openssl/crypto/evp/e_aes.c
Shane Lontis bcf082d130 FIPS AES_GCM IV gen changes
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8393)
2019-03-07 07:30:04 +10:00

4443 lines
148 KiB
C

/*
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <string.h>
#include <assert.h>
#include <openssl/aes.h>
#include "internal/evp_int.h"
#include "modes_lcl.h"
#include <openssl/rand.h>
#include <openssl/cmac.h>
#include "evp_locl.h"
typedef struct {
union {
double align;
AES_KEY ks;
} ks;
block128_f block;
union {
cbc128_f cbc;
ctr128_f ctr;
} stream;
} EVP_AES_KEY;
typedef struct {
union {
double align;
AES_KEY ks;
} ks; /* AES key schedule to use */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
GCM128_CONTEXT gcm;
unsigned char *iv; /* Temporary IV store */
int ivlen; /* IV length */
int taglen;
int iv_gen; /* It is OK to generate IVs */
int iv_gen_rand; /* No IV was specified, so generate a rand IV */
int tls_aad_len; /* TLS AAD length */
uint64_t tls_enc_records; /* Number of TLS records encrypted */
ctr128_f ctr;
} EVP_AES_GCM_CTX;
typedef struct {
union {
double align;
AES_KEY ks;
} ks1, ks2; /* AES key schedules to use */
XTS128_CONTEXT xts;
void (*stream) (const unsigned char *in,
unsigned char *out, size_t length,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
} EVP_AES_XTS_CTX;
typedef struct {
union {
double align;
AES_KEY ks;
} ks; /* AES key schedule to use */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
int tag_set; /* Set if tag is valid */
int len_set; /* Set if message length set */
int L, M; /* L and M parameters from RFC3610 */
int tls_aad_len; /* TLS AAD length */
CCM128_CONTEXT ccm;
ccm128_f str;
} EVP_AES_CCM_CTX;
#ifndef OPENSSL_NO_OCB
typedef struct {
union {
double align;
AES_KEY ks;
} ksenc; /* AES key schedule to use for encryption */
union {
double align;
AES_KEY ks;
} ksdec; /* AES key schedule to use for decryption */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
OCB128_CONTEXT ocb;
unsigned char *iv; /* Temporary IV store */
unsigned char tag[16];
unsigned char data_buf[16]; /* Store partial data blocks */
unsigned char aad_buf[16]; /* Store partial AAD blocks */
int data_buf_len;
int aad_buf_len;
int ivlen; /* IV length */
int taglen;
} EVP_AES_OCB_CTX;
#endif
#define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
#ifdef VPAES_ASM
int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
void vpaes_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void vpaes_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void vpaes_cbc_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key, unsigned char *ivec, int enc);
#endif
#ifdef BSAES_ASM
void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key,
unsigned char ivec[16], int enc);
void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
const unsigned char ivec[16]);
void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
size_t len, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char iv[16]);
void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
size_t len, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char iv[16]);
#endif
#ifdef AES_CTR_ASM
void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
const unsigned char ivec[AES_BLOCK_SIZE]);
#endif
#ifdef AES_XTS_ASM
void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
#endif
/* increment counter (64-bit int) by 1 */
static void ctr64_inc(unsigned char *counter)
{
int n = 8;
unsigned char c;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c)
return;
} while (n);
}
#if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
# include "ppc_arch.h"
# ifdef VPAES_ASM
# define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
# endif
# define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
# define HWAES_set_encrypt_key aes_p8_set_encrypt_key
# define HWAES_set_decrypt_key aes_p8_set_decrypt_key
# define HWAES_encrypt aes_p8_encrypt
# define HWAES_decrypt aes_p8_decrypt
# define HWAES_cbc_encrypt aes_p8_cbc_encrypt
# define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
# define HWAES_xts_encrypt aes_p8_xts_encrypt
# define HWAES_xts_decrypt aes_p8_xts_decrypt
#endif
#if defined(AES_ASM) && !defined(I386_ONLY) && ( \
((defined(__i386) || defined(__i386__) || \
defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) )
extern unsigned int OPENSSL_ia32cap_P[];
# ifdef VPAES_ASM
# define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
# endif
# ifdef BSAES_ASM
# define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
# endif
/*
* AES-NI section
*/
# define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
void aesni_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aesni_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aesni_ecb_encrypt(const unsigned char *in,
unsigned char *out,
size_t length, const AES_KEY *key, int enc);
void aesni_cbc_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key, unsigned char *ivec, int enc);
void aesni_ctr32_encrypt_blocks(const unsigned char *in,
unsigned char *out,
size_t blocks,
const void *key, const unsigned char *ivec);
void aesni_xts_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
void aesni_xts_decrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
void aesni_ccm64_encrypt_blocks(const unsigned char *in,
unsigned char *out,
size_t blocks,
const void *key,
const unsigned char ivec[16],
unsigned char cmac[16]);
void aesni_ccm64_decrypt_blocks(const unsigned char *in,
unsigned char *out,
size_t blocks,
const void *key,
const unsigned char ivec[16],
unsigned char cmac[16]);
# if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
size_t aesni_gcm_encrypt(const unsigned char *in,
unsigned char *out,
size_t len,
const void *key, unsigned char ivec[16], u64 *Xi);
# define AES_gcm_encrypt aesni_gcm_encrypt
size_t aesni_gcm_decrypt(const unsigned char *in,
unsigned char *out,
size_t len,
const void *key, unsigned char ivec[16], u64 *Xi);
# define AES_gcm_decrypt aesni_gcm_decrypt
void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
size_t len);
# define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
gctx->gcm.ghash==gcm_ghash_avx)
# define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
gctx->gcm.ghash==gcm_ghash_avx)
# undef AES_GCM_ASM2 /* minor size optimization */
# endif
static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret, mode;
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
mode = EVP_CIPHER_CTX_mode(ctx);
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc) {
ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) aesni_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aesni_cbc_encrypt : NULL;
} else {
ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) aesni_encrypt;
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
else
dat->stream.cbc = NULL;
}
if (ret < 0) {
EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
EVP_CIPHER_CTX_iv_noconst(ctx),
EVP_CIPHER_CTX_encrypting(ctx));
return 1;
}
static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
size_t bl = EVP_CIPHER_CTX_block_size(ctx);
if (len < bl)
return 1;
aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
EVP_CIPHER_CTX_encrypting(ctx));
return 1;
}
# define aesni_ofb_cipher aes_ofb_cipher
static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aesni_cfb_cipher aes_cfb_cipher
static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aesni_cfb8_cipher aes_cfb8_cipher
static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aesni_cfb1_cipher aes_cfb1_cipher
static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aesni_ctr_cipher aes_ctr_cipher
static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
/*
* If we have an iv can set it directly, otherwise use saved IV.
*/
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set)
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
# define aesni_gcm_cipher aes_gcm_cipher
static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
/* key_len is two AES keys */
if (enc) {
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) aesni_encrypt;
xctx->stream = aesni_xts_encrypt;
} else {
aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) aesni_decrypt;
xctx->stream = aesni_xts_decrypt;
}
aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks2.ks);
xctx->xts.block2 = (block128_f) aesni_encrypt;
xctx->xts.key1 = &xctx->ks1;
}
if (iv) {
xctx->xts.key2 = &xctx->ks2;
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
}
return 1;
}
# define aesni_xts_cipher aes_xts_cipher
static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) aesni_encrypt);
cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
(ccm128_f) aesni_ccm64_decrypt_blocks;
cctx->key_set = 1;
}
if (iv) {
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
cctx->iv_set = 1;
}
return 1;
}
# define aesni_ccm_cipher aes_ccm_cipher
static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# ifndef OPENSSL_NO_OCB
void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const void *key,
size_t start_block_num,
unsigned char offset_i[16],
const unsigned char L_[][16],
unsigned char checksum[16]);
void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const void *key,
size_t start_block_num,
unsigned char offset_i[16],
const unsigned char L_[][16],
unsigned char checksum[16]);
static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
do {
/*
* We set both the encrypt and decrypt key here because decrypt
* needs both. We could possibly optimise to remove setting the
* decrypt for an encryption operation.
*/
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksenc.ks);
aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) aesni_encrypt,
(block128_f) aesni_decrypt,
enc ? aesni_ocb_encrypt
: aesni_ocb_decrypt))
return 0;
}
while (0);
/*
* If we have an iv we can set it directly, otherwise use saved IV.
*/
if (iv == NULL && octx->iv_set)
iv = octx->iv;
if (iv) {
if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
!= 1)
return 0;
octx->iv_set = 1;
}
octx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (octx->key_set)
CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
else
memcpy(octx->iv, iv, octx->ivlen);
octx->iv_set = 1;
}
return 1;
}
# define aesni_ocb_cipher aes_ocb_cipher
static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# endif /* OPENSSL_NO_OCB */
# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
static const EVP_CIPHER aesni_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aesni_init_key, \
aesni_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize, \
keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_init_key, \
aes_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
static const EVP_CIPHER aesni_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aesni_##mode##_init_key, \
aesni_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_##mode##_init_key, \
aes_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
#elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
# include "sparc_arch.h"
extern unsigned int OPENSSL_sparcv9cap_P[];
/*
* Initial Fujitsu SPARC64 X support
*/
# define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX)
# define HWAES_set_encrypt_key aes_fx_set_encrypt_key
# define HWAES_set_decrypt_key aes_fx_set_decrypt_key
# define HWAES_encrypt aes_fx_encrypt
# define HWAES_decrypt aes_fx_decrypt
# define HWAES_cbc_encrypt aes_fx_cbc_encrypt
# define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks
# define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
/*
* Key-length specific subroutines were chosen for following reason.
* Each SPARC T4 core can execute up to 8 threads which share core's
* resources. Loading as much key material to registers allows to
* minimize references to shared memory interface, as well as amount
* of instructions in inner loops [much needed on T4]. But then having
* non-key-length specific routines would require conditional branches
* either in inner loops or on subroutines' entries. Former is hardly
* acceptable, while latter means code size increase to size occupied
* by multiple key-length specific subroutines, so why fight?
*/
void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
unsigned char *ivec);
void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
unsigned char *ivec);
void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
unsigned char *ivec);
void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char *ivec);
void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char *ivec);
void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char *ivec);
void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char *ivec);
static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret, mode, bits;
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
mode = EVP_CIPHER_CTX_mode(ctx);
bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc) {
ret = 0;
aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
dat->block = (block128_f) aes_t4_decrypt;
switch (bits) {
case 128:
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aes128_t4_cbc_decrypt : NULL;
break;
case 192:
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aes192_t4_cbc_decrypt : NULL;
break;
case 256:
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aes256_t4_cbc_decrypt : NULL;
break;
default:
ret = -1;
}
} else {
ret = 0;
aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
dat->block = (block128_f) aes_t4_encrypt;
switch (bits) {
case 128:
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
else
dat->stream.cbc = NULL;
break;
case 192:
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
else
dat->stream.cbc = NULL;
break;
case 256:
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
else
dat->stream.cbc = NULL;
break;
default:
ret = -1;
}
}
if (ret < 0) {
EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
# define aes_t4_cbc_cipher aes_cbc_cipher
static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aes_t4_ecb_cipher aes_ecb_cipher
static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aes_t4_ofb_cipher aes_ofb_cipher
static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aes_t4_cfb_cipher aes_cfb_cipher
static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aes_t4_cfb8_cipher aes_cfb8_cipher
static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aes_t4_cfb1_cipher aes_cfb1_cipher
static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define aes_t4_ctr_cipher aes_ctr_cipher
static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) aes_t4_encrypt);
switch (bits) {
case 128:
gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
break;
case 192:
gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
break;
case 256:
gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
break;
default:
return 0;
}
/*
* If we have an iv can set it directly, otherwise use saved IV.
