mirror of
https://github.com/openssl/openssl.git
synced 2025-01-24 13:55:42 +08:00
b336ce57f2
Experiments have shown that the lookup table used by BN_GF2m_mod_arr introduces sufficient timing signal to recover the private key for an attacker with access to cache timing information on the victim's host. This only affects binary curves (which are less frequently used). No CVE is considered necessary for this issue. The fix is to replace the lookup table with an on-the-fly calculation of the value from the table instead, which can be performed in constant time. Thanks to Youngjoo Shin for reporting this issue. Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6270)
1167 lines
29 KiB
C
1167 lines
29 KiB
C
/*
|
|
* Copyright 2002-2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
|
|
/*
|
|
* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
|
|
* fail.
|
|
*/
|
|
# define MAX_ITERATIONS 50
|
|
|
|
# define SQR_nibble(w) ((((w) & 8) << 3) \
|
|
| (((w) & 4) << 2) \
|
|
| (((w) & 2) << 1) \
|
|
| ((w) & 1))
|
|
|
|
|
|
/* Platform-specific macros to accelerate squaring. */
|
|
# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
|
# define SQR1(w) \
|
|
SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
|
|
SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
|
|
SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
|
|
SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32)
|
|
# define SQR0(w) \
|
|
SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
|
|
SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
|
|
SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
|
|
SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
|
|
# endif
|
|
# ifdef THIRTY_TWO_BIT
|
|
# define SQR1(w) \
|
|
SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
|
|
SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16)
|
|
# define SQR0(w) \
|
|
SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
|
|
SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
|
|
# endif
|
|
|
|
# if !defined(OPENSSL_BN_ASM_GF2m)
|
|
/*
|
|
* Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
|
|
* a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
|
|
* the variables have the right amount of space allocated.
|
|
*/
|
|
# ifdef THIRTY_TWO_BIT
|
|
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
|
|
const BN_ULONG b)
|
|
{
|
|
register BN_ULONG h, l, s;
|
|
BN_ULONG tab[8], top2b = a >> 30;
|
|
register BN_ULONG a1, a2, a4;
|
|
|
|
a1 = a & (0x3FFFFFFF);
|
|
a2 = a1 << 1;
|
|
a4 = a2 << 1;
|
|
|
|
tab[0] = 0;
|
|
tab[1] = a1;
|
|
tab[2] = a2;
|
|
tab[3] = a1 ^ a2;
|
|
tab[4] = a4;
|
|
tab[5] = a1 ^ a4;
|
|
tab[6] = a2 ^ a4;
|
|
tab[7] = a1 ^ a2 ^ a4;
|
|
|
|
s = tab[b & 0x7];
|
|
l = s;
|
|
s = tab[b >> 3 & 0x7];
|
|
l ^= s << 3;
|
|
h = s >> 29;
|
|
s = tab[b >> 6 & 0x7];
|
|
l ^= s << 6;
|
|
h ^= s >> 26;
|
|
s = tab[b >> 9 & 0x7];
|
|
l ^= s << 9;
