
return (-1);
}
if ((type && (type != SSL3_RT_APPLICATION_DATA) &&
(type != SSL3_RT_HANDSHAKE)) ||
(peek && (type != SSL3_RT_APPLICATION_DATA))) {
SSLerr(SSL_F_DTLS1_READ_BYTES, ERR_R_INTERNAL_ERROR);
return -1;
}
/*
* check whether there's a handshake message (client hello?) waiting
*/
if ((ret = have_handshake_fragment(s, type, buf, len, peek)))
return ret;
/*
* Now s->rlayer.d->handshake_fragment_len == 0 if
* type == SSL3_RT_HANDSHAKE.
*/
#ifndef OPENSSL_NO_SCTP
/*
* Continue handshake if it had to be interrupted to read app data with
* SCTP.
*/
if ((!s->in_handshake && SSL_in_init(s)) ||
(BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
(s->state == DTLS1_SCTP_ST_SR_READ_SOCK
|| s->state == DTLS1_SCTP_ST_CR_READ_SOCK)
&& s->s3->in_read_app_data != 2))
#else
if (!s->in_handshake && SSL_in_init(s))
#endif
{
/* type == SSL3_RT_APPLICATION_DATA */
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
}
start:
s->rwstate = SSL_NOTHING;
/*-
* s->s3->rrec.type - is the type of record
* s->s3->rrec.data, - data
* s->s3->rrec.off, - offset into 'data' for next read
* s->s3->rrec.length, - number of bytes.
*/
rr = &s->rlayer.rrec;
/*
* We are not handshaking and have no data yet, so process data buffered
* during the last handshake in advance, if any.
*/
if (s->state == SSL_ST_OK && SSL3_RECORD_get_length(rr) == 0) {
pitem *item;
item = pqueue_pop(s->rlayer.d->buffered_app_data.q);
if (item) {
#ifndef OPENSSL_NO_SCTP
/* Restore bio_dgram_sctp_rcvinfo struct */
if (BIO_dgram_is_sctp(SSL_get_rbio(s))) {
DTLS1_RECORD_DATA *rdata = (DTLS1_RECORD_DATA *)item->data;
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SCTP_SET_RCVINFO,
sizeof(rdata->recordinfo), &rdata->recordinfo);
}
#endif
dtls1_copy_record(s, item);
OPENSSL_free(item->data);
pitem_free(item);
}
}
/* Check for timeout */
if (dtls1_handle_timeout(s) > 0)
goto start;
/* get new packet if necessary */
if ((SSL3_RECORD_get_length(rr) == 0)
|| (s->rlayer.rstate == SSL_ST_READ_BODY)) {
ret = dtls1_get_record(s);
if (ret <= 0) {
ret = dtls1_read_failed(s, ret);
/* anything other than a timeout is an error */
if (ret <= 0)
return (ret);
else
goto start;
}
}
if (s->d1->listen && rr->type != SSL3_RT_HANDSHAKE) {
SSL3_RECORD_set_length(rr, 0);
goto start;
}
/* we now have a packet which can be read and processed */
if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec,
* reset by ssl3_get_finished */
&& (SSL3_RECORD_get_type(rr) != SSL3_RT_HANDSHAKE)) {
/*
* We now have application data between CCS and Finished. Most likely
* the packets were reordered on their way, so buffer the application
* data for later processing rather than dropping the connection.
*/
if (dtls1_buffer_record(s, &(s->rlayer.d->buffered_app_data),
SSL3_RECORD_get_seq_num(rr)) < 0) {
SSLerr(SSL_F_DTLS1_READ_BYTES, ERR_R_INTERNAL_ERROR);
return -1;
}
SSL3_RECORD_set_length(rr, 0);
goto start;
}
/*
* If the other end has shut down, throw anything we read away (even in
* 'peek' mode)
*/
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
SSL3_RECORD_set_length(rr, 0);
s->rwstate = SSL_NOTHING;
return (0);
}
if (type == SSL3_RECORD_get_type(rr)) {
/* SSL3_RT_APPLICATION_DATA or
* SSL3_RT_HANDSHAKE */
/*
* make sure that we are not getting application data when we are
* doing a handshake for the first time
*/
if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) &&
(s->enc_read_ctx == NULL)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_APP_DATA_IN_HANDSHAKE);
goto f_err;
}
if (len <= 0)
return (len);
if ((unsigned int)len > SSL3_RECORD_get_length(rr))
n = SSL3_RECORD_get_length(rr);
else
n = (unsigned int)len;
memcpy(buf, &(SSL3_RECORD_get_data(rr)[SSL3_RECORD_get_off(rr)]), n);
if (!peek) {
SSL3_RECORD_add_length(rr, -n);
SSL3_RECORD_add_off(rr, n);
if (SSL3_RECORD_get_length(rr) == 0) {
s->rlayer.rstate = SSL_ST_READ_HEADER;
SSL3_RECORD_set_off(rr, 0);
}
}
#ifndef OPENSSL_NO_SCTP
/*
* We were about to renegotiate but had to read belated application
* data first, so retry.