*/
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set)
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
# define aes_t4_gcm_cipher aes_gcm_cipher
static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
int bits = EVP_CIPHER_CTX_key_length(ctx) * 4;
xctx->stream = NULL;
/* key_len is two AES keys */
if (enc) {
aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
xctx->xts.block1 = (block128_f) aes_t4_encrypt;
switch (bits) {
case 128:
xctx->stream = aes128_t4_xts_encrypt;
break;
case 256:
xctx->stream = aes256_t4_xts_encrypt;
break;
default:
return 0;
}
} else {
aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) aes_t4_decrypt;
switch (bits) {
case 128:
xctx->stream = aes128_t4_xts_decrypt;
break;
case 256:
xctx->stream = aes256_t4_xts_decrypt;
break;
default:
return 0;
}
}
aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks2.ks);
xctx->xts.block2 = (block128_f) aes_t4_encrypt;
xctx->xts.key1 = &xctx->ks1;
}
if (iv) {
xctx->xts.key2 = &xctx->ks2;
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
}
return 1;
}
# define aes_t4_xts_cipher aes_xts_cipher
static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) aes_t4_encrypt);
cctx->str = NULL;
cctx->key_set = 1;
}
if (iv) {
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
cctx->iv_set = 1;
}
return 1;
}
# define aes_t4_ccm_cipher aes_ccm_cipher
static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# ifndef OPENSSL_NO_OCB
static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
do {
/*
* We set both the encrypt and decrypt key here because decrypt
* needs both. We could possibly optimise to remove setting the
* decrypt for an encryption operation.
*/
aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksenc.ks);
aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) aes_t4_encrypt,
(block128_f) aes_t4_decrypt,
NULL))
return 0;
}
while (0);
/*
* If we have an iv we can set it directly, otherwise use saved IV.
*/
if (iv == NULL && octx->iv_set)
iv = octx->iv;
if (iv) {
if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
!= 1)
return 0;
octx->iv_set = 1;
}
octx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (octx->key_set)
CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
else
memcpy(octx->iv, iv, octx->ivlen);
octx->iv_set = 1;
}
return 1;
}
# define aes_t4_ocb_cipher aes_ocb_cipher
static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# endif /* OPENSSL_NO_OCB */
# ifndef OPENSSL_NO_SIV
# define aes_t4_siv_init_key aes_siv_init_key
# define aes_t4_siv_cipher aes_siv_cipher
# endif /* OPENSSL_NO_SIV */
# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_t4_init_key, \
aes_t4_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize, \
keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_init_key, \
aes_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_t4_##mode##_init_key, \
aes_t4_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_##mode##_init_key, \
aes_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
#elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
/*
* IBM S390X support
*/
# include "s390x_arch.h"
typedef struct {
union {
double align;
/*-
* KM-AES parameter block - begin
* (see z/Architecture Principles of Operation >= SA22-7832-06)
*/
struct {
unsigned char k[32];
} param;
/* KM-AES parameter block - end */
} km;
unsigned int fc;
} S390X_AES_ECB_CTX;
typedef struct {
union {
double align;
/*-
* KMO-AES parameter block - begin
* (see z/Architecture Principles of Operation >= SA22-7832-08)
*/
struct {
unsigned char cv[16];
unsigned char k[32];
} param;
/* KMO-AES parameter block - end */
} kmo;
unsigned int fc;
int res;
} S390X_AES_OFB_CTX;
typedef struct {
union {
double align;
/*-
* KMF-AES parameter block - begin
* (see z/Architecture Principles of Operation >= SA22-7832-08)
*/
struct {
unsigned char cv[16];
unsigned char k[32];
} param;
/* KMF-AES parameter block - end */
} kmf;
unsigned int fc;
int res;
} S390X_AES_CFB_CTX;
typedef struct {
union {
double align;
/*-
* KMA-GCM-AES parameter block - begin
* (see z/Architecture Principles of Operation >= SA22-7832-11)
*/
struct {
unsigned char reserved[12];
union {
unsigned int w;
unsigned char b[4];
} cv;
union {
unsigned long long g[2];
unsigned char b[16];
} t;
unsigned char h[16];
unsigned long long taadl;
unsigned long long tpcl;
union {
unsigned long long g[2];
unsigned int w[4];
} j0;
unsigned char k[32];
} param;
/* KMA-GCM-AES parameter block - end */
} kma;
unsigned int fc;
int key_set;
unsigned char *iv;
int ivlen;
int iv_set;
int iv_gen;
int taglen;
unsigned char ares[16];
unsigned char mres[16];
unsigned char kres[16];
int areslen;
int mreslen;
int kreslen;
int tls_aad_len;
uint64_t tls_enc_records; /* Number of TLS records encrypted */
} S390X_AES_GCM_CTX;
typedef struct {
union {
double align;
/*-
* Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
* ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
* rounds field is used to store the function code and that the key
* schedule is not stored (if aes hardware support is detected).
*/
struct {
unsigned char pad[16];
AES_KEY k;
} key;
struct {
/*-
* KMAC-AES parameter block - begin
* (see z/Architecture Principles of Operation >= SA22-7832-08)
*/
struct {
union {
unsigned long long g[2];
unsigned char b[16];
} icv;
unsigned char k[32];
} kmac_param;
/* KMAC-AES paramater block - end */
union {
unsigned long long g[2];
unsigned char b[16];
} nonce;
union {
unsigned long long g[2];
unsigned char b[16];
} buf;
unsigned long long blocks;
int l;
int m;
int tls_aad_len;
int iv_set;
int tag_set;
int len_set;
int key_set;
unsigned char pad[140];
unsigned int fc;
} ccm;
} aes;
} S390X_AES_CCM_CTX;
/* Convert key size to function code: [16,24,32] -> [18,19,20]. */
# define S390X_AES_FC(keylen) (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6))
/* Most modes of operation need km for partial block processing. */
# define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
S390X_CAPBIT(S390X_AES_128))
# define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
S390X_CAPBIT(S390X_AES_192))
# define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
S390X_CAPBIT(S390X_AES_256))
# define s390x_aes_init_key aes_init_key
static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
# define S390X_aes_128_cbc_CAPABLE 1 /* checked by callee */
# define S390X_aes_192_cbc_CAPABLE 1
# define S390X_aes_256_cbc_CAPABLE 1
# define S390X_AES_CBC_CTX EVP_AES_KEY
# define s390x_aes_cbc_init_key aes_init_key
# define s390x_aes_cbc_cipher aes_cbc_cipher
static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define S390X_aes_128_ecb_CAPABLE S390X_aes_128_CAPABLE
# define S390X_aes_192_ecb_CAPABLE S390X_aes_192_CAPABLE
# define S390X_aes_256_ecb_CAPABLE S390X_aes_256_CAPABLE
static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *iv, int enc)
{
S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
const int keylen = EVP_CIPHER_CTX_key_length(ctx);
cctx->fc = S390X_AES_FC(keylen);
if (!enc)
cctx->fc |= S390X_DECRYPT;
memcpy(cctx->km.param.k, key, keylen);
return 1;
}
static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
s390x_km(in, len, out, cctx->fc, &cctx->km.param);
return 1;
}
# define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE && \
(OPENSSL_s390xcap_P.kmo[0] & \
S390X_CAPBIT(S390X_AES_128)))
# define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE && \
(OPENSSL_s390xcap_P.kmo[0] & \
S390X_CAPBIT(S390X_AES_192)))
# define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE && \
(OPENSSL_s390xcap_P.kmo[0] & \
S390X_CAPBIT(S390X_AES_256)))
static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *ivec, int enc)
{
S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
const int keylen = EVP_CIPHER_CTX_key_length(ctx);
const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
memcpy(cctx->kmo.param.cv, iv, ivlen);
memcpy(cctx->kmo.param.k, key, keylen);
cctx->fc = S390X_AES_FC(keylen);
cctx->res = 0;
return 1;
}
static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
int n = cctx->res;
int rem;
while (n && len) {
*out = *in ^ cctx->kmo.param.cv[n];
n = (n + 1) & 0xf;
--len;
++in;
++out;
}
rem = len & 0xf;
len &= ~(size_t)0xf;
if (len) {
s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
out += len;
in += len;
}
if (rem) {
s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
cctx->kmo.param.k);
while (rem--) {
out[n] = in[n] ^ cctx->kmo.param.cv[n];
++n;
}
}
cctx->res = n;
return 1;
}
# define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE && \
(OPENSSL_s390xcap_P.kmf[0] & \
S390X_CAPBIT(S390X_AES_128)))
# define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE && \
(OPENSSL_s390xcap_P.kmf[0] & \
S390X_CAPBIT(S390X_AES_192)))
# define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE && \
(OPENSSL_s390xcap_P.kmf[0] & \
S390X_CAPBIT(S390X_AES_256)))
static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *ivec, int enc)
{
S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
const int keylen = EVP_CIPHER_CTX_key_length(ctx);
const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
cctx->fc = S390X_AES_FC(keylen);
cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
if (!enc)
cctx->fc |= S390X_DECRYPT;
cctx->res = 0;
memcpy(cctx->kmf.param.cv, iv, ivlen);
memcpy(cctx->kmf.param.k, key, keylen);
return 1;
}
static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
const int keylen = EVP_CIPHER_CTX_key_length(ctx);
const int enc = EVP_CIPHER_CTX_encrypting(ctx);
int n = cctx->res;
int rem;
unsigned char tmp;
while (n && len) {
tmp = *in;
*out = cctx->kmf.param.cv[n] ^ tmp;
cctx->kmf.param.cv[n] = enc ? *out : tmp;
n = (n + 1) & 0xf;
--len;
++in;
++out;
}
rem = len & 0xf;
len &= ~(size_t)0xf;
if (len) {
s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
out += len;
in += len;
}
if (rem) {
s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
S390X_AES_FC(keylen), cctx->kmf.param.k);
while (rem--) {
tmp = in[n];
out[n] = cctx->kmf.param.cv[n] ^ tmp;
cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
++n;
}
}
cctx->res = n;
return 1;
}
# define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
S390X_CAPBIT(S390X_AES_128))
# define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
S390X_CAPBIT(S390X_AES_192))
# define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
S390X_CAPBIT(S390X_AES_256))
static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *ivec, int enc)
{
S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
const int keylen = EVP_CIPHER_CTX_key_length(ctx);
const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
cctx->fc = S390X_AES_FC(keylen);
cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
if (!enc)
cctx->fc |= S390X_DECRYPT;
memcpy(cctx->kmf.param.cv, iv, ivlen);
memcpy(cctx->kmf.param.k, key, keylen);
return 1;
}
static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
return 1;
}
# define S390X_aes_128_cfb1_CAPABLE 0
# define S390X_aes_192_cfb1_CAPABLE 0
# define S390X_aes_256_cfb1_CAPABLE 0
# define s390x_aes_cfb1_init_key aes_init_key
# define s390x_aes_cfb1_cipher aes_cfb1_cipher
static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define S390X_aes_128_ctr_CAPABLE 1 /* checked by callee */
# define S390X_aes_192_ctr_CAPABLE 1
# define S390X_aes_256_ctr_CAPABLE 1
# define S390X_AES_CTR_CTX EVP_AES_KEY
# define s390x_aes_ctr_init_key aes_init_key
# define s390x_aes_ctr_cipher aes_ctr_cipher
static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE && \
(OPENSSL_s390xcap_P.kma[0] & \
S390X_CAPBIT(S390X_AES_128)))
# define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE && \
(OPENSSL_s390xcap_P.kma[0] & \
S390X_CAPBIT(S390X_AES_192)))
# define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE && \
(OPENSSL_s390xcap_P.kma[0] & \
S390X_CAPBIT(S390X_AES_256)))
/* iv + padding length for iv lengths != 12 */
# define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
/*-
* Process additional authenticated data. Returns 0 on success. Code is
* big-endian.