|
|
h ^= s >> 23;
|
|
s = tab[b >> 12 & 0x7];
|
|
l ^= s << 12;
|
|
h ^= s >> 20;
|
|
s = tab[b >> 15 & 0x7];
|
|
l ^= s << 15;
|
|
h ^= s >> 17;
|
|
s = tab[b >> 18 & 0x7];
|
|
l ^= s << 18;
|
|
h ^= s >> 14;
|
|
s = tab[b >> 21 & 0x7];
|
|
l ^= s << 21;
|
|
h ^= s >> 11;
|
|
s = tab[b >> 24 & 0x7];
|
|
l ^= s << 24;
|
|
h ^= s >> 8;
|
|
s = tab[b >> 27 & 0x7];
|
|
l ^= s << 27;
|
|
h ^= s >> 5;
|
|
s = tab[b >> 30];
|
|
l ^= s << 30;
|
|
h ^= s >> 2;
|
|
|
|
/* compensate for the top two bits of a */
|
|
|
|
if (top2b & 01) {
|
|
l ^= b << 30;
|
|
h ^= b >> 2;
|
|
}
|
|
if (top2b & 02) {
|
|
l ^= b << 31;
|
|
h ^= b >> 1;
|
|
}
|
|
|
|
*r1 = h;
|
|
*r0 = l;
|
|
}
|
|
# endif
|
|
# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
|
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
|
|
const BN_ULONG b)
|
|
{
|
|
register BN_ULONG h, l, s;
|
|
BN_ULONG tab[16], top3b = a >> 61;
|
|
register BN_ULONG a1, a2, a4, a8;
|
|
|
|
a1 = a & (0x1FFFFFFFFFFFFFFFULL);
|
|
a2 = a1 << 1;
|
|
a4 = a2 << 1;
|
|
a8 = a4 << 1;
|
|
|
|
tab[0] = 0;
|
|
tab[1] = a1;
|
|
tab[2] = a2;
|
|
tab[3] = a1 ^ a2;
|
|
tab[4] = a4;
|
|
tab[5] = a1 ^ a4;
|
|
tab[6] = a2 ^ a4;
|
|
tab[7] = a1 ^ a2 ^ a4;
|
|
tab[8] = a8;
|
|
tab[9] = a1 ^ a8;
|
|
tab[10] = a2 ^ a8;
|
|
tab[11] = a1 ^ a2 ^ a8;
|
|
tab[12] = a4 ^ a8;
|
|
tab[13] = a1 ^ a4 ^ a8;
|
|
tab[14] = a2 ^ a4 ^ a8;
|
|
tab[15] = a1 ^ a2 ^ a4 ^ a8;
|
|
|
|
s = tab[b & 0xF];
|
|
l = s;
|
|
s = tab[b >> 4 & 0xF];
|
|
l ^= s << 4;
|
|
h = s >> 60;
|
|
s = tab[b >> 8 & 0xF];
|
|
l ^= s << 8;
|
|
h ^= s >> 56;
|
|
s = tab[b >> 12 & 0xF];
|
|
l ^= s << 12;
|
|
h ^= s >> 52;
|
|
s = tab[b >> 16 & 0xF];
|
|
l ^= s << 16;
|
|
h ^= s >> 48;
|
|
s = tab[b >> 20 & 0xF];
|
|
l ^= s << 20;
|
|
h ^= s >> 44;
|
|
s = tab[b >> 24 & 0xF];
|
|
l ^= s << 24;
|
|
h ^= s >> 40;
|
|
s = tab[b >> 28 & 0xF];
|
|
l ^= s << 28;
|
|
h ^= s >> 36;
|
|
s = tab[b >> 32 & 0xF];
|
|
l ^= s << 32;
|
|
h ^= s >> 32;
|
|
s = tab[b >> 36 & 0xF];
|
|
l ^= s << 36;
|
|
h ^= s >> 28;
|
|
s = tab[b >> 40 & 0xF];
|
|
l ^= s << 40;
|
|
h ^= s >> 24;
|
|
s = tab[b >> 44 & 0xF];
|
|
l ^= s << 44;
|
|
h ^= s >> 20;
|
|
s = tab[b >> 48 & 0xF];
|
|
l ^= s << 48;
|
|
h ^= s >> 16;
|
|
s = tab[b >> 52 & 0xF];
|
|
l ^= s << 52;
|
|
h ^= s >> 12;
|
|
s = tab[b >> 56 & 0xF];
|
|
l ^= s << 56;
|
|
h ^= s >> 8;
|
|
s = tab[b >> 60];
|
|
l ^= s << 60;
|
|
h ^= s >> 4;
|
|
|
|
/* compensate for the top three bits of a */
|
|
|
|
if (top3b & 01) {
|
|
l ^= b << 61;
|
|
h ^= b >> 3;
|
|
}
|
|
if (top3b & 02) {
|
|
l ^= b << 62;
|
|
h ^= b >> 2;
|
|
}
|
|
if (top3b & 04) {
|
|
l ^= b << 63;
|
|
h ^= b >> 1;
|
|
}
|
|
|
|
*r1 = h;
|
|
*r0 = l;
|
|
}
|
|
# endif
|
|
|
|
/*
|
|
* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
|
|
* result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
|
|
* ensure that the variables have the right amount of space allocated.