*/
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
SSL3_RECORD_get_type(rr) == SSL3_RT_APPLICATION_DATA &&
(s->state == DTLS1_SCTP_ST_SR_READ_SOCK
|| s->state == DTLS1_SCTP_ST_CR_READ_SOCK)) {
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
}
/*
* We might had to delay a close_notify alert because of reordered
* app data. If there was an alert and there is no message to read
* anymore, finally set shutdown.
*/
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
s->d1->shutdown_received
&& !BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s))) {
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
return (0);
}
#endif
return (n);
}
/*
* If we get here, then type != rr->type; if we have a handshake message,
* then it was unexpected (Hello Request or Client Hello).
*/
/*
* In case of record types for which we have 'fragment' storage, fill
* that so that we can process the data at a fixed place.
*/
{
unsigned int k, dest_maxlen = 0;
unsigned char *dest = NULL;
unsigned int *dest_len = NULL;
if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) {
dest_maxlen = sizeof s->rlayer.d->handshake_fragment;
dest = s->rlayer.d->handshake_fragment;
dest_len = &s->rlayer.d->handshake_fragment_len;
} else if (SSL3_RECORD_get_type(rr) == SSL3_RT_ALERT) {
dest_maxlen = sizeof(s->rlayer.d->alert_fragment);
dest = s->rlayer.d->alert_fragment;
dest_len = &s->rlayer.d->alert_fragment_len;
}
#ifndef OPENSSL_NO_HEARTBEATS
else if (SSL3_RECORD_get_type(rr) == TLS1_RT_HEARTBEAT) {
/* We allow a 0 return */
if (dtls1_process_heartbeat(s, SSL3_RECORD_get_data(rr),
SSL3_RECORD_get_length(rr)) < 0) {
return -1;
}
/* Exit and notify application to read again */
SSL3_RECORD_set_length(rr, 0);
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
return (-1);
}
#endif
/* else it's a CCS message, or application data or wrong */
else if (SSL3_RECORD_get_type(rr) != SSL3_RT_CHANGE_CIPHER_SPEC) {
/*
* Application data while renegotiating is allowed. Try again
* reading.
*/
if (SSL3_RECORD_get_type(rr) == SSL3_RT_APPLICATION_DATA) {
BIO *bio;
s->s3->in_read_app_data = 2;
bio = SSL_get_rbio(s);
s->rwstate = SSL_READING;
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return (-1);
}
/* Not certain if this is the right error handling */
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
goto f_err;
}
if (dest_maxlen > 0) {
/*
* XDTLS: In a pathalogical case, the Client Hello may be
* fragmented--don't always expect dest_maxlen bytes
*/
if (SSL3_RECORD_get_length(rr) < dest_maxlen) {
#ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
/*
* for normal alerts rr->length is 2, while
* dest_maxlen is 7 if we were to handle this
* non-existing alert...
*/
FIX ME
#endif
s->rlayer.rstate = SSL_ST_READ_HEADER;
SSL3_RECORD_set_length(rr, 0);
goto start;
}
/* now move 'n' bytes: */
for (k = 0; k < dest_maxlen; k++) {
dest[k] = SSL3_RECORD_get_data(rr)[SSL3_RECORD_get_off(rr)];
SSL3_RECORD_add_off(rr, 1);
SSL3_RECORD_add_length(rr, -1);
}
*dest_len = dest_maxlen;
}
}
/*-
* s->rlayer.d->handshake_fragment_len == 12 iff rr->type == SSL3_RT_HANDSHAKE;
* s->rlayer.d->alert_fragment_len == 7 iff rr->type == SSL3_RT_ALERT.