*/
static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
size_t len)
{
unsigned long long alen;
int n, rem;
if (ctx->kma.param.tpcl)
return -2;
alen = ctx->kma.param.taadl + len;
if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
return -1;
ctx->kma.param.taadl = alen;
n = ctx->areslen;
if (n) {
while (n && len) {
ctx->ares[n] = *aad;
n = (n + 1) & 0xf;
++aad;
--len;
}
/* ctx->ares contains a complete block if offset has wrapped around */
if (!n) {
s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
ctx->fc |= S390X_KMA_HS;
}
ctx->areslen = n;
}
rem = len & 0xf;
len &= ~(size_t)0xf;
if (len) {
s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
aad += len;
ctx->fc |= S390X_KMA_HS;
}
if (rem) {
ctx->areslen = rem;
do {
--rem;
ctx->ares[rem] = aad[rem];
} while (rem);
}
return 0;
}
/*-
* En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
* success. Code is big-endian.
*/
static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
unsigned char *out, size_t len)
{
const unsigned char *inptr;
unsigned long long mlen;
union {
unsigned int w[4];
unsigned char b[16];
} buf;
size_t inlen;
int n, rem, i;
mlen = ctx->kma.param.tpcl + len;
if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
return -1;
ctx->kma.param.tpcl = mlen;
n = ctx->mreslen;
if (n) {
inptr = in;
inlen = len;
while (n && inlen) {
ctx->mres[n] = *inptr;
n = (n + 1) & 0xf;
++inptr;
--inlen;
}
/* ctx->mres contains a complete block if offset has wrapped around */
if (!n) {
s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
ctx->fc |= S390X_KMA_HS;
ctx->areslen = 0;
/* previous call already encrypted/decrypted its remainder,
* see comment below */
n = ctx->mreslen;
while (n) {
*out = buf.b[n];
n = (n + 1) & 0xf;
++out;
++in;
--len;
}
ctx->mreslen = 0;
}
}
rem = len & 0xf;
len &= ~(size_t)0xf;
if (len) {
s390x_kma(ctx->ares, ctx->areslen, in, len, out,
ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
in += len;
out += len;
ctx->fc |= S390X_KMA_HS;
ctx->areslen = 0;
}
/*-
* If there is a remainder, it has to be saved such that it can be
* processed by kma later. However, we also have to do the for-now
* unauthenticated encryption/decryption part here and now...
*/
if (rem) {
if (!ctx->mreslen) {
buf.w[0] = ctx->kma.param.j0.w[0];
buf.w[1] = ctx->kma.param.j0.w[1];
buf.w[2] = ctx->kma.param.j0.w[2];
buf.w[3] = ctx->kma.param.cv.w + 1;
s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
}
n = ctx->mreslen;
for (i = 0; i < rem; i++) {
ctx->mres[n + i] = in[i];
out[i] = in[i] ^ ctx->kres[n + i];
}
ctx->mreslen += rem;
}
return 0;
}
/*-
* Initialize context structure. Code is big-endian.
*/
static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
const unsigned char *iv)
{
ctx->kma.param.t.g[0] = 0;
ctx->kma.param.t.g[1] = 0;
ctx->kma.param.tpcl = 0;
ctx->kma.param.taadl = 0;
ctx->mreslen = 0;
ctx->areslen = 0;
ctx->kreslen = 0;
if (ctx->ivlen == 12) {
memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
ctx->kma.param.j0.w[3] = 1;
ctx->kma.param.cv.w = 1;
} else {
/* ctx->iv has the right size and is already padded. */
memcpy(ctx->iv, iv, ctx->ivlen);
s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
ctx->fc, &ctx->kma.param);
ctx->fc |= S390X_KMA_HS;
ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
ctx->kma.param.t.g[0] = 0;
ctx->kma.param.t.g[1] = 0;
}
}
/*-
* Performs various operations on the context structure depending on control
* type. Returns 1 for success, 0 for failure and -1 for unknown control type.
* Code is big-endian.
*/
static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
S390X_AES_GCM_CTX *gctx_out;
EVP_CIPHER_CTX *out;
unsigned char *buf, *iv;
int ivlen, enc, len;
switch (type) {
case EVP_CTRL_INIT:
ivlen = EVP_CIPHER_CTX_iv_length(c);
iv = EVP_CIPHER_CTX_iv_noconst(c);
gctx->key_set = 0;
gctx->iv_set = 0;
gctx->ivlen = ivlen;
gctx->iv = iv;
gctx->taglen = -1;
gctx->iv_gen = 0;
gctx->tls_aad_len = -1;
return 1;
case EVP_CTRL_AEAD_SET_IVLEN:
if (arg <= 0)
return 0;
if (arg != 12) {
iv = EVP_CIPHER_CTX_iv_noconst(c);
len = S390X_gcm_ivpadlen(arg);
/* Allocate memory for iv if needed. */
if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
if (gctx->iv != iv)
OPENSSL_free(gctx->iv);
if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
return 0;
}
}
/* Add padding. */
memset(gctx->iv + arg, 0, len - arg - 8);
*((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
}
gctx->ivlen = arg;
return 1;
case EVP_CTRL_AEAD_SET_TAG:
buf = EVP_CIPHER_CTX_buf_noconst(c);
enc = EVP_CIPHER_CTX_encrypting(c);
if (arg <= 0 || arg > 16 || enc)
return 0;
memcpy(buf, ptr, arg);
gctx->taglen = arg;
return 1;
case EVP_CTRL_AEAD_GET_TAG:
enc = EVP_CIPHER_CTX_encrypting(c);
if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
return 0;
memcpy(ptr, gctx->kma.param.t.b, arg);
return 1;
case EVP_CTRL_GCM_SET_IV_FIXED:
/* Special case: -1 length restores whole iv */
if (arg == -1) {
memcpy(gctx->iv, ptr, gctx->ivlen);
gctx->iv_gen = 1;
return 1;
}
/*
* Fixed field must be at least 4 bytes and invocation field at least
* 8.
*/
if ((arg < 4) || (gctx->ivlen - arg) < 8)
return 0;
if (arg)
memcpy(gctx->iv, ptr, arg);
enc = EVP_CIPHER_CTX_encrypting(c);
if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
return 0;
gctx->iv_gen = 1;
return 1;
case EVP_CTRL_GCM_IV_GEN:
if (gctx->iv_gen == 0 || gctx->key_set == 0)
return 0;
s390x_aes_gcm_setiv(gctx, gctx->iv);
if (arg <= 0 || arg > gctx->ivlen)
arg = gctx->ivlen;
memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
/*
* Invocation field will be at least 8 bytes in size and so no need
* to check wrap around or increment more than last 8 bytes.
*/
ctr64_inc(gctx->iv + gctx->ivlen - 8);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_GCM_SET_IV_INV:
enc = EVP_CIPHER_CTX_encrypting(c);
if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
return 0;
memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
s390x_aes_gcm_setiv(gctx, gctx->iv);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_AEAD_TLS1_AAD:
/* Save the aad for later use. */
if (arg != EVP_AEAD_TLS1_AAD_LEN)
return 0;
buf = EVP_CIPHER_CTX_buf_noconst(c);
memcpy(buf, ptr, arg);
gctx->tls_aad_len = arg;
gctx->tls_enc_records = 0;
len = buf[arg - 2] << 8 | buf[arg - 1];
/* Correct length for explicit iv. */
if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
return 0;
len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
/* If decrypting correct for tag too. */
enc = EVP_CIPHER_CTX_encrypting(c);
if (!enc) {
if (len < EVP_GCM_TLS_TAG_LEN)
return 0;
len -= EVP_GCM_TLS_TAG_LEN;
}
buf[arg - 2] = len >> 8;
buf[arg - 1] = len & 0xff;
/* Extra padding: tag appended to record. */
return EVP_GCM_TLS_TAG_LEN;
case EVP_CTRL_COPY:
out = ptr;
gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
iv = EVP_CIPHER_CTX_iv_noconst(c);
if (gctx->iv == iv) {
gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out);
} else {
len = S390X_gcm_ivpadlen(gctx->ivlen);
if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(gctx_out->iv, gctx->iv, len);
}
return 1;
default:
return -1;
}
}
/*-
* Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
*/
static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *iv, int enc)
{
S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
int keylen;
if (iv == NULL && key == NULL)
return 1;
if (key != NULL) {
keylen = EVP_CIPHER_CTX_key_length(ctx);
memcpy(&gctx->kma.param.k, key, keylen);
gctx->fc = S390X_AES_FC(keylen);
if (!enc)
gctx->fc |= S390X_DECRYPT;
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv != NULL) {
s390x_aes_gcm_setiv(gctx, iv);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
if (gctx->key_set)
s390x_aes_gcm_setiv(gctx, iv);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
/*-
* En/de-crypt and authenticate TLS packet. Returns the number of bytes written
* if successful. Otherwise -1 is returned. Code is big-endian.
*/
static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
const int enc = EVP_CIPHER_CTX_encrypting(ctx);
int rv = -1;
if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
return -1;
/*
* Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
* Requirements from SP 800-38D". The requirements is for one party to the
* communication to fail after 2^64 - 1 keys. We do this on the encrypting
* side only.
