openssl/crypto/x509/x_pubkey.c
Matt Caswell c8a9af97c9 Teach the ASN.1 code how to create embedded objects with libctx/propq
An ASN.1 object such as an X509 may have embedded objects in it such as
an X509_PUBKEY. If there is a libctx/propq in use then we need to make sure
we pass these down to the constructors of these embedded objects.

Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15591)
2021-06-05 17:39:10 +10:00

973 lines
26 KiB
C

/*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DSA low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/x509.h>
#include "crypto/asn1.h"
#include "crypto/evp.h"
#include "crypto/x509.h"
#include <openssl/rsa.h>
#include <openssl/dsa.h>
#include <openssl/decoder.h>
#include <openssl/encoder.h>
#include "internal/provider.h"
#include "internal/sizes.h"
struct X509_pubkey_st {
X509_ALGOR *algor;
ASN1_BIT_STRING *public_key;
EVP_PKEY *pkey;
/* extra data for the callback, used by d2i_PUBKEY_ex */
OSSL_LIB_CTX *libctx;
char *propq;
/* Flag to force legacy keys */
unsigned int flag_force_legacy : 1;
};
static int x509_pubkey_decode(EVP_PKEY **pk, const X509_PUBKEY *key);
static int x509_pubkey_set0_libctx(X509_PUBKEY *x, OSSL_LIB_CTX *libctx,
const char *propq)
{
if (x != NULL) {
x->libctx = libctx;
OPENSSL_free(x->propq);
x->propq = NULL;
if (propq != NULL) {
x->propq = OPENSSL_strdup(propq);
if (x->propq == NULL)
return 0;
}
}
return 1;
}
ASN1_SEQUENCE(X509_PUBKEY_INTERNAL) = {
ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
} static_ASN1_SEQUENCE_END_name(X509_PUBKEY, X509_PUBKEY_INTERNAL)
static void x509_pubkey_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
{
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
X509_ALGOR_free(pubkey->algor);
ASN1_BIT_STRING_free(pubkey->public_key);
EVP_PKEY_free(pubkey->pkey);
OPENSSL_free(pubkey->propq);
OPENSSL_free(pubkey);
*pval = NULL;
}
static int x509_pubkey_ex_populate(ASN1_VALUE **pval, const ASN1_ITEM *it)
{
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
return (pubkey->algor != NULL
|| (pubkey->algor = X509_ALGOR_new()) != NULL)
&& (pubkey->public_key != NULL
|| (pubkey->public_key = ASN1_BIT_STRING_new()) != NULL);
}
static int x509_pubkey_ex_new_ex(ASN1_VALUE **pval, const ASN1_ITEM *it,
OSSL_LIB_CTX *libctx, const char *propq)
{
X509_PUBKEY *ret;
if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL
|| !x509_pubkey_ex_populate((ASN1_VALUE **)&ret, NULL)
|| !x509_pubkey_set0_libctx(ret, libctx, propq)) {
x509_pubkey_ex_free((ASN1_VALUE **)&ret, NULL);
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
} else {
*pval = (ASN1_VALUE *)ret;
}
return ret != NULL;
}
static int x509_pubkey_ex_d2i(ASN1_VALUE **pval,
const unsigned char **in, long len,
const ASN1_ITEM *it, int tag, int aclass,
char opt, ASN1_TLC *ctx)
{
const unsigned char *in_saved = *in;
X509_PUBKEY *pubkey;
int ret;
OSSL_DECODER_CTX *dctx = NULL;
if (*pval == NULL && !x509_pubkey_ex_new_ex(pval, it, NULL, NULL))
return 0;
if (!x509_pubkey_ex_populate(pval, NULL)) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return 0;
}
/* This ensures that |*in| advances properly no matter what */
if ((ret = ASN1_item_ex_d2i(pval, in, len,
ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL),
tag, aclass, opt, ctx)) <= 0)
return ret;
pubkey = (X509_PUBKEY *)*pval;
EVP_PKEY_free(pubkey->pkey);
pubkey->pkey = NULL;
/*
* Opportunistically decode the key but remove any non fatal errors
* from the queue. Subsequent explicit attempts to decode/use the key
* will return an appropriate error.
*/
ERR_set_mark();
/*
* Try to decode with legacy method first. This ensures that engines
* aren't overriden by providers.