|
|
*/
|
|
static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
|
|
const BN_ULONG b1, const BN_ULONG b0)
|
|
{
|
|
BN_ULONG m1, m0;
|
|
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
|
|
bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
|
|
bn_GF2m_mul_1x1(r + 1, r, a0, b0);
|
|
bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
|
|
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
|
|
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
|
|
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
|
|
}
|
|
# else
|
|
void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
|
|
BN_ULONG b0);
|
|
# endif
|
|
|
|
/*
|
|
* Add polynomials a and b and store result in r; r could be a or b, a and b
|
|
* could be equal; r is the bitwise XOR of a and b.
|
|
*/
|
|
int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
|
|
{
|
|
int i;
|
|
const BIGNUM *at, *bt;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
if (a->top < b->top) {
|
|
at = b;
|
|
bt = a;
|
|
} else {
|
|
at = a;
|
|
bt = b;
|
|
}
|
|
|
|
if (bn_wexpand(r, at->top) == NULL)
|
|
return 0;
|
|
|
|
for (i = 0; i < bt->top; i++) {
|
|
r->d[i] = at->d[i] ^ bt->d[i];
|
|
}
|
|
for (; i < at->top; i++) {
|
|
r->d[i] = at->d[i];
|
|
}
|
|
|
|
r->top = at->top;
|
|
bn_correct_top(r);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*-
|
|
* Some functions allow for representation of the irreducible polynomials
|
|
* as an int[], say p. The irreducible f(t) is then of the form:
|
|
* t^p[0] + t^p[1] + ... + t^p[k]
|
|
* where m = p[0] > p[1] > ... > p[k] = 0.
|
|
*/
|
|
|
|
/* Performs modular reduction of a and store result in r. r could be a. */
|
|
int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
|
|
{
|
|
int j, k;
|
|
int n, dN, d0, d1;
|
|
BN_ULONG zz, *z;
|
|
|
|
bn_check_top(a);
|
|
|
|
if (!p[0]) {
|
|
/* reduction mod 1 => return 0 */
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Since the algorithm does reduction in the r value, if a != r, copy the
|
|
* contents of a into r so we can do reduction in r.
|
|
*/
|
|
if (a != r) {
|
|
if (!bn_wexpand(r, a->top))
|
|
return 0;
|
|
for (j = 0; j < a->top; j++) {
|
|
r->d[j] = a->d[j];
|
|
}
|
|
r->top = a->top;
|
|
}
|
|
z = r->d;
|
|
|
|
/* start reduction */
|
|
dN = p[0] / BN_BITS2;
|
|
for (j = r->top - 1; j > dN;) {
|
|
zz = z[j];
|
|
if (z[j] == 0) {
|
|
j--;
|
|
continue;
|
|
}
|
|
z[j] = 0;
|
|
|
|
for (k = 1; p[k] != 0; k++) {
|
|
/* reducing component t^p[k] */
|
|
n = p[0] - p[k];
|
|
d0 = n % BN_BITS2;
|
|
d1 = BN_BITS2 - d0;
|
|
n /= BN_BITS2;
|
|
z[j - n] ^= (zz >> d0);
|
|
if (d0)
|
|
z[j - n - 1] ^= (zz << d1);
|
|
}
|
|
|
|
/* reducing component t^0 */
|
|
n = dN;
|
|
d0 = p[0] % BN_BITS2;
|
|
d1 = BN_BITS2 - d0;
|
|
z[j - n] ^= (zz >> d0);
|
|
if (d0)
|
|
z[j - n - 1] ^= (zz << d1);
|
|
}
|
|
|
|
/* final round of reduction */
|
|
while (j == dN) {
|
|
|
|
d0 = p[0] % BN_BITS2;
|
|
zz = z[dN] >> d0;
|
|
if (zz == 0)
|
|
break;
|
|
d1 = BN_BITS2 - d0;
|
|
|
|
/* clear up the top d1 bits */
|
|
if (d0)
|
|
z[dN] = (z[dN] << d1) >> d1;
|
|
else
|
|
z[dN] = 0;
|
|
z[0] ^= zz; /* reduction t^0 component */
|
|
|
|
for (k = 1; p[k] != 0; k++) {
|
|
BN_ULONG tmp_ulong;
|
|
|
|
/* reducing component t^p[k] */
|
|
n = p[k] / BN_BITS2;
|
|
d0 = p[k] % BN_BITS2;
|
|
d1 = BN_BITS2 - d0;
|
|
z[n] ^= (zz << d0);
|
|
if (d0 && (tmp_ulong = zz >> d1))
|
|
z[n + 1] ^= tmp_ulong;
|
|
}
|
|
|
|
}
|
|
|
|
bn_correct_top(r);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Performs modular reduction of a by p and store result in r. r could be a.