*/
if (ctx->encrypt && ++gctx->tls_enc_records == 0) {
EVPerr(EVP_F_S390X_AES_GCM_TLS_CIPHER, EVP_R_TOO_MANY_RECORDS);
goto err;
}
if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
: EVP_CTRL_GCM_SET_IV_INV,
EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
goto err;
in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
gctx->kma.param.taadl = gctx->tls_aad_len << 3;
gctx->kma.param.tpcl = len << 3;
s390x_kma(buf, gctx->tls_aad_len, in, len, out,
gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
if (enc) {
memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
} else {
if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
EVP_GCM_TLS_TAG_LEN)) {
OPENSSL_cleanse(out, len);
goto err;
}
rv = len;
}
err:
gctx->iv_set = 0;
gctx->tls_aad_len = -1;
return rv;
}
/*-
* Called from EVP layer to initialize context, process additional
* authenticated data, en/de-crypt plain/cipher-text and authenticate
* ciphertext or process a TLS packet, depending on context. Returns bytes
* written on success. Otherwise -1 is returned. Code is big-endian.
*/
static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
unsigned char *buf, tmp[16];
int enc;
if (!gctx->key_set)
return -1;
if (gctx->tls_aad_len >= 0)
return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
if (!gctx->iv_set)
return -1;
if (in != NULL) {
if (out == NULL) {
if (s390x_aes_gcm_aad(gctx, in, len))
return -1;
} else {
if (s390x_aes_gcm(gctx, in, out, len))
return -1;
}
return len;
} else {
gctx->kma.param.taadl <<= 3;
gctx->kma.param.tpcl <<= 3;
s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
/* recall that we already did en-/decrypt gctx->mres
* and returned it to caller... */
OPENSSL_cleanse(tmp, gctx->mreslen);
gctx->iv_set = 0;
enc = EVP_CIPHER_CTX_encrypting(ctx);
if (enc) {
gctx->taglen = 16;
} else {
if (gctx->taglen < 0)
return -1;
buf = EVP_CIPHER_CTX_buf_noconst(ctx);
if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
return -1;
}
return 0;
}
}
static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
{
S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
const unsigned char *iv;
if (gctx == NULL)
return 0;
iv = EVP_CIPHER_CTX_iv(c);
if (iv != gctx->iv)
OPENSSL_free(gctx->iv);
OPENSSL_cleanse(gctx, sizeof(*gctx));
return 1;
}
# define S390X_AES_XTS_CTX EVP_AES_XTS_CTX
# define S390X_aes_128_xts_CAPABLE 1 /* checked by callee */
# define S390X_aes_256_xts_CAPABLE 1
# define s390x_aes_xts_init_key aes_xts_init_key
static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *iv, int enc);
# define s390x_aes_xts_cipher aes_xts_cipher
static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define s390x_aes_xts_ctrl aes_xts_ctrl
static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
# define s390x_aes_xts_cleanup aes_xts_cleanup
# define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE && \
(OPENSSL_s390xcap_P.kmac[0] & \
S390X_CAPBIT(S390X_AES_128)))
# define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE && \
(OPENSSL_s390xcap_P.kmac[0] & \
S390X_CAPBIT(S390X_AES_192)))
# define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE && \
(OPENSSL_s390xcap_P.kmac[0] & \
S390X_CAPBIT(S390X_AES_256)))
# define S390X_CCM_AAD_FLAG 0x40
/*-
* Set nonce and length fields. Code is big-endian.
*/
static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
const unsigned char *nonce,
size_t mlen)
{
ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
ctx->aes.ccm.nonce.g[1] = mlen;
memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
}
/*-
* Process additional authenticated data. Code is big-endian.
*/
static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
size_t alen)
{
unsigned char *ptr;
int i, rem;
if (!alen)
return;
ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
/* Suppress 'type-punned pointer dereference' warning. */
ptr = ctx->aes.ccm.buf.b;
if (alen < ((1 << 16) - (1 << 8))) {
*(uint16_t *)ptr = alen;
i = 2;
} else if (sizeof(alen) == 8
&& alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
*(uint16_t *)ptr = 0xffff;
*(uint64_t *)(ptr + 2) = alen;
i = 10;
} else {
*(uint16_t *)ptr = 0xfffe;
*(uint32_t *)(ptr + 2) = alen;
i = 6;
}
while (i < 16 && alen) {
ctx->aes.ccm.buf.b[i] = *aad;
++aad;
--alen;
++i;
}
while (i < 16) {
ctx->aes.ccm.buf.b[i] = 0;
++i;
}
ctx->aes.ccm.kmac_param.icv.g[0] = 0;
ctx->aes.ccm.kmac_param.icv.g[1] = 0;
s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
&ctx->aes.ccm.kmac_param);
ctx->aes.ccm.blocks += 2;
rem = alen & 0xf;
alen &= ~(size_t)0xf;
if (alen) {
s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
ctx->aes.ccm.blocks += alen >> 4;
aad += alen;
}
if (rem) {
for (i = 0; i < rem; i++)
ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
ctx->aes.ccm.kmac_param.k);
ctx->aes.ccm.blocks++;
}
}
/*-
* En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
* success.
*/
static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
unsigned char *out, size_t len, int enc)
{
size_t n, rem;
unsigned int i, l, num;
unsigned char flags;
flags = ctx->aes.ccm.nonce.b[0];
if (!(flags & S390X_CCM_AAD_FLAG)) {
s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
ctx->aes.ccm.blocks++;
}
l = flags & 0x7;
ctx->aes.ccm.nonce.b[0] = l;
/*-
* Reconstruct length from encoded length field
* and initialize it with counter value.
*/
n = 0;
for (i = 15 - l; i < 15; i++) {
n |= ctx->aes.ccm.nonce.b[i];
ctx->aes.ccm.nonce.b[i] = 0;
n <<= 8;
}
n |= ctx->aes.ccm.nonce.b[15];
ctx->aes.ccm.nonce.b[15] = 1;
if (n != len)
return -1; /* length mismatch */
if (enc) {
/* Two operations per block plus one for tag encryption */
ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
if (ctx->aes.ccm.blocks > (1ULL << 61))
return -2; /* too much data */
}
num = 0;
rem = len & 0xf;
len &= ~(size_t)0xf;
if (enc) {
/* mac-then-encrypt */
if (len)
s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
if (rem) {
for (i = 0; i < rem; i++)
ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
ctx->aes.ccm.kmac_param.k);
}
CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
&num, (ctr128_f)AES_ctr32_encrypt);
} else {
/* decrypt-then-mac */
CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
&num, (ctr128_f)AES_ctr32_encrypt);
if (len)
s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
if (rem) {
for (i = 0; i < rem; i++)
ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
ctx->aes.ccm.kmac_param.k);
}
}
/* encrypt tag */
for (i = 15 - l; i < 16; i++)
ctx->aes.ccm.nonce.b[i] = 0;
s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
ctx->aes.ccm.kmac_param.k);
ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */
return 0;
}
/*-
* En/de-crypt and authenticate TLS packet. Returns the number of bytes written
* if successful. Otherwise -1 is returned.
*/
static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
const int enc = EVP_CIPHER_CTX_encrypting(ctx);
if (out != in
|| len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
return -1;
if (enc) {
/* Set explicit iv (sequence number). */
memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
}
len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
/*-
* Get explicit iv (sequence number). We already have fixed iv
* (server/client_write_iv) here.
*/
memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
s390x_aes_ccm_setiv(cctx, ivec, len);
/* Process aad (sequence number|type|version|length) */
s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
if (enc) {
if (s390x_aes_ccm(cctx, in, out, len, enc))
return -1;
memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
} else {
if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
cctx->aes.ccm.m))
return len;
}
OPENSSL_cleanse(out, len);
return -1;
}
}
/*-
* Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
* returned.
*/
static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *iv, int enc)
{
S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
unsigned char *ivec;
int keylen;
if (iv == NULL && key == NULL)
return 1;
if (key != NULL) {
keylen = EVP_CIPHER_CTX_key_length(ctx);
cctx->aes.ccm.fc = S390X_AES_FC(keylen);
memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
/* Store encoded m and l. */
cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
| (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
memset(cctx->aes.ccm.nonce.b + 1, 0,
sizeof(cctx->aes.ccm.nonce.b));
cctx->aes.ccm.blocks = 0;
cctx->aes.ccm.key_set = 1;
}
if (iv != NULL) {
ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
memcpy(ivec, iv, 15 - cctx->aes.ccm.l);
cctx->aes.ccm.iv_set = 1;
}
return 1;
}
/*-
* Called from EVP layer to initialize context, process additional
* authenticated data, en/de-crypt plain/cipher-text and authenticate
* plaintext or process a TLS packet, depending on context. Returns bytes
* written on success. Otherwise -1 is returned.
*/
static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
const int enc = EVP_CIPHER_CTX_encrypting(ctx);
int rv;
unsigned char *buf, *ivec;
if (!cctx->aes.ccm.key_set)
return -1;
if (cctx->aes.ccm.tls_aad_len >= 0)
return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
/*-
* Final(): Does not return any data. Recall that ccm is mac-then-encrypt
* so integrity must be checked already at Update() i.e., before
* potentially corrupted data is output.
*/
if (in == NULL && out != NULL)
return 0;
if (!cctx->aes.ccm.iv_set)
return -1;
if (!enc && !cctx->aes.ccm.tag_set)
return -1;
if (out == NULL) {
/* Update(): Pass message length. */
if (in == NULL) {
ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
s390x_aes_ccm_setiv(cctx, ivec, len);
cctx->aes.ccm.len_set = 1;
return len;
}
/* Update(): Process aad. */
if (!cctx->aes.ccm.len_set && len)
return -1;
s390x_aes_ccm_aad(cctx, in, len);
return len;
}
/* Update(): Process message. */
if (!cctx->aes.ccm.len_set) {
/*-
* In case message length was not previously set explicitly via
* Update(), set it now.
*/
ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
s390x_aes_ccm_setiv(cctx, ivec, len);
cctx->aes.ccm.len_set = 1;
}
if (enc) {
if (s390x_aes_ccm(cctx, in, out, len, enc))
return -1;
cctx->aes.ccm.tag_set = 1;
return len;
} else {
rv = -1;
if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
buf = EVP_CIPHER_CTX_buf_noconst(ctx);
if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
cctx->aes.ccm.m))
rv = len;
}
if (rv == -1)
OPENSSL_cleanse(out, len);
cctx->aes.ccm.iv_set = 0;
cctx->aes.ccm.tag_set = 0;
cctx->aes.ccm.len_set = 0;
return rv;
}
}
/*-
* Performs various operations on the context structure depending on control
* type. Returns 1 for success, 0 for failure and -1 for unknown control type.
* Code is big-endian.