*/
if ((ret = x509_pubkey_decode(&pubkey->pkey, pubkey)) == -1) {
/* -1 indicates a fatal error, like malloc failure */
ERR_clear_last_mark();
goto end;
}
/* Try to decode it into an EVP_PKEY with OSSL_DECODER */
if (ret <= 0 && !pubkey->flag_force_legacy) {
const unsigned char *p = in_saved;
char txtoidname[OSSL_MAX_NAME_SIZE];
if (OBJ_obj2txt(txtoidname, sizeof(txtoidname),
pubkey->algor->algorithm, 0) <= 0) {
ERR_clear_last_mark();
goto end;
}
if ((dctx =
OSSL_DECODER_CTX_new_for_pkey(&pubkey->pkey,
"DER", "SubjectPublicKeyInfo",
txtoidname, EVP_PKEY_PUBLIC_KEY,
pubkey->libctx,
pubkey->propq)) != NULL)
/*
* As said higher up, we're being opportunistic. In other words,
* we don't care about what the return value signals.
*/
OSSL_DECODER_from_data(dctx, &p, NULL);
}
ERR_pop_to_mark();
ret = 1;
end:
OSSL_DECODER_CTX_free(dctx);
return ret;
}
static int x509_pubkey_ex_i2d(const ASN1_VALUE **pval, unsigned char **out,
const ASN1_ITEM *it, int tag, int aclass)
{
return ASN1_item_ex_i2d(pval, out, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL),
tag, aclass);
}
static int x509_pubkey_ex_print(BIO *out, const ASN1_VALUE **pval, int indent,
const char *fname, const ASN1_PCTX *pctx)
{
return ASN1_item_print(out, *pval, indent,
ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), pctx);
}
static const ASN1_EXTERN_FUNCS x509_pubkey_ff = {
NULL,
NULL,
x509_pubkey_ex_free,
0, /* Default clear behaviour is OK */
x509_pubkey_ex_d2i,
x509_pubkey_ex_i2d,
x509_pubkey_ex_print,
x509_pubkey_ex_new_ex,
};
IMPLEMENT_EXTERN_ASN1(X509_PUBKEY, V_ASN1_SEQUENCE, x509_pubkey_ff)
IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY)
X509_PUBKEY *X509_PUBKEY_new_ex(OSSL_LIB_CTX *libctx, const char *propq)
{
X509_PUBKEY *pubkey = NULL;
pubkey = (X509_PUBKEY *)ASN1_item_new_ex(X509_PUBKEY_it(), libctx, propq);
if (!x509_pubkey_set0_libctx(pubkey, libctx, propq)) {
X509_PUBKEY_free(pubkey);
pubkey = NULL;
}
return pubkey;
}
/*
* X509_PUBKEY_dup() must be implemented manually, because there is no
* support for it in ASN1_EXTERN_FUNCS.
*/
X509_PUBKEY *X509_PUBKEY_dup(const X509_PUBKEY *a)
{
X509_PUBKEY *pubkey = OPENSSL_zalloc(sizeof(*pubkey));
if (pubkey == NULL
|| !x509_pubkey_set0_libctx(pubkey, a->libctx, a->propq)
|| (pubkey->algor = X509_ALGOR_dup(a->algor)) == NULL
|| (pubkey->public_key = ASN1_BIT_STRING_new()) == NULL
|| !ASN1_BIT_STRING_set(pubkey->public_key,
a->public_key->data, a->public_key->length)
|| (a->pkey != NULL && !EVP_PKEY_up_ref(a->pkey))) {
x509_pubkey_ex_free((ASN1_VALUE **)&pubkey,
ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL));
ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
return NULL;
}
pubkey->pkey = a->pkey;
return pubkey;
}
int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey)
{
X509_PUBKEY *pk = NULL;
if (x == NULL || pkey == NULL) {
ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (pkey->ameth != NULL) {
if ((pk = X509_PUBKEY_new()) == NULL) {
ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
goto error;
}
if (pkey->ameth->pub_encode != NULL) {
if (!pkey->ameth->pub_encode(pk, pkey)) {
ERR_raise(ERR_LIB_X509, X509_R_PUBLIC_KEY_ENCODE_ERROR);
goto error;
}
} else {
ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED);
goto error;
}
} else if (evp_pkey_is_provided(pkey)) {
unsigned char *der = NULL;
size_t derlen = 0;
OSSL_ENCODER_CTX *ectx =
OSSL_ENCODER_CTX_new_for_pkey(pkey, EVP_PKEY_PUBLIC_KEY,
"DER", "SubjectPublicKeyInfo",
NULL);
if (OSSL_ENCODER_to_data(ectx, &der, &derlen)) {
const unsigned char *pder = der;
pk = d2i_X509_PUBKEY(NULL, &pder, (long)derlen);
}
OSSL_ENCODER_CTX_free(ectx);
OPENSSL_free(der);
}
if (pk == NULL) {
ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM);
goto error;
}
X509_PUBKEY_free(*x);
if (!EVP_PKEY_up_ref(pkey)) {
ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR);
goto error;
}
*x = pk;
/*
* pk->pkey is NULL when using the legacy routine, but is non-NULL when
* going through the encoder, and for all intents and purposes, it's
* a perfect copy of the public key portions of |pkey|, just not the same
* instance. If that's all there was to pkey then we could simply return
* early, right here. However, some application might very well depend on
* the passed |pkey| being used and none other, so we spend a few more
* cycles throwing away the newly created |pk->pkey| and replace it with
* |pkey|.