* (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
*/
/* If we are a client, check for an incoming 'Hello Request': */
if ((!s->server) &&
(s->rlayer.d->handshake_fragment_len >= DTLS1_HM_HEADER_LENGTH) &&
(s->rlayer.d->handshake_fragment[0] == SSL3_MT_HELLO_REQUEST) &&
(s->session != NULL) && (s->session->cipher != NULL)) {
s->rlayer.d->handshake_fragment_len = 0;
if ((s->rlayer.d->handshake_fragment[1] != 0) ||
(s->rlayer.d->handshake_fragment[2] != 0) ||
(s->rlayer.d->handshake_fragment[3] != 0)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_BAD_HELLO_REQUEST);
goto f_err;
}
/*
* no need to check sequence number on HELLO REQUEST messages
*/
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
s->rlayer.d->handshake_fragment, 4, s,
s->msg_callback_arg);
if (SSL_is_init_finished(s) &&
!(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS) &&
!s->s3->renegotiate) {
s->d1->handshake_read_seq++;
s->new_session = 1;
ssl3_renegotiate(s);
if (ssl3_renegotiate_check(s)) {
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_DTLS1_READ_BYTES,
SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (SSL3_BUFFER_get_left(&s->rlayer.rbuf) == 0) {
/* no read-ahead left? */
BIO *bio;
/*
* In the case where we try to read application data,
* but we trigger an SSL handshake, we return -1 with
* the retry option set. Otherwise renegotiation may
* cause nasty problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(s);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return (-1);
}
}
}
}
/*
* we either finished a handshake or ignored the request, now try
* again to obtain the (application) data we were asked for
*/
goto start;
}
if (s->rlayer.d->alert_fragment_len >= DTLS1_AL_HEADER_LENGTH) {
int alert_level = s->rlayer.d->alert_fragment[0];
int alert_descr = s->rlayer.d->alert_fragment[1];
s->rlayer.d->alert_fragment_len = 0;
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_ALERT,
s->rlayer.d->alert_fragment, 2, s,
s->msg_callback_arg);
if (s->info_callback != NULL)
cb = s->info_callback;
else if (s->ctx->info_callback != NULL)
cb = s->ctx->info_callback;
if (cb != NULL) {
j = (alert_level << 8) | alert_descr;
cb(s, SSL_CB_READ_ALERT, j);
}
if (alert_level == SSL3_AL_WARNING) {
s->s3->warn_alert = alert_descr;
if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
#ifndef OPENSSL_NO_SCTP
/*
* With SCTP and streams the socket may deliver app data
* after a close_notify alert. We have to check this first so
* that nothing gets discarded.
*/
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s))) {
s->d1->shutdown_received = 1;
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
return -1;
}
#endif
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
return (0);
}
#if 0
/* XXX: this is a possible improvement in the future */
/* now check if it's a missing record */
if (alert_descr == DTLS1_AD_MISSING_HANDSHAKE_MESSAGE) {
unsigned short seq;
unsigned int frag_off;
unsigned char *p = &(s->rlayer.d->alert_fragment[2]);
n2s(p, seq);
n2l3(p, frag_off);
dtls1_retransmit_message(s,
dtls1_get_queue_priority
(frag->msg_header.seq, 0), frag_off,
&found);
if (!found && SSL_in_init(s)) {
/*
* fprintf( stderr,"in init = %d\n", SSL_in_init(s));
*/
/*
* requested a message not yet sent, send an alert
* ourselves
*/
ssl3_send_alert(s, SSL3_AL_WARNING,
DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
}
}
#endif
} else if (alert_level == SSL3_AL_FATAL) {
char tmp[16];
s->rwstate = SSL_NOTHING;
s->s3->fatal_alert = alert_descr;
SSLerr(SSL_F_DTLS1_READ_BYTES,
SSL_AD_REASON_OFFSET + alert_descr);
BIO_snprintf(tmp, sizeof tmp, "%d", alert_descr);
ERR_add_error_data(2, "SSL alert number ", tmp);
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
SSL_CTX_remove_session(s->ctx, s->session);
return (0);
} else {
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_UNKNOWN_ALERT_TYPE);
goto f_err;
}
goto start;
}
if (s->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a
* shutdown */
s->rwstate = SSL_NOTHING;
SSL3_RECORD_set_length(rr, 0);
return (0);
}
if (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC) {
unsigned int ccs_hdr_len = DTLS1_CCS_HEADER_LENGTH;
if (s->version == DTLS1_BAD_VER)
ccs_hdr_len = 3;
/*
* 'Change Cipher Spec' is just a single byte, so we know exactly
* what the record payload has to look like
*/
/* XDTLS: check that epoch is consistent */
if ((SSL3_RECORD_get_length(rr) != ccs_hdr_len)
|| (SSL3_RECORD_get_off(rr) != 0)
|| (SSL3_RECORD_get_data(rr)[0] != SSL3_MT_CCS)) {
i = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_BAD_CHANGE_CIPHER_SPEC);
goto err;
}
SSL3_RECORD_set_length(rr, 0);
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_CHANGE_CIPHER_SPEC,
SSL3_RECORD_get_data(rr), 1, s, s->msg_callback_arg);
/*
* We can't process a CCS now, because previous handshake messages
* are still missing, so just drop it.