|
|
* This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
|
|
* function is only provided for convenience; for best performance, use the
|
|
* BN_GF2m_mod_arr function.
|
|
*/
|
|
int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
|
|
{
|
|
int ret = 0;
|
|
int arr[6];
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
|
|
if (!ret || ret > (int)OSSL_NELEM(arr)) {
|
|
BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
|
|
return 0;
|
|
}
|
|
ret = BN_GF2m_mod_arr(r, a, arr);
|
|
bn_check_top(r);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the product of two polynomials a and b, reduce modulo p, and store
|
|
* the result in r. r could be a or b; a could be b.
|
|
*/
|
|
int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const int p[], BN_CTX *ctx)
|
|
{
|
|
int zlen, i, j, k, ret = 0;
|
|
BIGNUM *s;
|
|
BN_ULONG x1, x0, y1, y0, zz[4];
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
if (a == b) {
|
|
return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((s = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
zlen = a->top + b->top + 4;
|
|
if (!bn_wexpand(s, zlen))
|
|
goto err;
|
|
s->top = zlen;
|
|
|
|
for (i = 0; i < zlen; i++)
|
|
s->d[i] = 0;
|
|
|
|
for (j = 0; j < b->top; j += 2) {
|
|
y0 = b->d[j];
|
|
y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
|
|
for (i = 0; i < a->top; i += 2) {
|
|
x0 = a->d[i];
|
|
x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
|
|
bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
|
|
for (k = 0; k < 4; k++)
|
|
s->d[i + j + k] ^= zz[k];
|
|
}
|
|
}
|
|
|
|
bn_correct_top(s);
|
|
if (BN_GF2m_mod_arr(r, s, p))
|
|
ret = 1;
|
|
bn_check_top(r);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the product of two polynomials a and b, reduce modulo p, and store
|
|
* the result in r. r could be a or b; a could equal b. This function calls
|
|
* down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
|
|
* only provided for convenience; for best performance, use the
|
|
* BN_GF2m_mod_mul_arr function.
|
|
*/
|
|
int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/* Square a, reduce the result mod p, and store it in a. r could be a. */
|
|
int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
|
|
BN_CTX *ctx)
|
|
{
|
|
int i, ret = 0;
|
|
BIGNUM *s;
|
|
|
|
bn_check_top(a);
|
|
BN_CTX_start(ctx);
|
|
if ((s = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if (!bn_wexpand(s, 2 * a->top))
|
|
goto err;
|
|
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
s->d[2 * i + 1] = SQR1(a->d[i]);
|
|
s->d[2 * i] = SQR0(a->d[i]);
|
|
}
|
|
|
|
s->top = 2 * a->top;
|
|
bn_correct_top(s);
|
|
if (!BN_GF2m_mod_arr(r, s, p))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Square a, reduce the result mod p, and store it in a. r could be a. This
|
|
* function calls down to the BN_GF2m_mod_sqr_arr implementation; this
|
|
* wrapper function is only provided for convenience; for best performance,
|
|
* use the BN_GF2m_mod_sqr_arr function.
|
|
*/
|
|
int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Invert a, reduce modulo p, and store the result in r. r could be a. Uses
|
|
* Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
|
|
* Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
|
|
* Curve Cryptography Over Binary Fields".