*/
static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
unsigned char *buf, *iv;
int enc, len;
switch (type) {
case EVP_CTRL_INIT:
cctx->aes.ccm.key_set = 0;
cctx->aes.ccm.iv_set = 0;
cctx->aes.ccm.l = 8;
cctx->aes.ccm.m = 12;
cctx->aes.ccm.tag_set = 0;
cctx->aes.ccm.len_set = 0;
cctx->aes.ccm.tls_aad_len = -1;
return 1;
case EVP_CTRL_AEAD_TLS1_AAD:
if (arg != EVP_AEAD_TLS1_AAD_LEN)
return 0;
/* Save the aad for later use. */
buf = EVP_CIPHER_CTX_buf_noconst(c);
memcpy(buf, ptr, arg);
cctx->aes.ccm.tls_aad_len = arg;
len = buf[arg - 2] << 8 | buf[arg - 1];
if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
return 0;
/* Correct length for explicit iv. */
len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
enc = EVP_CIPHER_CTX_encrypting(c);
if (!enc) {
if (len < cctx->aes.ccm.m)
return 0;
/* Correct length for tag. */
len -= cctx->aes.ccm.m;
}
buf[arg - 2] = len >> 8;
buf[arg - 1] = len & 0xff;
/* Extra padding: tag appended to record. */
return cctx->aes.ccm.m;
case EVP_CTRL_CCM_SET_IV_FIXED:
if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
return 0;
/* Copy to first part of the iv. */
iv = EVP_CIPHER_CTX_iv_noconst(c);
memcpy(iv, ptr, arg);
return 1;
case EVP_CTRL_AEAD_SET_IVLEN:
arg = 15 - arg;
/* fall-through */
case EVP_CTRL_CCM_SET_L:
if (arg < 2 || arg > 8)
return 0;
cctx->aes.ccm.l = arg;
return 1;
case EVP_CTRL_AEAD_SET_TAG:
if ((arg & 1) || arg < 4 || arg > 16)
return 0;
enc = EVP_CIPHER_CTX_encrypting(c);
if (enc && ptr)
return 0;
if (ptr) {
cctx->aes.ccm.tag_set = 1;
buf = EVP_CIPHER_CTX_buf_noconst(c);
memcpy(buf, ptr, arg);
}
cctx->aes.ccm.m = arg;
return 1;
case EVP_CTRL_AEAD_GET_TAG:
enc = EVP_CIPHER_CTX_encrypting(c);
if (!enc || !cctx->aes.ccm.tag_set)
return 0;
if(arg < cctx->aes.ccm.m)
return 0;
memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
cctx->aes.ccm.tag_set = 0;
cctx->aes.ccm.iv_set = 0;
cctx->aes.ccm.len_set = 0;
return 1;
case EVP_CTRL_COPY:
return 1;
default:
return -1;
}
}
# define s390x_aes_ccm_cleanup aes_ccm_cleanup
# ifndef OPENSSL_NO_OCB
# define S390X_AES_OCB_CTX EVP_AES_OCB_CTX
# define S390X_aes_128_ocb_CAPABLE 0
# define S390X_aes_192_ocb_CAPABLE 0
# define S390X_aes_256_ocb_CAPABLE 0
# define s390x_aes_ocb_init_key aes_ocb_init_key
static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
# define s390x_aes_ocb_cipher aes_ocb_cipher
static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define s390x_aes_ocb_cleanup aes_ocb_cleanup
static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
# define s390x_aes_ocb_ctrl aes_ocb_ctrl
static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
# endif
# ifndef OPENSSL_NO_SIV
# define S390X_AES_SIV_CTX EVP_AES_SIV_CTX
# define S390X_aes_128_siv_CAPABLE 0
# define S390X_aes_192_siv_CAPABLE 0
# define S390X_aes_256_siv_CAPABLE 0
# define s390x_aes_siv_init_key aes_siv_init_key
# define s390x_aes_siv_cipher aes_siv_cipher
# define s390x_aes_siv_cleanup aes_siv_cleanup
# define s390x_aes_siv_ctrl aes_siv_ctrl
# endif
# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \
MODE,flags) \
static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize, \
keylen / 8, \
ivlen, \
flags | EVP_CIPH_##MODE##_MODE, \
s390x_aes_##mode##_init_key, \
s390x_aes_##mode##_cipher, \
NULL, \
sizeof(S390X_AES_##MODE##_CTX), \
NULL, \
NULL, \
NULL, \
NULL \
}; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##nmode, \
blocksize, \
keylen / 8, \
ivlen, \
flags | EVP_CIPH_##MODE##_MODE, \
aes_init_key, \
aes_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL, \
NULL, \
NULL, \
NULL \
}; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ \
return S390X_aes_##keylen##_##mode##_CAPABLE ? \
&s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
}
# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
nid##_##keylen##_##mode, \
blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \
ivlen, \
flags | EVP_CIPH_##MODE##_MODE, \
s390x_aes_##mode##_init_key, \
s390x_aes_##mode##_cipher, \
s390x_aes_##mode##_cleanup, \
sizeof(S390X_AES_##MODE##_CTX), \
NULL, \
NULL, \
s390x_aes_##mode##_ctrl, \
NULL \
}; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \
ivlen, \
flags | EVP_CIPH_##MODE##_MODE, \
aes_##mode##_init_key, \
aes_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL, \
NULL, \
aes_##mode##_ctrl, \
NULL \
}; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ \
return S390X_aes_##keylen##_##mode##_CAPABLE ? \
&s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
}
#else
# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_init_key, \
aes_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return &aes_##keylen##_##mode; }
# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_##mode##_init_key, \
aes_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return &aes_##keylen##_##mode; }
#endif
#if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
# include "arm_arch.h"
# if __ARM_MAX_ARCH__>=7
# if defined(BSAES_ASM)
# define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
# endif
# if defined(VPAES_ASM)
# define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
# endif
# define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
# define HWAES_set_encrypt_key aes_v8_set_encrypt_key
# define HWAES_set_decrypt_key aes_v8_set_decrypt_key
# define HWAES_encrypt aes_v8_encrypt
# define HWAES_decrypt aes_v8_decrypt
# define HWAES_cbc_encrypt aes_v8_cbc_encrypt
# define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
# endif
#endif
#if defined(HWAES_CAPABLE)
int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
AES_KEY *key);
int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
AES_KEY *key);
void HWAES_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void HWAES_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key,
unsigned char *ivec, const int enc);
void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
const unsigned char ivec[16]);
void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out,
size_t len, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char iv[16]);
void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out,
size_t len, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char iv[16]);
#endif
#define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret, mode;
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
mode = EVP_CIPHER_CTX_mode(ctx);
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc) {
#ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
ret = HWAES_set_decrypt_key(key,
EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) HWAES_decrypt;
dat->stream.cbc = NULL;
# ifdef HWAES_cbc_encrypt
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
# endif
} else
#endif
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) AES_decrypt;
dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
} else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
ret = vpaes_set_decrypt_key(key,
EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) vpaes_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) vpaes_cbc_encrypt : NULL;
} else
#endif
{
ret = AES_set_decrypt_key(key,
EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) AES_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) AES_cbc_encrypt : NULL;
}
} else
#ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) HWAES_encrypt;
dat->stream.cbc = NULL;
# ifdef HWAES_cbc_encrypt
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
else
# endif
# ifdef HWAES_ctr32_encrypt_blocks
if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
else
# endif
(void)0; /* terminate potentially open 'else' */
} else
#endif
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) AES_encrypt;
dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
} else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) vpaes_encrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) vpaes_cbc_encrypt : NULL;
} else
#endif
{
ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) AES_encrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) AES_cbc_encrypt : NULL;
#ifdef AES_CTR_ASM
if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
#endif
}
if (ret < 0) {
EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
if (dat->stream.cbc)
(*dat->stream.cbc) (in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx),
EVP_CIPHER_CTX_encrypting(ctx));
else if (EVP_CIPHER_CTX_encrypting(ctx))
CRYPTO_cbc128_encrypt(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
else
CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
return 1;
}
static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
size_t bl = EVP_CIPHER_CTX_block_size(ctx);
size_t i;
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
if (len < bl)
return 1;
for (i = 0, len -= bl; i <= len; i += bl)
(*dat->block) (in + i, out + i, &dat->ks);
return 1;
}
static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
int num = EVP_CIPHER_CTX_num(ctx);
CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block);
EVP_CIPHER_CTX_set_num(ctx, num);
return 1;
}
static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
int num = EVP_CIPHER_CTX_num(ctx);
CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), &num,
EVP_CIPHER_CTX_encrypting(ctx), dat->block);
EVP_CIPHER_CTX_set_num(ctx, num);
return 1;
}
static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
int num = EVP_CIPHER_CTX_num(ctx);
CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), &num,
EVP_CIPHER_CTX_encrypting(ctx), dat->block);
EVP_CIPHER_CTX_set_num(ctx, num);
return 1;
}
static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
int num = EVP_CIPHER_CTX_num(ctx);
CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), &num,
EVP_CIPHER_CTX_encrypting(ctx), dat->block);
EVP_CIPHER_CTX_set_num(ctx, num);
return 1;
}
while (len >= MAXBITCHUNK) {
int num = EVP_CIPHER_CTX_num(ctx);
CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), &num,
EVP_CIPHER_CTX_encrypting(ctx), dat->block);
EVP_CIPHER_CTX_set_num(ctx, num);
len -= MAXBITCHUNK;
out += MAXBITCHUNK;
in += MAXBITCHUNK;
}
if (len) {
int num = EVP_CIPHER_CTX_num(ctx);
CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx), &num,
EVP_CIPHER_CTX_encrypting(ctx), dat->block);
EVP_CIPHER_CTX_set_num(ctx, num);
}
return 1;
}
static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
unsigned int num = EVP_CIPHER_CTX_num(ctx);
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
if (dat->stream.ctr)
CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx),
EVP_CIPHER_CTX_buf_noconst(ctx),
&num, dat->stream.ctr);
else
CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx),
EVP_CIPHER_CTX_buf_noconst(ctx), &num,
dat->block);
EVP_CIPHER_CTX_set_num(ctx, num);
return 1;
}
BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
if (gctx == NULL)
return 0;
OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c))
OPENSSL_free(gctx->iv);
return 1;
}
static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
switch (type) {
case EVP_CTRL_INIT:
gctx->key_set = 0;
gctx->iv_set = 0;
gctx->ivlen = c->cipher->iv_len;
gctx->iv = c->iv;
gctx->taglen = -1;
gctx->iv_gen = 0;
gctx->tls_aad_len = -1;
return 1;
case EVP_CTRL_AEAD_SET_IVLEN:
if (arg <= 0)
return 0;
/* Allocate memory for IV if needed */
if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
if (gctx->iv != c->iv)
OPENSSL_free(gctx->iv);
if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
return 0;
}
}
gctx->ivlen = arg;
return 1;
case EVP_CTRL_AEAD_SET_TAG:
if (arg <= 0 || arg > 16 || c->encrypt)
return 0;
memcpy(c->buf, ptr, arg);
gctx->taglen = arg;
return 1;
case EVP_CTRL_AEAD_GET_TAG:
if (arg <= 0 || arg > 16 || !c->encrypt
|| gctx->taglen < 0)
return 0;
memcpy(ptr, c->buf, arg);
return 1;
case EVP_CTRL_GET_IV:
if (gctx->iv_gen != 1 && gctx->iv_gen_rand != 1)
return 0;
if (gctx->ivlen != arg)
return 0;
memcpy(ptr, gctx->iv, arg);
return 1;
case EVP_CTRL_GCM_SET_IV_FIXED:
/* Special case: -1 length restores whole IV */
if (arg == -1) {
memcpy(gctx->iv, ptr, gctx->ivlen);
gctx->iv_gen = 1;
return 1;
}
/*
* Fixed field must be at least 4 bytes and invocation field at least
* 8.
