mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
1aa89a7a3a
They now generally conform to the following argument sequence: script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \ $(PROCESSOR) <output file> However, in the spirit of being able to use these scripts manually, they also allow for no argument, or for only the flavour, or for only the output file. This is done by only using the last argument as output file if it's a file (it has an extension), and only using the first argument as flavour if it isn't a file (it doesn't have an extension). While we're at it, we make all $xlate calls the same, i.e. the $output argument is always quoted, and we always die on error when trying to start $xlate. There's a perl lesson in this, regarding operator priority... This will always succeed, even when it fails: open FOO, "something" || die "ERR: $!"; The reason is that '||' has higher priority than list operators (a function is essentially a list operator and gobbles up everything following it that isn't lower priority), and since a non-empty string is always true, so that ends up being exactly the same as: open FOO, "something"; This, however, will fail if "something" can't be opened: open FOO, "something" or die "ERR: $!"; The reason is that 'or' has lower priority that list operators, i.e. it's performed after the 'open' call. Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9884)
231 lines
5.5 KiB
Raku
231 lines
5.5 KiB
Raku
#! /usr/bin/env perl
|
|
# Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# May 2011
|
|
#
|
|
# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
|
|
# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
|
|
# the time being... gcc 4.3 appeared to generate poor code, therefore
|
|
# the effort. And indeed, the module delivers 55%-90%(*) improvement
|
|
# on heaviest ECDSA verify and ECDH benchmarks for 163- and 571-bit
|
|
# key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196.
|
|
# This is for 64-bit build. In 32-bit "highgprs" case improvement is
|
|
# even higher, for example on z990 it was measured 80%-150%. ECDSA
|
|
# sign is modest 9%-12% faster. Keep in mind that these coefficients
|
|
# are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is
|
|
# burnt in it...
|
|
#
|
|
# (*) gcc 4.1 was observed to deliver better results than gcc 4.3,
|
|
# so that improvement coefficients can vary from one specific
|
|
# setup to another.
|
|
|
|
# $output is the last argument if it looks like a file (it has an extension)
|
|
# $flavour is the first argument if it doesn't look like a file
|
|
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
|
|
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
|
|
|
|
if ($flavour =~ /3[12]/) {
|
|
$SIZE_T=4;
|
|
$g="";
|
|
} else {
|
|
$SIZE_T=8;
|
|
$g="g";
|
|
}
|
|
|
|
$output and open STDOUT,">$output";
|
|
|
|
$stdframe=16*$SIZE_T+4*8;
|
|
|
|
$rp="%r2";
|
|
$a1="%r3";
|
|
$a0="%r4";
|
|
$b1="%r5";
|
|
$b0="%r6";
|
|
|
|
$ra="%r14";
|
|
$sp="%r15";
|
|
|
|
@T=("%r0","%r1");
|
|
@i=("%r12","%r13");
|
|
|
|
($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11));
|
|
($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8;
|
|
|
|
$code.=<<___;
|
|
.text
|
|
|
|
.type _mul_1x1,\@function
|
|
.align 16
|
|
_mul_1x1:
|
|
lgr $a1,$a
|
|
sllg $a2,$a,1
|
|
sllg $a4,$a,2
|
|
sllg $a8,$a,3
|
|
|
|
srag $lo,$a1,63 # broadcast 63rd bit
|
|
nihh $a1,0x1fff
|
|
srag @i[0],$a2,63 # broadcast 62nd bit
|
|
nihh $a2,0x3fff
|
|
srag @i[1],$a4,63 # broadcast 61st bit
|
|
nihh $a4,0x7fff
|
|
ngr $lo,$b
|
|
ngr @i[0],$b
|
|
ngr @i[1],$b
|
|
|
|
lghi @T[0],0
|
|