|
|
*/
|
|
static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
|
|
int ret = 0;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
b = BN_CTX_get(ctx);
|
|
c = BN_CTX_get(ctx);
|
|
u = BN_CTX_get(ctx);
|
|
v = BN_CTX_get(ctx);
|
|
if (v == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod(u, a, p))
|
|
goto err;
|
|
if (BN_is_zero(u))
|
|
goto err;
|
|
|
|
if (!BN_copy(v, p))
|
|
goto err;
|
|
# if 0
|
|
if (!BN_one(b))
|
|
goto err;
|
|
|
|
while (1) {
|
|
while (!BN_is_odd(u)) {
|
|
if (BN_is_zero(u))
|
|
goto err;
|
|
if (!BN_rshift1(u, u))
|
|
goto err;
|
|
if (BN_is_odd(b)) {
|
|
if (!BN_GF2m_add(b, b, p))
|
|
goto err;
|
|
}
|
|
if (!BN_rshift1(b, b))
|
|
goto err;
|
|
}
|
|
|
|
if (BN_abs_is_word(u, 1))
|
|
break;
|
|
|
|
if (BN_num_bits(u) < BN_num_bits(v)) {
|
|
tmp = u;
|
|
u = v;
|
|
v = tmp;
|
|
tmp = b;
|
|
b = c;
|
|
c = tmp;
|
|
}
|
|
|
|
if (!BN_GF2m_add(u, u, v))
|
|
goto err;
|
|
if (!BN_GF2m_add(b, b, c))
|
|
goto err;
|
|
}
|
|
# else
|
|
{
|
|
int i;
|
|
int ubits = BN_num_bits(u);
|
|
int vbits = BN_num_bits(v); /* v is copy of p */
|
|
int top = p->top;
|
|
BN_ULONG *udp, *bdp, *vdp, *cdp;
|
|
|
|
if (!bn_wexpand(u, top))
|
|
goto err;
|
|
udp = u->d;
|
|
for (i = u->top; i < top; i++)
|
|
udp[i] = 0;
|
|
u->top = top;
|
|
if (!bn_wexpand(b, top))
|
|
goto err;
|
|
bdp = b->d;
|
|
bdp[0] = 1;
|
|
for (i = 1; i < top; i++)
|
|
bdp[i] = 0;
|
|
b->top = top;
|
|
if (!bn_wexpand(c, top))
|
|
goto err;
|
|
cdp = c->d;
|
|
for (i = 0; i < top; i++)
|
|
cdp[i] = 0;
|
|
c->top = top;
|
|
vdp = v->d; /* It pays off to "cache" *->d pointers,
|
|
* because it allows optimizer to be more
|
|
* aggressive. But we don't have to "cache"
|
|
* p->d, because *p is declared 'const'... */
|
|
while (1) {
|
|
while (ubits && !(udp[0] & 1)) {
|
|
BN_ULONG u0, u1, b0, b1, mask;
|
|
|
|
u0 = udp[0];
|
|
b0 = bdp[0];
|
|
mask = (BN_ULONG)0 - (b0 & 1);
|
|
b0 ^= p->d[0] & mask;
|
|
for (i = 0; i < top - 1; i++) {
|
|
u1 = udp[i + 1];
|
|
udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
|
|
u0 = u1;
|
|
b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
|
|
bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
|
|
b0 = b1;
|
|
}
|
|
udp[i] = u0 >> 1;
|
|
bdp[i] = b0 >> 1;
|
|
ubits--;
|
|
}
|
|
|
|
if (ubits <= BN_BITS2) {
|
|
if (udp[0] == 0) /* poly was reducible */
|
|
goto err;
|
|
if (udp[0] == 1)
|
|
break;
|
|
}
|
|
|
|
if (ubits < vbits) {
|
|
i = ubits;
|
|
ubits = vbits;
|
|
vbits = i;
|
|
tmp = u;
|
|
u = v;
|
|
v = tmp;
|
|
tmp = b;
|
|
b = c;
|
|
c = tmp;
|
|
udp = vdp;
|
|
vdp = v->d;
|
|
bdp = cdp;
|
|
cdp = c->d;
|
|
}
|
|
for (i = 0; i < top; i++) {
|
|
udp[i] ^= vdp[i];
|
|
bdp[i] ^= cdp[i];
|
|
}
|
|
if (ubits == vbits) {
|
|
BN_ULONG ul;
|
|
int utop = (ubits - 1) / BN_BITS2;
|
|
|
|
while ((ul = udp[utop]) == 0 && utop)
|
|
utop--;
|
|
ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
|
|
}
|
|
}
|
|
bn_correct_top(b);
|
|
}
|
|
# endif
|
|
|
|
if (!BN_copy(r, b))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
|
|
err:
|
|
# ifdef BN_DEBUG /* BN_CTX_end would complain about the
|
|
* expanded form */
|
|
bn_correct_top(c);
|
|
bn_correct_top(u);
|
|
bn_correct_top(v);
|
|
# endif
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
|
|
* This is not constant time.