*/
if (pk->pkey != NULL)
EVP_PKEY_free(pk->pkey);
pk->pkey = pkey;
return 1;
error:
X509_PUBKEY_free(pk);
return 0;
}
/*
* Attempt to decode a public key.
* Returns 1 on success, 0 for a decode failure and -1 for a fatal
* error e.g. malloc failure.
*
* This function is #legacy.
*/
static int x509_pubkey_decode(EVP_PKEY **ppkey, const X509_PUBKEY *key)
{
EVP_PKEY *pkey = EVP_PKEY_new();
if (pkey == NULL) {
ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
return -1;
}
if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) {
ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM);
goto error;
}
if (pkey->ameth->pub_decode) {
/*
* Treat any failure of pub_decode as a decode error. In
* future we could have different return codes for decode
* errors and fatal errors such as malloc failure.
*/
if (!pkey->ameth->pub_decode(pkey, key))
goto error;
} else {
ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED);
goto error;
}
*ppkey = pkey;
return 1;
error:
EVP_PKEY_free(pkey);
return 0;
}
EVP_PKEY *X509_PUBKEY_get0(const X509_PUBKEY *key)
{
EVP_PKEY *ret = NULL;
if (key == NULL || key->public_key == NULL)
return NULL;
if (key->pkey != NULL)
return key->pkey;
/*
* When the key ASN.1 is initially parsed an attempt is made to
* decode the public key and cache the EVP_PKEY structure. If this
* operation fails the cached value will be NULL. Parsing continues
* to allow parsing of unknown key types or unsupported forms.
* We repeat the decode operation so the appropriate errors are left
* in the queue.
*/
x509_pubkey_decode(&ret, key);
/* If decode doesn't fail something bad happened */
if (ret != NULL) {
ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR);
EVP_PKEY_free(ret);
}
return NULL;
}
EVP_PKEY *X509_PUBKEY_get(const X509_PUBKEY *key)
{
EVP_PKEY *ret = X509_PUBKEY_get0(key);
if (ret != NULL && !EVP_PKEY_up_ref(ret)) {
ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR);
ret = NULL;
}
return ret;
}
/*
* Now three pseudo ASN1 routines that take an EVP_PKEY structure and encode
* or decode as X509_PUBKEY
*/
static EVP_PKEY *d2i_PUBKEY_int(EVP_PKEY **a,
const unsigned char **pp, long length,
OSSL_LIB_CTX *libctx, const char *propq,
unsigned int force_legacy,
X509_PUBKEY *
(*d2i_x509_pubkey)(X509_PUBKEY **a,
const unsigned char **in,
long len))
{
X509_PUBKEY *xpk, *xpk2 = NULL, **pxpk = NULL;
EVP_PKEY *pktmp = NULL;
const unsigned char *q;
q = *pp;
/*
* If libctx or propq are non-NULL, we take advantage of the reuse
* feature. It's not generally recommended, but is safe enough for
* newly created structures.