*/
if (!s->d1->change_cipher_spec_ok) {
goto start;
}
s->d1->change_cipher_spec_ok = 0;
s->s3->change_cipher_spec = 1;
if (!ssl3_do_change_cipher_spec(s))
goto err;
/* do this whenever CCS is processed */
dtls1_reset_seq_numbers(s, SSL3_CC_READ);
if (s->version == DTLS1_BAD_VER)
s->d1->handshake_read_seq++;
#ifndef OPENSSL_NO_SCTP
/*
* Remember that a CCS has been received, so that an old key of
* SCTP-Auth can be deleted when a CCS is sent. Will be ignored if no
* SCTP is used
*/
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD, 1, NULL);
#endif
goto start;
}
/*
* Unexpected handshake message (Client Hello, or protocol violation)
*/
if ((s->rlayer.d->handshake_fragment_len >= DTLS1_HM_HEADER_LENGTH) &&
!s->in_handshake) {
struct hm_header_st msg_hdr;
/* this may just be a stale retransmit */
dtls1_get_message_header(rr->data, &msg_hdr);
if (SSL3_RECORD_get_epoch(rr) != s->rlayer.d->r_epoch) {
SSL3_RECORD_set_length(rr, 0);
goto start;
}
/*
* If we are server, we may have a repeated FINISHED of the client
* here, then retransmit our CCS and FINISHED.
*/
if (msg_hdr.type == SSL3_MT_FINISHED) {
if (dtls1_check_timeout_num(s) < 0)
return -1;
dtls1_retransmit_buffered_messages(s);
SSL3_RECORD_set_length(rr, 0);
goto start;
}
if (((s->state & SSL_ST_MASK) == SSL_ST_OK) &&
!(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS)) {
s->state = s->server ? SSL_ST_ACCEPT : SSL_ST_CONNECT;
s->renegotiate = 1;
s->new_session = 1;
}
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (SSL3_BUFFER_get_left(&s->rlayer.rbuf) == 0) {
/* no read-ahead left? */
BIO *bio;
/*
* In the case where we try to read application data, but we
* trigger an SSL handshake, we return -1 with the retry
* option set. Otherwise renegotiation may cause nasty
* problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(s);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return (-1);
}
}
goto start;
}
switch (SSL3_RECORD_get_type(rr)) {
default:
/* TLS just ignores unknown message types */
if (s->version == TLS1_VERSION) {
SSL3_RECORD_set_length(rr, 0);
goto start;
}
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
goto f_err;
case SSL3_RT_CHANGE_CIPHER_SPEC:
case SSL3_RT_ALERT:
case SSL3_RT_HANDSHAKE:
/*
* we already handled all of these, with the possible exception of
* SSL3_RT_HANDSHAKE when s->in_handshake is set, but that should not
* happen when type != rr->type
*/
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, ERR_R_INTERNAL_ERROR);
goto f_err;
case SSL3_RT_APPLICATION_DATA:
/*
* At this point, we were expecting handshake data, but have
* application data. If the library was running inside ssl3_read()
* (i.e. in_read_app_data is set) and it makes sense to read
* application data at this point (session renegotiation not yet
* started), we will indulge it.
*/
if (s->s3->in_read_app_data &&
(s->s3->total_renegotiations != 0) &&
(((s->state & SSL_ST_CONNECT) &&
(s->state >= SSL3_ST_CW_CLNT_HELLO_A) &&
(s->state <= SSL3_ST_CR_SRVR_HELLO_A)
) || ((s->state & SSL_ST_ACCEPT) &&
(s->state <= SSL3_ST_SW_HELLO_REQ_A) &&
(s->state >= SSL3_ST_SR_CLNT_HELLO_A)
)
)) {
s->s3->in_read_app_data = 2;
return (-1);
} else {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
goto f_err;
}
}
/* not reached */
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
return (-1);
}
/*
* this only happens when a client hello is received and a handshake
* is started.