*/
if ((arg < 4) || (gctx->ivlen - arg) < 8)
return 0;
if (arg)
memcpy(gctx->iv, ptr, arg);
if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
return 0;
gctx->iv_gen = 1;
return 1;
case EVP_CTRL_GCM_IV_GEN:
if (gctx->iv_gen == 0 || gctx->key_set == 0)
return 0;
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
if (arg <= 0 || arg > gctx->ivlen)
arg = gctx->ivlen;
memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
/*
* Invocation field will be at least 8 bytes in size and so no need
* to check wrap around or increment more than last 8 bytes.
*/
ctr64_inc(gctx->iv + gctx->ivlen - 8);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_GCM_SET_IV_INV:
if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
return 0;
memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_AEAD_TLS1_AAD:
/* Save the AAD for later use */
if (arg != EVP_AEAD_TLS1_AAD_LEN)
return 0;
memcpy(c->buf, ptr, arg);
gctx->tls_aad_len = arg;
gctx->tls_enc_records = 0;
{
unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
/* Correct length for explicit IV */
if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
return 0;
len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
/* If decrypting correct for tag too */
if (!c->encrypt) {
if (len < EVP_GCM_TLS_TAG_LEN)
return 0;
len -= EVP_GCM_TLS_TAG_LEN;
}
c->buf[arg - 2] = len >> 8;
c->buf[arg - 1] = len & 0xff;
}
/* Extra padding: tag appended to record */
return EVP_GCM_TLS_TAG_LEN;
case EVP_CTRL_COPY:
{
EVP_CIPHER_CTX *out = ptr;
EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
if (gctx->gcm.key) {
if (gctx->gcm.key != &gctx->ks)
return 0;
gctx_out->gcm.key = &gctx_out->ks;
}
if (gctx->iv == c->iv)
gctx_out->iv = out->iv;
else {
if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
}
return 1;
}
default:
return -1;
}
}
static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
do {
#ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) HWAES_encrypt);
# ifdef HWAES_ctr32_encrypt_blocks
gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
# else
gctx->ctr = NULL;
# endif
break;
} else
#endif
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE) {
AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) AES_encrypt);
gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
break;
} else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) vpaes_encrypt);
gctx->ctr = NULL;
break;
} else
#endif
(void)0; /* terminate potentially open 'else' */
AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) AES_encrypt);
#ifdef AES_CTR_ASM
gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
#else
gctx->ctr = NULL;
#endif
} while (0);
/*
* If we have an iv can set it directly, otherwise use saved IV.
*/
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set)
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
/*
* Handle TLS GCM packet format. This consists of the last portion of the IV
* followed by the payload and finally the tag. On encrypt generate IV,
* encrypt payload and write the tag. On verify retrieve IV, decrypt payload
* and verify tag.
*/
static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
int rv = -1;
/* Encrypt/decrypt must be performed in place */
if (out != in
|| len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
return -1;
/*
* Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
* Requirements from SP 800-38D". The requirements is for one party to the
* communication to fail after 2^64 - 1 keys. We do this on the encrypting
* side only.
*/
if (ctx->encrypt && ++gctx->tls_enc_records == 0) {
EVPerr(EVP_F_AES_GCM_TLS_CIPHER, EVP_R_TOO_MANY_RECORDS);
goto err;
}
/*
* Set IV from start of buffer or generate IV and write to start of
* buffer.
*/
if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
: EVP_CTRL_GCM_SET_IV_INV,
EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
goto err;
/* Use saved AAD */
if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
goto err;
/* Fix buffer and length to point to payload */
in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
if (ctx->encrypt) {
/* Encrypt payload */
if (gctx->ctr) {
size_t bulk = 0;
#if defined(AES_GCM_ASM)
if (len >= 32 && AES_GCM_ASM(gctx)) {
if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
return -1;
bulk = AES_gcm_encrypt(in, out, len,
gctx->gcm.key,
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
}
#endif
if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
in + bulk,
out + bulk,
len - bulk, gctx->ctr))
goto err;
} else {
size_t bulk = 0;
#if defined(AES_GCM_ASM2)
if (len >= 32 && AES_GCM_ASM2(gctx)) {
if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
return -1;
bulk = AES_gcm_encrypt(in, out, len,
gctx->gcm.key,
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
}
#endif
if (CRYPTO_gcm128_encrypt(&gctx->gcm,
in + bulk, out + bulk, len - bulk))
goto err;
}
out += len;
/* Finally write tag */
CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
} else {
/* Decrypt */
if (gctx->ctr) {
size_t bulk = 0;
#if defined(AES_GCM_ASM)
if (len >= 16 && AES_GCM_ASM(gctx)) {
if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
return -1;
bulk = AES_gcm_decrypt(in, out, len,
gctx->gcm.key,
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
}
#endif
if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
in + bulk,
out + bulk,
len - bulk, gctx->ctr))
goto err;
} else {
size_t bulk = 0;
#if defined(AES_GCM_ASM2)
if (len >= 16 && AES_GCM_ASM2(gctx)) {
if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
return -1;
bulk = AES_gcm_decrypt(in, out, len,
gctx->gcm.key,
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
}
#endif
if (CRYPTO_gcm128_decrypt(&gctx->gcm,
in + bulk, out + bulk, len - bulk))
goto err;
}
/* Retrieve tag */
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
/* If tag mismatch wipe buffer */
if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
OPENSSL_cleanse(out, len);
goto err;
}
rv = len;
}
err:
gctx->iv_set = 0;
gctx->tls_aad_len = -1;
return rv;
}
#ifdef FIPS_MODE
/*
* See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys"
*
* See also 8.2.2 RBG-based construction.
* Random construction consists of a free field (which can be NULL) and a
* random field which will use a DRBG that can return at least 96 bits of
* entropy strength. (The DRBG must be seeded by the FIPS module).
*/
static int aes_gcm_iv_generate(EVP_AES_GCM_CTX *gctx, int offset)
{
int sz = gctx->ivlen - offset;
/* Must be at least 96 bits */
if (sz <= 0 || gctx->ivlen < 12)
return 0;
/* Use DRBG to generate random iv */
if (RAND_bytes(gctx->iv + offset, sz) <= 0)
return 0;
return 1;
}
#endif /* FIPS_MODE */
static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
/* If not set up, return error */
if (!gctx->key_set)
return -1;
if (gctx->tls_aad_len >= 0)
return aes_gcm_tls_cipher(ctx, out, in, len);
#ifdef FIPS_MODE
/*
* FIPS requires generation of AES-GCM IV's inside the FIPS module.
* The IV can still be set externally (the security policy will state that
* this is not FIPS compliant). There are some applications
* where setting the IV externally is the only option available.
*/
if (!gctx->iv_set) {
if (!ctx->encrypt || !aes_gcm_iv_generate(gctx, 0))
return -1;
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen_rand = 1;
}
#else
if (!gctx->iv_set)
return -1;
#endif /* FIPS_MODE */
if (in) {
if (out == NULL) {
if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
return -1;
} else if (ctx->encrypt) {
if (gctx->ctr) {
size_t bulk = 0;
#if defined(AES_GCM_ASM)
if (len >= 32 && AES_GCM_ASM(gctx)) {
size_t res = (16 - gctx->gcm.mres) % 16;
if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
return -1;
bulk = AES_gcm_encrypt(in + res,
out + res, len - res,
gctx->gcm.key, gctx->gcm.Yi.c,
gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
bulk += res;
}
#endif
if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
in + bulk,
out + bulk,
len - bulk, gctx->ctr))
return -1;
} else {
size_t bulk = 0;
#if defined(AES_GCM_ASM2)
if (len >= 32 && AES_GCM_ASM2(gctx)) {
size_t res = (16 - gctx->gcm.mres) % 16;
if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
return -1;
bulk = AES_gcm_encrypt(in + res,
out + res, len - res,
gctx->gcm.key, gctx->gcm.Yi.c,
gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
bulk += res;
}
#endif
if (CRYPTO_gcm128_encrypt(&gctx->gcm,
in + bulk, out + bulk, len - bulk))
return -1;
}
} else {
if (gctx->ctr) {
size_t bulk = 0;
#if defined(AES_GCM_ASM)
if (len >= 16 && AES_GCM_ASM(gctx)) {
size_t res = (16 - gctx->gcm.mres) % 16;
if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
return -1;
bulk = AES_gcm_decrypt(in + res,
out + res, len - res,
gctx->gcm.key,
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
bulk += res;
}
#endif
if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
in + bulk,
out + bulk,
len - bulk, gctx->ctr))
return -1;
} else {
size_t bulk = 0;
#if defined(AES_GCM_ASM2)
if (len >= 16 && AES_GCM_ASM2(gctx)) {
size_t res = (16 - gctx->gcm.mres) % 16;
if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
return -1;
bulk = AES_gcm_decrypt(in + res,
out + res, len - res,
gctx->gcm.key,
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
bulk += res;
}
#endif
if (CRYPTO_gcm128_decrypt(&gctx->gcm,
in + bulk, out + bulk, len - bulk))
return -1;
}
}
return len;
} else {
if (!ctx->encrypt) {
if (gctx->taglen < 0)
return -1;
if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
return -1;
gctx->iv_set = 0;
return 0;
}
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
gctx->taglen = 16;
/* Don't reuse the IV */
gctx->iv_set = 0;
return 0;
}
}
#define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
| EVP_CIPH_CUSTOM_COPY)
BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,c);
if (type == EVP_CTRL_COPY) {
EVP_CIPHER_CTX *out = ptr;
EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
if (xctx->xts.key1) {
if (xctx->xts.key1 != &xctx->ks1)
return 0;
xctx_out->xts.key1 = &xctx_out->ks1;
}
if (xctx->xts.key2) {
if (xctx->xts.key2 != &xctx->ks2)
return 0;
xctx_out->xts.key2 = &xctx_out->ks2;
}
return 1;
} else if (type != EVP_CTRL_INIT)
return -1;
/* key1 and key2 are used as an indicator both key and IV are set */
xctx->xts.key1 = NULL;
xctx->xts.key2 = NULL;
return 1;
}
static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
if (!iv && !key)
return 1;
if (key)
do {
#ifdef AES_XTS_ASM
xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
#else
xctx->stream = NULL;
#endif
/* key_len is two AES keys */
#ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
if (enc) {
HWAES_set_encrypt_key(key,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) HWAES_encrypt;
# ifdef HWAES_xts_encrypt
xctx->stream = HWAES_xts_encrypt;
# endif
} else {
HWAES_set_decrypt_key(key,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) HWAES_decrypt;
# ifdef HWAES_xts_decrypt
xctx->stream = HWAES_xts_decrypt;
#endif
}
HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks2.ks);
xctx->xts.block2 = (block128_f) HWAES_encrypt;
xctx->xts.key1 = &xctx->ks1;
break;
} else
#endif
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE)
xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
if (enc) {
vpaes_set_encrypt_key(key,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) vpaes_encrypt;
} else {
vpaes_set_decrypt_key(key,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) vpaes_decrypt;
}
vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks2.ks);
xctx->xts.block2 = (block128_f) vpaes_encrypt;
xctx->xts.key1 = &xctx->ks1;
break;
} else
#endif
(void)0; /* terminate potentially open 'else' */
if (enc) {
AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) AES_encrypt;
} else {
AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) AES_decrypt;
}
AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks2.ks);
xctx->xts.block2 = (block128_f) AES_encrypt;
xctx->xts.key1 = &xctx->ks1;
} while (0);
if (iv) {
xctx->xts.key2 = &xctx->ks2;
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
}
return 1;
}
static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
if (xctx->xts.key1 == NULL
|| xctx->xts.key2 == NULL
|| out == NULL
|| in == NULL
|| len < AES_BLOCK_SIZE)
return 0;
/*
* Verify that the two keys are different.