lgr $a12,$a1
|
|
stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0
|
|
xgr $a12,$a2
|
|
stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1
|
|
lgr $a48,$a4
|
|
stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2
|
|
xgr $a48,$a8
|
|
stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2
|
|
xgr $a1,$a4
|
|
|
|
stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4
|
|
xgr $a2,$a4
|
|
stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4
|
|
xgr $a12,$a4
|
|
stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4
|
|
xgr $a1,$a48
|
|
stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4
|
|
xgr $a2,$a48
|
|
|
|
stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8
|
|
xgr $a12,$a48
|
|
stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8
|
|
xgr $a1,$a4
|
|
stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8
|
|
xgr $a2,$a4
|
|
stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8
|
|
|
|
xgr $a12,$a4
|
|
stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8
|
|
srlg $hi,$lo,1
|
|
stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8
|
|
sllg $lo,$lo,63
|
|
stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8
|
|
srlg @T[0],@i[0],2
|
|
stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8
|
|
|
|
lghi $mask,`0xf<<3`
|
|
sllg $a1,@i[0],62
|
|
sllg @i[0],$b,3
|
|
srlg @T[1],@i[1],3
|
|
ngr @i[0],$mask
|
|
sllg $a2,@i[1],61
|
|
srlg @i[1],$b,4-3
|
|
xgr $hi,@T[0]
|
|
ngr @i[1],$mask
|
|
xgr $lo,$a1
|
|
xgr $hi,@T[1]
|
|
xgr $lo,$a2
|
|
|
|
xg $lo,$stdframe(@i[0],$sp)
|
|
srlg @i[0],$b,8-3
|
|
ngr @i[0],$mask
|
|
___
|
|
for($n=1;$n<14;$n++) {
|
|
$code.=<<___;
|
|
lg @T[1],$stdframe(@i[1],$sp)
|
|
srlg @i[1],$b,`($n+2)*4`-3
|
|
sllg @T[0],@T[1],`$n*4`
|
|
ngr @i[1],$mask
|
|
srlg @T[1],@T[1],`64-$n*4`
|
|
xgr $lo,@T[0]
|
|
xgr $hi,@T[1]
|
|
___
|
|
push(@i,shift(@i)); push(@T,shift(@T));
|
|
}
|
|
$code.=<<___;
|
|
lg @T[1],$stdframe(@i[1],$sp)
|
|
sllg @T[0],@T[1],`$n*4`
|
|
srlg @T[1],@T[1],`64-$n*4`
|
|
xgr $lo,@T[0]
|
|
xgr $hi,@T[1]
|
|
|
|
lg @T[0],$stdframe(@i[0],$sp)
|
|
sllg @T[1],@T[0],`($n+1)*4`
|
|
srlg @T[0],@T[0],`64-($n+1)*4`
|
|
xgr $lo,@T[1]
|
|
xgr $hi,@T[0]
|
|
|
|
br $ra
|
|
.size _mul_1x1,.-_mul_1x1
|
|
|
|
.globl bn_GF2m_mul_2x2
|
|
.type bn_GF2m_mul_2x2,\@function
|
|
.align 16
|
|
bn_GF2m_mul_2x2:
|
|
stm${g} %r3,%r15,3*$SIZE_T($sp)
|
|
|
|
lghi %r1,-$stdframe-128
|
|
la %r0,0($sp)
|
|
la $sp,0(%r1,$sp) # alloca
|
|
st${g} %r0,0($sp) # back chain
|
|
___
|
|
if ($SIZE_T==8) {
|
|
my @r=map("%r$_",(6..9));
|
|
$code.=<<___;
|
|
bras $ra,_mul_1x1 # a1·b1
|
|
stmg $lo,$hi,16($rp)
|
|
|
|
lg $a,`$stdframe+128+4*$SIZE_T`($sp)
|
|
lg $b,`$stdframe+128+6*$SIZE_T`($sp)
|
|
bras $ra,_mul_1x1 # a0·b0
|
|
stmg $lo,$hi,0($rp)
|
|
|
|
lg $a,`$stdframe+128+3*$SIZE_T`($sp)
|
|
lg $b,`$stdframe+128+5*$SIZE_T`($sp)
|
|
xg $a,`$stdframe+128+4*$SIZE_T`($sp)
|
|
xg $b,`$stdframe+128+6*$SIZE_T`($sp)
|
|
bras $ra,_mul_1x1 # (a0+a1)·(b0+b1)
|
|
lmg @r[0],@r[3],0($rp)
|
|
|
|
xgr $lo,$hi
|
|
xgr $hi,@r[1]
|
|
xgr $lo,@r[0]
|
|
xgr $hi,@r[2]
|
|
xgr $lo,@r[3]
|
|
xgr $hi,@r[3]
|
|
xgr $lo,$hi
|
|
stg $hi,16($rp)
|
|
stg $lo,8($rp)
|
|
___
|
|
} else {
|
|
$code.=<<___;
|
|
sllg %r3,%r3,32
|
|
sllg %r5,%r5,32
|
|
or %r3,%r4
|
|
or %r5,%r6
|
|
bras $ra,_mul_1x1
|
|
rllg $lo,$lo,32
|
|
rllg $hi,$hi,32
|
|
stmg $lo,$hi,0($rp)
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp)
|
|
br $ra
|
|
.size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
|
|
.string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
|
|
___
|
|
|
|
$code =~ s/\`([^\`]*)\`/eval($1)/gem;
|
|
print $code;
|
|
close STDOUT;
|