|
|
* But it does eliminate first order deduction on the input.
|
|
*/
|
|
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *b = NULL;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((b = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
/* generate blinding value */
|
|
do {
|
|
if (!BN_priv_rand(b, BN_num_bits(p) - 1,
|
|
BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY))
|
|
goto err;
|
|
} while (BN_is_zero(b));
|
|
|
|
/* r := a * b */
|
|
if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
|
|
goto err;
|
|
|
|
/* r := 1/(a * b) */
|
|
if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
|
|
goto err;
|
|
|
|
/* r := b/(a * b) = 1/a */
|
|
if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Invert xx, reduce modulo p, and store the result in r. r could be xx.
|
|
* This function calls down to the BN_GF2m_mod_inv implementation; this
|
|
* wrapper function is only provided for convenience; for best performance,
|
|
* use the BN_GF2m_mod_inv function.
|
|
*/
|
|
int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
|
|
BN_CTX *ctx)
|
|
{
|
|
BIGNUM *field;
|
|
int ret = 0;
|
|
|
|
bn_check_top(xx);
|
|
BN_CTX_start(ctx);
|
|
if ((field = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if (!BN_GF2m_arr2poly(p, field))
|
|
goto err;
|
|
|
|
ret = BN_GF2m_mod_inv(r, xx, field, ctx);
|
|
bn_check_top(r);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Divide y by x, reduce modulo p, and store the result in r. r could be x
|
|
* or y, x could equal y.
|
|
*/
|
|
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
|
|
const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *xinv = NULL;
|
|
int ret = 0;
|
|
|
|
bn_check_top(y);
|
|
bn_check_top(x);
|
|
bn_check_top(p);
|
|
|
|
BN_CTX_start(ctx);
|
|
xinv = BN_CTX_get(ctx);
|
|
if (xinv == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
|
|
* * or yy, xx could equal yy. This function calls down to the
|
|
* BN_GF2m_mod_div implementation; this wrapper function is only provided for
|
|
* convenience; for best performance, use the BN_GF2m_mod_div function.
|
|
*/
|
|
int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
|
|
const int p[], BN_CTX *ctx)
|
|
{
|
|
BIGNUM *field;
|
|
int ret = 0;
|
|
|
|
bn_check_top(yy);
|
|
bn_check_top(xx);
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((field = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if (!BN_GF2m_arr2poly(p, field))
|
|
goto err;
|
|
|
|
ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
|
|
bn_check_top(r);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the bth power of a, reduce modulo p, and store the result in r. r
|
|
* could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
|
|
* P1363.
|
|
*/
|
|
int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const int p[], BN_CTX *ctx)
|
|
{
|
|
int ret = 0, i, n;
|
|
BIGNUM *u;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
if (BN_is_zero(b))
|
|
return BN_one(r);
|
|
|
|
if (BN_abs_is_word(b, 1))
|
|
return (BN_copy(r, a) != NULL);
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((u = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod_arr(u, a, p))
|
|
goto err;
|
|
|
|
n = BN_num_bits(b) - 1;
|
|
for (i = n - 1; i >= 0; i--) {
|
|
if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
|
|
goto err;
|
|
if (BN_is_bit_set(b, i)) {
|
|
if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
|
|
goto err;
|
|
}
|
|
}
|
|
if (!BN_copy(r, u))
|
|
goto err;
|
|
bn_check_top(r);
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the bth power of a, reduce modulo p, and store the result in r. r
|
|
* could be a. This function calls down to the BN_GF2m_mod_exp_arr
|
|
* implementation; this wrapper function is only provided for convenience;
|
|
* for best performance, use the BN_GF2m_mod_exp_arr function.
|
|
*/
|
|
int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the square root of a, reduce modulo p, and store the result in r.
|
|
* r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
|
|
*/
|
|
int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
BIGNUM *u;
|
|
|
|
bn_check_top(a);
|
|
|
|
if (!p[0]) {
|
|
/* reduction mod 1 => return 0 */
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((u = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_set_bit(u, p[0] - 1))
|
|
goto err;
|
|
ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
|
|
bn_check_top(r);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the square root of a, reduce modulo p, and store the result in r.
|
|
* r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
|
|
* implementation; this wrapper function is only provided for convenience;
|
|
* for best performance, use the BN_GF2m_mod_sqrt_arr function.