*/
static int have_handshake_fragment(SSL *s, int type, unsigned char *buf,
int len, int peek)
{
if ((type == SSL3_RT_HANDSHAKE)
&& (s->rlayer.d->handshake_fragment_len > 0))
/* (partially) satisfy request from storage */
{
unsigned char *src = s->rlayer.d->handshake_fragment;
unsigned char *dst = buf;
unsigned int k, n;
/* peek == 0 */
n = 0;
while ((len > 0) && (s->rlayer.d->handshake_fragment_len > 0)) {
*dst++ = *src++;
len--;
s->rlayer.d->handshake_fragment_len--;
n++;
}
/* move any remaining fragment bytes: */
for (k = 0; k < s->rlayer.d->handshake_fragment_len; k++)
s->rlayer.d->handshake_fragment[k] = *src++;
return n;
}
return 0;
}
/*
* Call this to write data in records of type 'type' It will return <= 0 if
* not all data has been sent or non-blocking IO.
*/
int dtls1_write_bytes(SSL *s, int type, const void *buf, int len)
{
int i;
OPENSSL_assert(len <= SSL3_RT_MAX_PLAIN_LENGTH);
s->rwstate = SSL_NOTHING;
i = do_dtls1_write(s, type, buf, len, 0);
return i;
}
int do_dtls1_write(SSL *s, int type, const unsigned char *buf,
unsigned int len, int create_empty_fragment)
{
unsigned char *p, *pseq;
int i, mac_size, clear = 0;
int prefix_len = 0;
int eivlen;
SSL3_RECORD *wr;
SSL3_BUFFER *wb;
SSL_SESSION *sess;
wb = &s->rlayer.wbuf;
/*
* first check if there is a SSL3_BUFFER still being written out. This
* will happen with non blocking IO
*/
if (SSL3_BUFFER_get_left(wb) != 0) {
OPENSSL_assert(0); /* XDTLS: want to see if we ever get here */
return (ssl3_write_pending(s, type, buf, len));
}
/* If we have an alert to send, lets send it */
if (s->s3->alert_dispatch) {
i = s->method->ssl_dispatch_alert(s);
if (i <= 0)
return (i);
/* if it went, fall through and send more stuff */
}
if (len == 0 && !create_empty_fragment)
return 0;
wr = &s->rlayer.wrec;
sess = s->session;
if ((sess == NULL) ||
(s->enc_write_ctx == NULL) || (EVP_MD_CTX_md(s->write_hash) == NULL))
clear = 1;
if (clear)
mac_size = 0;
else {
mac_size = EVP_MD_CTX_size(s->write_hash);
if (mac_size < 0)
goto err;
}
p = SSL3_BUFFER_get_buf(wb) + prefix_len;
/* write the header */
*(p++) = type & 0xff;
SSL3_RECORD_set_type(wr, type);
/*
* Special case: for hello verify request, client version 1.0 and we
* haven't decided which version to use yet send back using version 1.0
* header: otherwise some clients will ignore it.
*/
if (s->method->version == DTLS_ANY_VERSION) {
*(p++) = DTLS1_VERSION >> 8;
*(p++) = DTLS1_VERSION & 0xff;
} else {
*(p++) = s->version >> 8;
*(p++) = s->version & 0xff;
}
/* field where we are to write out packet epoch, seq num and len */
pseq = p;
p += 10;
/* Explicit IV length, block ciphers appropriate version flag */
if (s->enc_write_ctx) {
int mode = EVP_CIPHER_CTX_mode(s->enc_write_ctx);
if (mode == EVP_CIPH_CBC_MODE) {
eivlen = EVP_CIPHER_CTX_iv_length(s->enc_write_ctx);
if (eivlen <= 1)
eivlen = 0;
}
/* Need explicit part of IV for GCM mode */
else if (mode == EVP_CIPH_GCM_MODE)
eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN;
else
eivlen = 0;
} else
eivlen = 0;
/* lets setup the record stuff. */
SSL3_RECORD_set_data(wr, p + eivlen); /* make room for IV in case of CBC */
SSL3_RECORD_set_length(wr, (int)len);
SSL3_RECORD_set_input(wr, (unsigned char *)buf);
/*
* we now 'read' from wr->input, wr->length bytes into wr->data
*/
/* first we compress */
if (s->compress != NULL) {
if (!ssl3_do_compress(s)) {
SSLerr(SSL_F_DO_DTLS1_WRITE, SSL_R_COMPRESSION_FAILURE);
goto err;
}
} else {
memcpy(SSL3_RECORD_get_data(wr), SSL3_RECORD_get_input(wr),
SSL3_RECORD_get_length(wr));
SSL3_RECORD_reset_input(wr);
}
/*
* we should still have the output to wr->data and the input from
* wr->input. Length should be wr->length. wr->data still points in the
* wb->buf
*/
if (mac_size != 0) {
if (s->method->ssl3_enc->mac(s,
&(p[SSL3_RECORD_get_length(wr) + eivlen]), 1) < 0)
goto err;
SSL3_RECORD_add_length(wr, mac_size);
}
/* this is true regardless of mac size */
SSL3_RECORD_set_data(wr, p);
SSL3_RECORD_reset_input(wr);
if (eivlen)
SSL3_RECORD_add_length(wr, eivlen);
if (s->method->ssl3_enc->enc(s, 1) < 1)
goto err;
/* record length after mac and block padding */
/*
* if (type == SSL3_RT_APPLICATION_DATA || (type == SSL3_RT_ALERT && !