*/
if (libctx != NULL || propq != NULL || force_legacy) {
xpk2 = OPENSSL_zalloc(sizeof(*xpk2));
if (xpk2 == NULL) {
ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
return NULL;
}
if (!x509_pubkey_set0_libctx(xpk2, libctx, propq))
goto end;
xpk2->flag_force_legacy = !!force_legacy;
pxpk = &xpk2;
}
xpk = d2i_x509_pubkey(pxpk, &q, length);
if (xpk == NULL)
goto end;
pktmp = X509_PUBKEY_get(xpk);
X509_PUBKEY_free(xpk);
xpk2 = NULL; /* We know that xpk == xpk2 */
if (pktmp == NULL)
goto end;
*pp = q;
if (a != NULL) {
EVP_PKEY_free(*a);
*a = pktmp;
}
end:
X509_PUBKEY_free(xpk2);
return pktmp;
}
/* For the algorithm specific d2i functions further down */
static EVP_PKEY *d2i_PUBKEY_legacy(EVP_PKEY **a,
const unsigned char **pp, long length)
{
return d2i_PUBKEY_int(a, pp, length, NULL, NULL, 1, d2i_X509_PUBKEY);
}
EVP_PKEY *d2i_PUBKEY_ex(EVP_PKEY **a, const unsigned char **pp, long length,
OSSL_LIB_CTX *libctx, const char *propq)
{
return d2i_PUBKEY_int(a, pp, length, libctx, propq, 0, d2i_X509_PUBKEY);
}
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length)
{
return d2i_PUBKEY_ex(a, pp, length, NULL, NULL);
}
int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp)
{
int ret = -1;
if (a == NULL)
return 0;
if (a->ameth != NULL) {
X509_PUBKEY *xpk = NULL;
if ((xpk = X509_PUBKEY_new()) == NULL)
return -1;
/* pub_encode() only encode parameters, not the key itself */
if (a->ameth->pub_encode != NULL && a->ameth->pub_encode(xpk, a)) {
xpk->pkey = (EVP_PKEY *)a;
ret = i2d_X509_PUBKEY(xpk, pp);
xpk->pkey = NULL;
}
X509_PUBKEY_free(xpk);
} else if (a->keymgmt != NULL) {
OSSL_ENCODER_CTX *ctx =
OSSL_ENCODER_CTX_new_for_pkey(a, EVP_PKEY_PUBLIC_KEY,
"DER", "SubjectPublicKeyInfo",
NULL);
BIO *out = BIO_new(BIO_s_mem());
BUF_MEM *buf = NULL;
if (OSSL_ENCODER_CTX_get_num_encoders(ctx) != 0
&& out != NULL
&& OSSL_ENCODER_to_bio(ctx, out)
&& BIO_get_mem_ptr(out, &buf) > 0) {
ret = buf->length;
if (pp != NULL) {
if (*pp == NULL) {
*pp = (unsigned char *)buf->data;
buf->length = 0;
buf->data = NULL;
} else {
memcpy(*pp, buf->data, ret);
*pp += ret;
}
}
}
BIO_free(out);
OSSL_ENCODER_CTX_free(ctx);
}
return ret;
}
/*
* The following are equivalents but which return RSA and DSA keys
*/
RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
RSA *key = NULL;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = EVP_PKEY_get1_RSA(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
RSA_free(*a);
*a = key;
}
return key;
}
int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (pktmp == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#ifndef OPENSSL_NO_DH
DH *ossl_d2i_DH_PUBKEY(DH **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
DH *key = NULL;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
if (EVP_PKEY_get_id(pkey) == EVP_PKEY_DH)
key = EVP_PKEY_get1_DH(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
DH_free(*a);
*a = key;
}
return key;
}
int ossl_i2d_DH_PUBKEY(const DH *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (pktmp == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_DH(pktmp, (DH *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
DH *ossl_d2i_DHx_PUBKEY(DH **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
DH *key = NULL;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
if (EVP_PKEY_get_id(pkey) == EVP_PKEY_DHX)
key = EVP_PKEY_get1_DH(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
DH_free(*a);
*a = key;
}
return key;
}
int ossl_i2d_DHx_PUBKEY(const DH *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (pktmp == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign(pktmp, EVP_PKEY_DHX, (DH *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
#ifndef OPENSSL_NO_DSA
DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
DSA *key = NULL;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = EVP_PKEY_get1_DSA(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
DSA_free(*a);
*a = key;
}
return key;
}
int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (pktmp == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
#ifndef OPENSSL_NO_EC
EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
EC_KEY *key = NULL;
const unsigned char *q;
int type;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
type = EVP_PKEY_get_id(pkey);
if (type == EVP_PKEY_EC || type == EVP_PKEY_SM2)