|
|
*/
|
|
int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
|
|
* 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
|
|
*/
|
|
int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret = 0, count = 0, j;
|
|
BIGNUM *a, *z, *rho, *w, *w2, *tmp;
|
|
|
|
bn_check_top(a_);
|
|
|
|
if (!p[0]) {
|
|
/* reduction mod 1 => return 0 */
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
a = BN_CTX_get(ctx);
|
|
z = BN_CTX_get(ctx);
|
|
w = BN_CTX_get(ctx);
|
|
if (w == NULL)
|
|
goto err;
|
|
|
|
if (!BN_GF2m_mod_arr(a, a_, p))
|
|
goto err;
|
|
|
|
if (BN_is_zero(a)) {
|
|
BN_zero(r);
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
|
|
if (p[0] & 0x1) { /* m is odd */
|
|
/* compute half-trace of a */
|
|
if (!BN_copy(z, a))
|
|
goto err;
|
|
for (j = 1; j <= (p[0] - 1) / 2; j++) {
|
|
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z, z, a))
|
|
goto err;
|
|
}
|
|
|
|
} else { /* m is even */
|
|
|
|
rho = BN_CTX_get(ctx);
|
|
w2 = BN_CTX_get(ctx);
|
|
tmp = BN_CTX_get(ctx);
|
|
if (tmp == NULL)
|
|
goto err;
|
|
do {
|
|
if (!BN_priv_rand(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
|
|
goto err;
|
|
if (!BN_GF2m_mod_arr(rho, rho, p))
|
|
goto err;
|
|
BN_zero(z);
|
|
if (!BN_copy(w, rho))
|
|
goto err;
|
|
for (j = 1; j <= p[0] - 1; j++) {
|
|
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(z, z, tmp))
|
|
goto err;
|
|
if (!BN_GF2m_add(w, w2, rho))
|
|
goto err;
|
|
}
|
|
count++;
|
|
} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
|
|
if (BN_is_zero(w)) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
|
|
goto err;
|
|
if (!BN_GF2m_add(w, z, w))
|
|
goto err;
|
|
if (BN_GF2m_cmp(w, a)) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_copy(r, z))
|
|
goto err;
|
|
bn_check_top(r);
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
|
|
* 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
|
|
* implementation; this wrapper function is only provided for convenience;
|
|
* for best performance, use the BN_GF2m_mod_solve_quad_arr function.
|
|
*/
|
|
int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
const int max = BN_num_bits(p) + 1;
|
|
int *arr = NULL;
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
|
goto err;
|
|
ret = BN_GF2m_poly2arr(p, arr, max);
|
|
if (!ret || ret > max) {
|
|
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
|
|
goto err;
|
|
}
|
|
ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
|
|
bn_check_top(r);
|
|
err:
|
|
OPENSSL_free(arr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
|
|
* x^i) into an array of integers corresponding to the bits with non-zero
|
|
* coefficient. Array is terminated with -1. Up to max elements of the array
|
|
* will be filled. Return value is total number of array elements that would
|
|
* be filled if array was large enough.
|
|
*/
|
|
int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
|
|
{
|
|
int i, j, k = 0;
|
|
BN_ULONG mask;
|
|
|
|
if (BN_is_zero(a))
|
|
return 0;
|
|
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
if (!a->d[i])
|
|
/* skip word if a->d[i] == 0 */
|
|
continue;
|
|
mask = BN_TBIT;
|
|
for (j = BN_BITS2 - 1; j >= 0; j--) {
|
|
if (a->d[i] & mask) {
|
|
if (k < max)
|
|
p[k] = BN_BITS2 * i + j;
|
|
k++;
|
|
}
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
|
|
if (k < max) {
|
|
p[k] = -1;
|
|
k++;
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
/*
|
|
* Convert the coefficient array representation of a polynomial to a
|
|
* bit-string. The array must be terminated by -1.
|
|
*/
|
|
int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
|
|
{
|
|
int i;
|
|
|
|
bn_check_top(a);
|
|
BN_zero(a);
|
|
for (i = 0; p[i] != -1; i++) {
|
|
if (BN_set_bit(a, p[i]) == 0)
|
|
return 0;
|
|
}
|
|
bn_check_top(a);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif
|