*
* This addresses the vulnerability described in Rogaway's September 2004
* paper (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf):
* "Efficient Instantiations of Tweakable Blockciphers and Refinements
* to Modes OCB and PMAC".
*
* FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states that:
* "The check for Key_1 != Key_2 shall be done at any place BEFORE
* using the keys in the XTS-AES algorithm to process data with them."
*/
if (CRYPTO_memcmp(xctx->xts.key1, xctx->xts.key2,
EVP_CIPHER_CTX_key_length(ctx) / 2) == 0)
return 0;
if (xctx->stream)
(*xctx->stream) (in, out, len,
xctx->xts.key1, xctx->xts.key2,
EVP_CIPHER_CTX_iv_noconst(ctx));
else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx),
in, out, len,
EVP_CIPHER_CTX_encrypting(ctx)))
return 0;
return 1;
}
#define aes_xts_cleanup NULL
#define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
| EVP_CIPH_CUSTOM_COPY)
BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
switch (type) {
case EVP_CTRL_INIT:
cctx->key_set = 0;
cctx->iv_set = 0;
cctx->L = 8;
cctx->M = 12;
cctx->tag_set = 0;
cctx->len_set = 0;
cctx->tls_aad_len = -1;
return 1;
case EVP_CTRL_AEAD_TLS1_AAD:
/* Save the AAD for later use */
if (arg != EVP_AEAD_TLS1_AAD_LEN)
return 0;
memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
cctx->tls_aad_len = arg;
{
uint16_t len =
EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
| EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
/* Correct length for explicit IV */
if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
return 0;
len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
/* If decrypting correct for tag too */
if (!EVP_CIPHER_CTX_encrypting(c)) {
if (len < cctx->M)
return 0;
len -= cctx->M;
}
EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
}
/* Extra padding: tag appended to record */
return cctx->M;
case EVP_CTRL_CCM_SET_IV_FIXED:
/* Sanity check length */
if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
return 0;
/* Just copy to first part of IV */
memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg);
return 1;
case EVP_CTRL_AEAD_SET_IVLEN:
arg = 15 - arg;
/* fall thru */
case EVP_CTRL_CCM_SET_L:
if (arg < 2 || arg > 8)
return 0;
cctx->L = arg;
return 1;
case EVP_CTRL_AEAD_SET_TAG:
if ((arg & 1) || arg < 4 || arg > 16)
return 0;
if (EVP_CIPHER_CTX_encrypting(c) && ptr)
return 0;
if (ptr) {
cctx->tag_set = 1;
memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
}
cctx->M = arg;
return 1;
case EVP_CTRL_AEAD_GET_TAG:
if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set)
return 0;
if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
return 0;
cctx->tag_set = 0;
cctx->iv_set = 0;
cctx->len_set = 0;
return 1;
case EVP_CTRL_COPY:
{
EVP_CIPHER_CTX *out = ptr;
EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
if (cctx->ccm.key) {
if (cctx->ccm.key != &cctx->ks)
return 0;
cctx_out->ccm.key = &cctx_out->ks;
}
return 1;
}
default:
return -1;
}
}
static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key)
do {
#ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) HWAES_encrypt);
cctx->str = NULL;
cctx->key_set = 1;
break;
} else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) vpaes_encrypt);
cctx->str = NULL;
cctx->key_set = 1;
break;
}
#endif
AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) AES_encrypt);
cctx->str = NULL;
cctx->key_set = 1;
} while (0);
if (iv) {
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
cctx->iv_set = 1;
}
return 1;
}
static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
CCM128_CONTEXT *ccm = &cctx->ccm;
/* Encrypt/decrypt must be performed in place */
if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
return -1;
/* If encrypting set explicit IV from sequence number (start of AAD) */
if (EVP_CIPHER_CTX_encrypting(ctx))
memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
EVP_CCM_TLS_EXPLICIT_IV_LEN);
/* Get rest of IV from explicit IV */
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in,
EVP_CCM_TLS_EXPLICIT_IV_LEN);
/* Correct length value */
len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L,
len))
return -1;
/* Use saved AAD */
CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len);
/* Fix buffer to point to payload */
in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
if (EVP_CIPHER_CTX_encrypting(ctx)) {
if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
cctx->str) :
CRYPTO_ccm128_encrypt(ccm, in, out, len))
return -1;
if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
return -1;
return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
} else {
if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
cctx->str) :
!CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
unsigned char tag[16];
if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
if (!CRYPTO_memcmp(tag, in + len, cctx->M))
return len;
}
}
OPENSSL_cleanse(out, len);
return -1;
}
}
static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
CCM128_CONTEXT *ccm = &cctx->ccm;
/* If not set up, return error */
if (!cctx->key_set)
return -1;
if (cctx->tls_aad_len >= 0)
return aes_ccm_tls_cipher(ctx, out, in, len);
/* EVP_*Final() doesn't return any data */
if (in == NULL && out != NULL)
return 0;
if (!cctx->iv_set)
return -1;
if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set)
return -1;
if (!out) {
if (!in) {
if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
15 - cctx->L, len))
return -1;
cctx->len_set = 1;
return len;
}
/* If have AAD need message length */
if (!cctx->len_set && len)
return -1;
CRYPTO_ccm128_aad(ccm, in, len);
return len;
}
/* If not set length yet do it */
if (!cctx->len_set) {
if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
15 - cctx->L, len))
return -1;
cctx->len_set = 1;
}
if (EVP_CIPHER_CTX_encrypting(ctx)) {
if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
cctx->str) :
CRYPTO_ccm128_encrypt(ccm, in, out, len))
return -1;
cctx->tag_set = 1;
return len;
} else {
int rv = -1;
if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
cctx->str) :
!CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
unsigned char tag[16];
if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
cctx->M))
rv = len;
}
}
if (rv == -1)
OPENSSL_cleanse(out, len);
cctx->iv_set = 0;
cctx->tag_set = 0;
cctx->len_set = 0;
return rv;
}
}
#define aes_ccm_cleanup NULL
BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
typedef struct {
union {
double align;
AES_KEY ks;
} ks;
/* Indicates if IV has been set */
unsigned char *iv;
} EVP_AES_WRAP_CTX;
static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
if (EVP_CIPHER_CTX_encrypting(ctx))
AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&wctx->ks.ks);
else
AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&wctx->ks.ks);
if (!iv)
wctx->iv = NULL;
}
if (iv) {
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx));
wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx);
}
return 1;
}
static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inlen)
{
EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
size_t rv;
/* AES wrap with padding has IV length of 4, without padding 8 */
int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4;
/* No final operation so always return zero length */
if (!in)
return 0;
/* Input length must always be non-zero */
if (!inlen)
return -1;
/* If decrypting need at least 16 bytes and multiple of 8 */
if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
return -1;
/* If not padding input must be multiple of 8 */
if (!pad && inlen & 0x7)
return -1;
if (is_partially_overlapping(out, in, inlen)) {
EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
return 0;
}
if (!out) {
if (EVP_CIPHER_CTX_encrypting(ctx)) {
/* If padding round up to multiple of 8 */
if (pad)
inlen = (inlen + 7) / 8 * 8;
/* 8 byte prefix */
return inlen + 8;
} else {
/*
* If not padding output will be exactly 8 bytes smaller than
* input. If padding it will be at least 8 bytes smaller but we
* don't know how much.