key = EVP_PKEY_get1_EC_KEY(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
EC_KEY_free(*a);
*a = key;
}
return key;
}
int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (a == NULL)
return 0;
if ((pktmp = EVP_PKEY_new()) == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
ECX_KEY *ossl_d2i_ED25519_PUBKEY(ECX_KEY **a,
const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
ECX_KEY *key = NULL;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = ossl_evp_pkey_get1_ED25519(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
ossl_ecx_key_free(*a);
*a = key;
}
return key;
}
int ossl_i2d_ED25519_PUBKEY(const ECX_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (a == NULL)
return 0;
if ((pktmp = EVP_PKEY_new()) == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign(pktmp, EVP_PKEY_ED25519, (ECX_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
ECX_KEY *ossl_d2i_ED448_PUBKEY(ECX_KEY **a,
const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
ECX_KEY *key = NULL;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
if (EVP_PKEY_get_id(pkey) == EVP_PKEY_ED448)
key = ossl_evp_pkey_get1_ED448(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
ossl_ecx_key_free(*a);
*a = key;
}
return key;
}
int ossl_i2d_ED448_PUBKEY(const ECX_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (a == NULL)
return 0;
if ((pktmp = EVP_PKEY_new()) == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign(pktmp, EVP_PKEY_ED448, (ECX_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
ECX_KEY *ossl_d2i_X25519_PUBKEY(ECX_KEY **a,
const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
ECX_KEY *key = NULL;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
if (EVP_PKEY_get_id(pkey) == EVP_PKEY_X25519)
key = ossl_evp_pkey_get1_X25519(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
ossl_ecx_key_free(*a);
*a = key;
}
return key;
}
int ossl_i2d_X25519_PUBKEY(const ECX_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (a == NULL)
return 0;
if ((pktmp = EVP_PKEY_new()) == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign(pktmp, EVP_PKEY_X25519, (ECX_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
ECX_KEY *ossl_d2i_X448_PUBKEY(ECX_KEY **a,
const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
ECX_KEY *key = NULL;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY_legacy(NULL, &q, length);
if (pkey == NULL)
return NULL;
if (EVP_PKEY_get_id(pkey) == EVP_PKEY_X448)
key = ossl_evp_pkey_get1_X448(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
ossl_ecx_key_free(*a);
*a = key;
}
return key;
}
int ossl_i2d_X448_PUBKEY(const ECX_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (a == NULL)
return 0;
if ((pktmp = EVP_PKEY_new()) == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign(pktmp, EVP_PKEY_X448, (ECX_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj,
int ptype, void *pval,
unsigned char *penc, int penclen)
{
if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval))
return 0;
if (penc) {
OPENSSL_free(pub->public_key->data);
pub->public_key->data = penc;
pub->public_key->length = penclen;
/* Set number of unused bits to zero */
pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT;
}
return 1;
}
int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
const unsigned char **pk, int *ppklen,
X509_ALGOR **pa, const X509_PUBKEY *pub)
{
if (ppkalg)
*ppkalg = pub->algor->algorithm;
if (pk) {
*pk = pub->public_key->data;
*ppklen = pub->public_key->length;
}
if (pa)
*pa = pub->algor;
return 1;
}
ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x)
{
if (x == NULL)
return NULL;
return x->cert_info.key->public_key;
}
/* Returns 1 for equal, 0, for non-equal, < 0 on error */
int X509_PUBKEY_eq(const X509_PUBKEY *a, const X509_PUBKEY *b)
{
X509_ALGOR *algA, *algB;
EVP_PKEY *pA, *pB;
if (a == b)
return 1;
if (a == NULL || b == NULL)
return 0;
if (!X509_PUBKEY_get0_param(NULL, NULL, NULL, &algA, a) || algA == NULL
|| !X509_PUBKEY_get0_param(NULL, NULL, NULL, &algB, b) || algB == NULL)
return -2;
if (X509_ALGOR_cmp(algA, algB) != 0)
return 0;
if ((pA = X509_PUBKEY_get0(a)) == NULL
|| (pB = X509_PUBKEY_get0(b)) == NULL)
return -2;
return EVP_PKEY_eq(pA, pB);
}
int ossl_x509_PUBKEY_get0_libctx(OSSL_LIB_CTX **plibctx, const char **ppropq,
const X509_PUBKEY *key)
{
if (plibctx)
*plibctx = key->libctx;
if (ppropq)
*ppropq = key->propq;
return 1;
}