* SSL_in_init(s)))
*/
/* there's only one epoch between handshake and app data */
s2n(s->rlayer.d->w_epoch, pseq);
/* XDTLS: ?? */
/*
* else s2n(s->d1->handshake_epoch, pseq);
*/
memcpy(pseq, &(s->rlayer.write_sequence[2]), 6);
pseq += 6;
s2n(SSL3_RECORD_get_length(wr), pseq);
if (s->msg_callback)
s->msg_callback(1, 0, SSL3_RT_HEADER, pseq - DTLS1_RT_HEADER_LENGTH,
DTLS1_RT_HEADER_LENGTH, s, s->msg_callback_arg);
/*
* we should now have wr->data pointing to the encrypted data, which is
* wr->length long
*/
SSL3_RECORD_set_type(wr, type); /* not needed but helps for debugging */
SSL3_RECORD_add_length(wr, DTLS1_RT_HEADER_LENGTH);
ssl3_record_sequence_update(&(s->rlayer.write_sequence[0]));
if (create_empty_fragment) {
/*
* we are in a recursive call; just return the length, don't write
* out anything here
*/
return wr->length;
}
/* now let's set up wb */
SSL3_BUFFER_set_left(wb, prefix_len + SSL3_RECORD_get_length(wr));
SSL3_BUFFER_set_offset(wb, 0);
/*
* memorize arguments so that ssl3_write_pending can detect bad write
* retries later
*/
s->rlayer.wpend_tot = len;
s->rlayer.wpend_buf = buf;
s->rlayer.wpend_type = type;
s->rlayer.wpend_ret = len;
/* we now just need to write the buffer */
return ssl3_write_pending(s, type, buf, len);
err:
return -1;
}
DTLS1_BITMAP *dtls1_get_bitmap(SSL *s, SSL3_RECORD *rr,
unsigned int *is_next_epoch)
{
*is_next_epoch = 0;
/* In current epoch, accept HM, CCS, DATA, & ALERT */
if (rr->epoch == s->rlayer.d->r_epoch)
return &s->rlayer.d->bitmap;
/* Only HM and ALERT messages can be from the next epoch */
else if (rr->epoch == (unsigned long)(s->rlayer.d->r_epoch + 1) &&
(rr->type == SSL3_RT_HANDSHAKE || rr->type == SSL3_RT_ALERT)) {
*is_next_epoch = 1;
return &s->rlayer.d->next_bitmap;
}
return NULL;
}
void dtls1_reset_seq_numbers(SSL *s, int rw)
{
unsigned char *seq;
unsigned int seq_bytes = sizeof(s->rlayer.read_sequence);
if (rw & SSL3_CC_READ) {
seq = s->rlayer.read_sequence;
s->rlayer.d->r_epoch++;
memcpy(&s->rlayer.d->bitmap, &s->rlayer.d->next_bitmap,
sizeof(s->rlayer.d->bitmap));
memset(&s->rlayer.d->next_bitmap, 0,
sizeof(s->rlayer.d->next_bitmap));
} else {
seq = s->rlayer.write_sequence;
memcpy(s->rlayer.d->last_write_sequence, seq,
sizeof(s->rlayer.write_sequence));
s->rlayer.d->w_epoch++;
}
memset(seq, 0, seq_bytes);
}