*/
return inlen - 8;
}
}
if (pad) {
if (EVP_CIPHER_CTX_encrypting(ctx))
rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
out, in, inlen,
(block128_f) AES_encrypt);
else
rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
out, in, inlen,
(block128_f) AES_decrypt);
} else {
if (EVP_CIPHER_CTX_encrypting(ctx))
rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
out, in, inlen, (block128_f) AES_encrypt);
else
rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
out, in, inlen, (block128_f) AES_decrypt);
}
return rv ? (int)rv : -1;
}
#define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
static const EVP_CIPHER aes_128_wrap = {
NID_id_aes128_wrap,
8, 16, 8, WRAP_FLAGS,
aes_wrap_init_key, aes_wrap_cipher,
NULL,
sizeof(EVP_AES_WRAP_CTX),
NULL, NULL, NULL, NULL
};
const EVP_CIPHER *EVP_aes_128_wrap(void)
{
return &aes_128_wrap;
}
static const EVP_CIPHER aes_192_wrap = {
NID_id_aes192_wrap,
8, 24, 8, WRAP_FLAGS,
aes_wrap_init_key, aes_wrap_cipher,
NULL,
sizeof(EVP_AES_WRAP_CTX),
NULL, NULL, NULL, NULL
};
const EVP_CIPHER *EVP_aes_192_wrap(void)
{
return &aes_192_wrap;
}
static const EVP_CIPHER aes_256_wrap = {
NID_id_aes256_wrap,
8, 32, 8, WRAP_FLAGS,
aes_wrap_init_key, aes_wrap_cipher,
NULL,
sizeof(EVP_AES_WRAP_CTX),
NULL, NULL, NULL, NULL
};
const EVP_CIPHER *EVP_aes_256_wrap(void)
{
return &aes_256_wrap;
}
static const EVP_CIPHER aes_128_wrap_pad = {
NID_id_aes128_wrap_pad,
8, 16, 4, WRAP_FLAGS,
aes_wrap_init_key, aes_wrap_cipher,
NULL,
sizeof(EVP_AES_WRAP_CTX),
NULL, NULL, NULL, NULL
};
const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
{
return &aes_128_wrap_pad;
}
static const EVP_CIPHER aes_192_wrap_pad = {
NID_id_aes192_wrap_pad,
8, 24, 4, WRAP_FLAGS,
aes_wrap_init_key, aes_wrap_cipher,
NULL,
sizeof(EVP_AES_WRAP_CTX),
NULL, NULL, NULL, NULL
};
const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
{
return &aes_192_wrap_pad;
}
static const EVP_CIPHER aes_256_wrap_pad = {
NID_id_aes256_wrap_pad,
8, 32, 4, WRAP_FLAGS,
aes_wrap_init_key, aes_wrap_cipher,
NULL,
sizeof(EVP_AES_WRAP_CTX),
NULL, NULL, NULL, NULL
};
const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
{
return &aes_256_wrap_pad;
}
#ifndef OPENSSL_NO_OCB
static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
EVP_CIPHER_CTX *newc;
EVP_AES_OCB_CTX *new_octx;
switch (type) {
case EVP_CTRL_INIT:
octx->key_set = 0;
octx->iv_set = 0;
octx->ivlen = EVP_CIPHER_CTX_iv_length(c);
octx->iv = EVP_CIPHER_CTX_iv_noconst(c);
octx->taglen = 16;
octx->data_buf_len = 0;
octx->aad_buf_len = 0;
return 1;
case EVP_CTRL_AEAD_SET_IVLEN:
/* IV len must be 1 to 15 */
if (arg <= 0 || arg > 15)
return 0;
octx->ivlen = arg;
return 1;
case EVP_CTRL_AEAD_SET_TAG:
if (!ptr) {
/* Tag len must be 0 to 16 */
if (arg < 0 || arg > 16)
return 0;
octx->taglen = arg;
return 1;
}
if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c))
return 0;
memcpy(octx->tag, ptr, arg);
return 1;
case EVP_CTRL_AEAD_GET_TAG:
if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c))
return 0;
memcpy(ptr, octx->tag, arg);
return 1;
case EVP_CTRL_COPY:
newc = (EVP_CIPHER_CTX *)ptr;
new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
&new_octx->ksenc.ks,
&new_octx->ksdec.ks);
default:
return -1;
}
}
# ifdef HWAES_CAPABLE
# ifdef HWAES_ocb_encrypt
void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const void *key,
size_t start_block_num,
unsigned char offset_i[16],
const unsigned char L_[][16],
unsigned char checksum[16]);
# else
# define HWAES_ocb_encrypt ((ocb128_f)NULL)
# endif
# ifdef HWAES_ocb_decrypt
void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const void *key,
size_t start_block_num,
unsigned char offset_i[16],
const unsigned char L_[][16],
unsigned char checksum[16]);
# else
# define HWAES_ocb_decrypt ((ocb128_f)NULL)
# endif
# endif
static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
do {
/*
* We set both the encrypt and decrypt key here because decrypt
* needs both. We could possibly optimise to remove setting the
* decrypt for an encryption operation.
*/
# ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksenc.ks);
HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) HWAES_encrypt,
(block128_f) HWAES_decrypt,
enc ? HWAES_ocb_encrypt
: HWAES_ocb_decrypt))
return 0;
break;
}
# endif
# ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksenc.ks);
vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) vpaes_encrypt,
(block128_f) vpaes_decrypt,
NULL))
return 0;
break;
}
# endif
AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksenc.ks);
AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) AES_encrypt,
(block128_f) AES_decrypt,
NULL))
return 0;
}
while (0);
/*
* If we have an iv we can set it directly, otherwise use saved IV.
*/
if (iv == NULL && octx->iv_set)
iv = octx->iv;
if (iv) {
if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
!= 1)
return 0;
octx->iv_set = 1;
}
octx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (octx->key_set)
CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
else
memcpy(octx->iv, iv, octx->ivlen);
octx->iv_set = 1;
}
return 1;
}
static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
unsigned char *buf;
int *buf_len;
int written_len = 0;
size_t trailing_len;
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
/* If IV or Key not set then return error */
if (!octx->iv_set)
return -1;
if (!octx->key_set)
return -1;
if (in != NULL) {
/*
* Need to ensure we are only passing full blocks to low level OCB
* routines. We do it here rather than in EVP_EncryptUpdate/
* EVP_DecryptUpdate because we need to pass full blocks of AAD too
* and those routines don't support that
*/
/* Are we dealing with AAD or normal data here? */
if (out == NULL) {
buf = octx->aad_buf;
buf_len = &(octx->aad_buf_len);
} else {
buf = octx->data_buf;
buf_len = &(octx->data_buf_len);
if (is_partially_overlapping(out + *buf_len, in, len)) {
EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
return 0;
}
}
/*
* If we've got a partially filled buffer from a previous call then
* use that data first
*/
if (*buf_len > 0) {
unsigned int remaining;
remaining = AES_BLOCK_SIZE - (*buf_len);
if (remaining > len) {
memcpy(buf + (*buf_len), in, len);
*(buf_len) += len;
return 0;
}
memcpy(buf + (*buf_len), in, remaining);
/*
* If we get here we've filled the buffer, so process it
*/
len -= remaining;
in += remaining;
if (out == NULL) {
if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
return -1;
} else if (EVP_CIPHER_CTX_encrypting(ctx)) {
if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
AES_BLOCK_SIZE))
return -1;
} else {
if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
AES_BLOCK_SIZE))
return -1;
}
written_len = AES_BLOCK_SIZE;
*buf_len = 0;
if (out != NULL)
out += AES_BLOCK_SIZE;
}
/* Do we have a partial block to handle at the end? */
trailing_len = len % AES_BLOCK_SIZE;
/*
* If we've got some full blocks to handle, then process these first
*/
if (len != trailing_len) {
if (out == NULL) {
if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
return -1;
} else if (EVP_CIPHER_CTX_encrypting(ctx)) {
if (!CRYPTO_ocb128_encrypt
(&octx->ocb, in, out, len - trailing_len))
return -1;
} else {
if (!CRYPTO_ocb128_decrypt
(&octx->ocb, in, out, len - trailing_len))
return -1;
}
written_len += len - trailing_len;
in += len - trailing_len;
}
/* Handle any trailing partial block */
if (trailing_len > 0) {
memcpy(buf, in, trailing_len);
*buf_len = trailing_len;
}
return written_len;
} else {
/*
* First of all empty the buffer of any partial block that we might
* have been provided - both for data and AAD
*/
if (octx->data_buf_len > 0) {
if (EVP_CIPHER_CTX_encrypting(ctx)) {
if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
octx->data_buf_len))
return -1;
} else {
if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
octx->data_buf_len))
return -1;
}
written_len = octx->data_buf_len;
octx->data_buf_len = 0;
}
if (octx->aad_buf_len > 0) {
if (!CRYPTO_ocb128_aad
(&octx->ocb, octx->aad_buf, octx->aad_buf_len))
return -1;
octx->aad_buf_len = 0;
}
/* If decrypting then verify */
if (!EVP_CIPHER_CTX_encrypting(ctx)) {
if (octx->taglen < 0)
return -1;
if (CRYPTO_ocb128_finish(&octx->ocb,
octx->tag, octx->taglen) != 0)
return -1;
octx->iv_set = 0;
return written_len;
}
/* If encrypting then just get the tag */
if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
return -1;
/* Don't reuse the IV */
octx->iv_set = 0;
return written_len;
}
}
static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
{
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
CRYPTO_ocb128_cleanup(&octx->ocb);
return 1;
}
BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
#endif /* OPENSSL_NO_OCB */
/* AES-SIV mode */
#ifndef OPENSSL_NO_SIV
typedef SIV128_CONTEXT EVP_AES_SIV_CTX;
#define aesni_siv_init_key aes_siv_init_key
static int aes_siv_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
const EVP_CIPHER *ctr;
const EVP_CIPHER *cbc;
SIV128_CONTEXT *sctx = EVP_C_DATA(SIV128_CONTEXT, ctx);
int klen = EVP_CIPHER_CTX_key_length(ctx) / 2;
if (key == NULL)
return 1;
switch (klen) {
case 16:
cbc = EVP_aes_128_cbc();
ctr = EVP_aes_128_ctr();
break;
case 24:
cbc = EVP_aes_192_cbc();
ctr = EVP_aes_192_ctr();
break;
case 32:
cbc = EVP_aes_256_cbc();
ctr = EVP_aes_256_ctr();
break;
default:
return 0;
}
/* klen is the length of the underlying cipher, not the input key,
which should be twice as long */
return CRYPTO_siv128_init(sctx, key, klen, cbc, ctr);
}
#define aesni_siv_cipher aes_siv_cipher
static int aes_siv_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
SIV128_CONTEXT *sctx = EVP_C_DATA(SIV128_CONTEXT, ctx);
/* EncryptFinal or DecryptFinal */
if (in == NULL)
return CRYPTO_siv128_finish(sctx);
/* Deal with associated data */
if (out == NULL)
return CRYPTO_siv128_aad(sctx, in, len);
if (EVP_CIPHER_CTX_encrypting(ctx))
return CRYPTO_siv128_encrypt(sctx, in, out, len);
return CRYPTO_siv128_decrypt(sctx, in, out, len);
}
#define aesni_siv_cleanup aes_siv_cleanup
static int aes_siv_cleanup(EVP_CIPHER_CTX *c)
{
SIV128_CONTEXT *sctx = EVP_C_DATA(SIV128_CONTEXT, c);
return CRYPTO_siv128_cleanup(sctx);
}
#define aesni_siv_ctrl aes_siv_ctrl
static int aes_siv_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
SIV128_CONTEXT *sctx = EVP_C_DATA(SIV128_CONTEXT, c);
SIV128_CONTEXT *sctx_out;
switch (type) {
case EVP_CTRL_INIT:
return CRYPTO_siv128_cleanup(sctx);
case EVP_CTRL_SET_SPEED:
return CRYPTO_siv128_speed(sctx, arg);
case EVP_CTRL_AEAD_SET_TAG:
if (!EVP_CIPHER_CTX_encrypting(c))
return CRYPTO_siv128_set_tag(sctx, ptr, arg);
return 1;
case EVP_CTRL_AEAD_GET_TAG:
if (!EVP_CIPHER_CTX_encrypting(c))
return 0;
return CRYPTO_siv128_get_tag(sctx, ptr, arg);
case EVP_CTRL_COPY:
sctx_out = EVP_C_DATA(SIV128_CONTEXT, (EVP_CIPHER_CTX*)ptr);
return CRYPTO_siv128_copy_ctx(sctx_out, sctx);
default:
return -1;
}
}
#define SIV_FLAGS (EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_DEFAULT_ASN1 \
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CUSTOM_COPY \
| EVP_CIPH_CTRL_INIT)
BLOCK_CIPHER_custom(NID_aes, 128, 1, 0, siv, SIV, SIV_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 192, 1, 0, siv, SIV, SIV_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 256, 1, 0, siv, SIV, SIV_FLAGS)
#endif